
PHYS851 Quantum Mechanics I, Fall 2009
HOMEWORK ASSIGNMENT 4: Solutions

1. The 2-Level Rabi Model: The standard Rabi Model consists of a bare Hamiltonian H0 = ∆

2
(|2〉〈2| − |1〉〈1|)

and a coupling term V = Ω
∗

2
|1〉〈2| + Ω

2
|2〉〈1|.

(a) What is the energy, degeneracy, and state vector of the bare ground state for ∆ > 0, ∆ = 0, and ∆ < 0?

For ∆ > 0, the energy of the ground state is −∆/2, the degeneracy is 1, and the state vector is |1〉.
For ∆ = 0, the energy of the ground state is 0, the degeneracy is 2 and the degenerate subspace is {|1〉, |2〉}.
For ∆ < 0, the energy of the ground state si ∆/2 = −|∆|/2, the degeneracy is 1, and the state vector is |2〉.

(b) Let the full Hamiltonian be H = H0 + V . Write down the 2x2 Hamiltonian matrix in the {|1〉, |2〉} basis
and then compute the ‘dressed-state’ energy levels for the case Ω 6= 0. Use ωg for the lowest eigenvalue,
and ωe for the highest (in energy).

The matrix representation of H in the {|1〉, |2〉} basis is:

H =

(

−∆

2

Ω
∗

2
Ω

2

∆

2

)

(1)

The characteristic equation is then:

det |H − ωI| = −
(

∆

2
+ ω

) (

∆

2
− ω

)

− |Ω|2
4

= ω2 − 1

4

(

∆2 + |Ω|2
)

= 0 (2)

the solutions are then

ωg = −1

2

√

∆2 + |Ω|2 (3)

ωe =
1

2

√

∆2 + |Ω|2 (4)

(c) Following the method shown in lecture (i.e. treating positive and negative detunings separately, and
matching the limiting values of the dressed and bare eigenstates in the limits |∆| → ∞), determine the
normalized dressed-state eigenvectors. Label the state corresponding to ωg as |g〉 and the other state as
|e〉. Using Dirac notation, express the Full Hamiltonian as an operator in terms of the kets |g〉 and |e〉
and the corresponding bras, and then again using the kets |1〉 and |2〉 and the corresponding bras.

The eigenvalue equation is (H − ωI)|ω〉 = 0.
Hitting this with 〈1| and inserting the projector I = |1〉〈1| + |2〉〈2|, then doing the same for 〈2|, gives

(〈1|H |1〉 − ω)〈1|ω〉 + 〈1|H |2〉〈2|ω〉 = 0 (5)

〈2|H |1〉〈1|ω〉+ (〈2|H |2〉 − ω)〈2|ω〉 = 0 (6)

putting in the matrix elements and multiplying by 2 gives

−(∆ + 2ω)〈1|ω〉 + Ω∗〈2|ω〉 = 0 (7)

Ω〈1|ω〉 + (∆ − 2ω)〈2|ω〉 = 0 (8)

The first equation gives, before normalization,

|ω〉 = Ω∗|1〉 + (∆ + 2ω)|2〉. (9)

The second gives,
|ω〉 = (∆ − 2ω)|1〉 − Ω|2〉. (10)
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For positive detuning, ∆ > 0, according to our answer for (a), we want limΩ→0〈2|g〉 = 0 and limΩ→0〈1|e〉 →
0, thus we should use (10) for |ωg〉 and (9) for |ωe〉. This gives

|g〉 =
(∆ +

√

∆2 + |Ω|2)|1〉 − Ω|2〉
√

(∆ +
√

∆2 + |Ω|2)2 + |Ω|2
(11)

|e〉 =
Ω∗|1〉 + (∆ +

√

∆2 + |Ω|2)|2〉
√

(∆ +
√

∆2 + |Ω|2)2 + |Ω|2
(12)

For negative detuning, ∆ < 0, the limits are reversed, so we need to use (9) for |g〉 and (10) for |e〉, and
multiply each by −1 (a nonphysical global phase factor), giving

|g〉 =
−Ω∗|1〉 + (|∆| +

√

∆2 + |Ω|2)|2〉
√

(|∆| +
√

∆2 + |Ω|2)2 + |Ω|2
(13)

|e〉 =
(|∆| +

√

∆2 + |Ω|2)|1〉 + Ω||2〉
√

(|∆| +
√

∆2 + |Ω|2)2 + |Ω|2
(14)

In the {|g〉, |e〉} basis, the Hamiltonian is

H = ωg|g〉〈g| + ωe|e〉〈e| (15)

while in the {|1〉, |2〉} basis, this becomes

H =
∆

2
(|2〉〈2| − |1〉〈1|) +

Ω

2
|2〉〈1| + Ω∗

2
|1〉〈2| (16)

(d) Sketch the energy spectrum versus Ω for the case of fixed ∆ > 0. What are ωg and ωe at Ω = 0? What
are the corresponding dressed states. What are the limiting values of ωg and ωe, and their corresponding
eigenvectors, in the limits Ω → ∞ and Ω → −∞. What do you expect to be different for the case ∆ < 0?

