PHYS851 Quantum Mechanics I, Fall 2009 HOMEWORK ASSIGNMENT 4

- 1. The 2-Level Rabi Model: The standard Rabi Model consists of a bare Hamiltonian $H_0 = \frac{\Delta}{2} \left(|2\rangle \langle 2| |1\rangle \langle 1| \right)$ and a coupling term $V = \frac{\Omega^*}{2} |1\rangle \langle 2| + \frac{\Omega}{2} |2\rangle \langle 1|$.
 - (a) What is the energy, degeneracy, and state vector of the bare ground state for $\Delta > 0$, $\Delta = 0$, and $\Delta < 0$?
 - (b) Let the full Hamiltonian be $H = H_0 + V$. Write down the 2x2 Hamiltonian matrix in the $\{|1\rangle, |2\rangle\}$ basis and then compute the 'dressed-state' energy levels for the case $\Omega \neq 0$. Use ω_g for the lowest eigenvalue, and ω_e for the highest (in energy).
 - (c) Following the method shown in lecture (i.e. treating positive and negative detunings separately, and matching the limiting values of the dressed and bare eigenstates in the limits $|\Delta| \to \infty$), determine the normalized dressed-state eigenvectors. Label the state corresponding to ω_g as $|g\rangle$ and the other state as $|e\rangle$. Using Dirac notation, express the Full Hamiltonian as an operator in terms of the kets $|g\rangle$ and $|e\rangle$ and the corresponding bras, and then again using the kets $|1\rangle$ and $|2\rangle$ and the corresponding bras.
 - (d) Sketch the energy spectrum versus Ω for the case of fixed $\Delta > 0$. What are ω_g and ω_e at $\Omega = 0$? What are the corresponding dressed states. What are the limiting values of ω_g and ω_e , and their corresponding eigenvectors, in the limits $\Omega \to \infty$ and $\Omega \to -\infty$. What do you expect to be different for the case $\Delta < 0$?
- 2. Adiabatic and Sudden Approximations A 2-level quantum system is prepared initially in the ground-state of H_0 with a large, negative detuning, $\Delta(0) = \Delta_0 < 0$, and the coupling strength is initially zero, $\Omega(0) = 0$.

In the following, when a state $|\psi(t)\rangle$ is requested, give two expressions for $|\psi(t)\rangle$, one using the $\{|1\rangle, |2\rangle\}$ basis and the other using $\{|g\rangle, |e\rangle\}$, where the later always refers to the instantaneous values of the system parameters at the specified time.

- (a) The coupling strength, $\Omega(t)$, is slowly increased over a duration T_1 , to the value $\Omega(T_1) = \Omega_0$, with $|\Omega_0| \ll \Delta_0$, where $T_1 \gg \frac{1}{\Delta}$. What is the mean-energy, defined as $\langle H \rangle$ at time T_1 ? Give the state vector of the system $|\psi(T_1)\rangle$. Expand your results for the energy and the state to first-order in $\frac{\Omega_0}{\Delta_0}$.
- (b) The detuning is then decreased to zero, over a very short duration T_2 , while holding the coupling strength fixed, i.e. $\Omega(T_1 + t) = \Omega_0 \forall t \in (0, T_2)$. What condition on T_2 sufficient to permit one to use the Sudden Approximation (Hint: it is the opposite of the adiabatic condition)? Assuming that your condition is satisfied, and keeping only the zeroth-order term in your previous expression for $|\psi(T_1)\rangle$, what is $|\psi(T_1 + T_2)\rangle$?
- (c) The parameters are then held fixed for duration $T_3 = \frac{\pi}{|\Omega_0|}$. What is $|\psi(T_1 + T_2 + T_3)\rangle$? What is the mean energy as a function of time during this duration?
- (d) Lastly, the detuning is adiabatically decreased to $-\Delta_0$, over a duration, T_4 . Give the adiabaticity condition on T_4 , and give the state $|\psi(T_1 + T_2 + T_3 + T_4)\rangle$.
- (e) Now we switch to a completely new system, whose Hamiltonian is also H_0 . This system initially has the parameters $\Omega(0) = \Omega_0$, and $\Delta(0) = -\Delta_0$, where $\Delta_0 > 0$, $\Omega_0 > 0$, and $\Delta_0 \gg \Omega_0$. What is the initial state of this system, $|\psi(0)\rangle$? The detuning is then switched from $-\Delta_0$ to Δ_0 , over a duration $\tau \ll 1/\Omega_0$. Use either the Sudden or Adiabatic approximation (whichever is appropriate) to determine the state $|\psi(\tau)\rangle$.
- (f) Starting from the same initial state as in part (e), instead the switch from $-\Delta_0$ to Δ_0 is made over duration $\tau \gg 1/\Omega_0$. Use either the Sudden or Adiabatica approximation (whichever is appropriate) and give the state $|\psi(\tau)\rangle$ in this case.

3. Prototypical Quantum Resonance: Consider a two-level system described, in the {|1⟩, |2⟩} basis, by the bare Hamiltonian,

$$H_0 = \left(\begin{array}{cc} -\omega_0/2 & 0\\ 0 & \omega_0/2 \end{array}\right)$$

The system is then perturbed by a sinusoidal pertubation,

$$V(t) = \begin{pmatrix} 0 & \Omega \cos(\omega t) \\ \Omega \cos(\omega t) & 0 \end{pmatrix}$$

so that the total Hamiltonian is $H = H_0 + V(t)$.

- (a) What is the resonance frequency of H_0 ?
- (b) Derive the equations of motion for $c_1(t) := \langle 1 | \psi(t) \rangle$ and $c_2(t) = \langle 2 | \psi(t) \rangle$.
- (c) Define a new set of variables via $c_1 = C_1 e^{i\omega t/2}$ and $c_2 = C_2 e^{-i\omega t/2}$. Define $\Delta := \omega_0 \omega$, and re-express the equations of motion in terms of the new variables C_1 and C_2 .
- (d) Group the constant terms together so that the new equations take the form (Be sure to expand the cosine onto exponentials):

$$\frac{d}{dt} \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = -i\mathcal{H}_0 \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} + \mathcal{V}(t) \begin{pmatrix} C_1 \\ C_2 \end{pmatrix}$$

where \mathcal{H}_0 is a 2x2 matrix with time-independent coefficients, and \mathcal{V} is a 2x2 matrix with time-varying coefficients.

- (e) What is the relation between \mathcal{H}_0 and the Rabi model? What is the condition on ω for \mathcal{H}_0 to generate Rabi oscillations of maximum amplitude?
- (f) Find the eigenvalues of \mathcal{H}_0 . What is the resonance frequency of a system governed by \mathcal{H}_0 ? Based on this, what is the condition on ω , so that the term $\mathcal{V}(t)$ can be safely ignored? This ignoring is called the 'Rotating Wave Approximation' or RWA for short.