For ∆ > 0 and Ω = 0, we have ωg = −∆/2 and ωe = ∆/2.
The corresponding dressed states are |g〉 = |1〉 and |e〉 = |2〉.
In the limit |Ω| → ∞, we apply the limit to (11) and (12), giving

|g〉 → 1√
2

(

|1〉 − Ω

|Ω| |2〉
)

, |e〉 → 1√
2

(

Ω∗

|Ω| |1〉 + |2〉
)

(17)

For Ω → ∞, we assume that Ω is real and positive, so this simplifies to

|g〉 → 1√
2

(|1〉 − |2〉) , |e〉 → 1√
2

(|1〉 + |2〉) (18)

while for the limit Ω → −∞, we assume Ω is real and negative, to get

|g〉 → 1√
2

(|1〉 + |2〉) , |e〉 → 1√
2

(|2〉 − |1〉) (19)

Based on the symmetry of the Hamiltonian, for real Ω, taking ∆ → −∆ is equivalent to swapping |1〉 ↔ |2〉,
so that the symmetric (+) states would be the same, while the antisymmetric (-) states would acquire a
π phase shift.

2



2. Adiabatic and Sudden Approximations A 2-level quantum system is prepared initially in the ground-state
of H0 with a large, negative detuning, ∆(0) = ∆0 < 0, and the coupling strength is initially zero, Ω(0) = 0.

In the following, when a state |ψ(t)〉 is requested, give two expressions for |ψ(t)〉, one using the {|1〉, |2〉}
basis and the other using {|g〉, |e〉}, where the later always refers to the instantaneous values of the system
parameters at the specified time.

(a) The coupling strength, Ω(t), is slowly increased over a duration T1, to the value Ω(T1) = Ω0, with
|Ω0| ≪ ∆0, where T1 ≫ 1

∆
. What is the mean-energy, defined as 〈H〉 at time T1? Give the state vector

of the system |ψ(T1)〉. Expand your results for the energy and the state to first-order in Ω0

∆0

.

The system begins in the ground state |ψ(0)〉 = |g(∆0, 0)〉 = |2〉, with energy ωg(∆0, 0) = −|∆0|/2.
As omega is increased, the smallest energy gap, |∆0|, occurs at t = 0, thus T ≫ 1/|∆0| is sufficient for
adiabatic following.
At time t = T1, the system is still in the ground-state, whose state is now given by

|ψ(T1)〉 = |g(∆0,Ω0)〉 =
−Ω∗

0|1〉 + (|∆0| +
√

∆2
0

+ |Ω0|2)|2〉
√

(|∆0| +
√

∆2
0

+ |Ω0|2)2 + |Ω0|2
(20)

because the system is an an energy eigenstate, its mean energy is just its energy eigenvalue,

ωg(∆0,Ω0) = −1

2

√

∆2
0

+ |Ω0|2 (21)

Thus the energy of the system as actually decreased during the adiabatic transition.
Expanding the energy and state at t = T1 to first-order gives

|ψ(T1)〉 ≈ |2〉 − Ω∗

2|∆0|
|1〉 (22)

ω(∆0,Ω0) ≈ ∆0 (23)

(b) The detuning is then increased to zero, over a very short duration T2, while holding the coupling strength
fixed, i.e. Ω(T1 + t) = Ω0 ∀ t ∈ (0, T2). What condition on T2 sufficient to permit one to use the Sudden
Approximation (Hint: it is the opposite of the adiabatic condition)? Assuming that your condition is sat-
isfied, and keeping only the zeroth-order term in your previous expression for |ψ(T1)〉, what is |ψ(T1+T2)〉?

As the magnitude of the detuning is decreased to zero, the smallest energy gap is |Ω0|, encountered
at t = T1 + T2. Thus the validity condition for the sudden approximation is T ≫ 1/|Ω0|.
Taking |ψ(T1)〉 = |2〉, in the sudden approximation, |ψ(T1 + T2)〉 = |ψ(T1)〉, which gives

|ψ(T1 + T2)〉 = |2〉 =
1√
2

(

|g(0,Ω0)〉 −
Ω0

|Ω0|
|e(0,Ω0)〉

)

(24)

(c) The parameters are then held fixed for duration T3 = π
|Ω0|

. What is |ψ(T1 +T2 +T3)〉? What is the mean

energy as a function of time during this duration?

The parameters are held fixed at ∆ = 0, Ω = Ω0, for an interval T3 = π/|Ω0|, during which time
the system freely evolves. The equations of motion are

ċ1 = −i(Ω∗
0/2)c2 (25)

ċ2 = −i(Ω0/2)c1 (26)

These can be combined to give
c̈1 = −(|Ω0|2/4)c1 (27)
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which has the solution

c1(t0 + t) = c1(t0) cos(|Ω0|t/2) +
2ċ1(t0)

|Ω0|
sin(|Ω0|t/2) (28)

= c1(t0) cos(|Ω0|t/2) − i
Ω∗

0

|Ω0|
c2(t0) sin(|Ω0|t/2) (29)

By symmetry, the solution for c2(t) is obtained from this by swapping the indices 1 ↔ 2.
With t0 = T1 + T2, and t = T3, as well as the initial conditions c1(t0) = 0 and c2(t0) = 1, we find

c1(T1 + T2 + T3) = −i Ω∗
0

|Ω0|
sin(|Ω0|T3/2) (30)

c2(T1 + T2 + T3) = cos(|Ω0|T3/2) (31)

setting T3 = π/|Ω0| then gives

c1(T1 + T2 + T3) = −i Ω∗
0

|Ω0|
(32)

c2(T1 + T2 + T3) = 0 (33)

so that finally, we have

|ψ(T1 + T2 + T3)〉 = −i Ω∗
0

|Ω0|
|1〉 = −i 1√

2

(

Ω∗
0

|Ω0|
|g(0,Ω0)〉 + |e(0,Ω0)〉

)

(34)

The system is equally likely to be in the ground or excited states at t = T1 + T2, as can be deduced
from (24). Under free evolution, these probabilities are conserved, so that during the evolution, we have
Pg(t) = 1/2 and Pe(t) = 1/2. The average energy is 〈H〉 = 1

2
~ωg + 1

2
~ωe. Since ωg = −ωe, the average

energy is therefore zero throughout the evolution.

(d) Lastly, the detuning is adiabatically increased to −∆0, over a duration, T4. Give the adiabaticity condition
on T4, and give the state |ψ(T1 + T2 + T3 + T4)〉.

Note that −∆0 = |∆0| > 0. The minimum gap energy for this leg of the trip is |Ω0| which occurs at
t = T1 + T2 + T3. Thus the adiabaticity condition is T4 ≫ 1/|Ω0|.
Up to here, we haven’t considered adiabatic following for a superposition. The adiabatic theorem predicts
no transitions between eigenstates, but does allow for a phase to build up during the transition. For a
single eigenstate, this is non-physical, but for a superposition, the difference between the two phase factors
for the two states is physically observable. Thus we can only say that

|ψ(T1 + T2 + T3 + T4) =
1√
2

(

|g(|∆0|,Ω0)〉 + eiφ|e(|∆0|,Ω0)〉
)

(35)

where φ =
∫ T4

0
dt (ωe(t) − ωg(t)), is a relative phase which depends on the path taken. If we assume a linear

rate of change, then we have φ =
∫ T4

0
dt

√

|∆0|2t2 + |Ω0|2 = T4

2

√

|Ω0|2 + |∆0|2 + |Ω0|
2

2|∆0|
arcsin

(

T4|∆0|
|Ω0|

)

.

(e) Now we switch to a completely new system, whose Hamiltonian is also H0. This system initially has the
parameters Ω(0) = Ω0, and ∆(0) = −∆0, where ∆0 > 0, Ω0 > 0, and ∆0 ≫ Ω0. What is the initial
state of this system, |ψ(0)〉? The detuning is then switched from −∆0 to ∆0, over a duration τ ≪ 1/Ω0.
Use either the Sudden or Adiabatic approximation (whichever is appropriate) to determine the state |ψ(τ)〉.

The initial state is not specified, however, as the minimum gap frequency is |Ω0|, we see that the sudden
approximation would be appropriate, so |ψ(τ)〉 = |ψ(0)〉.

(f) Starting from the same initial state as in part (e), instead the switch from −∆0 to ∆0 is made over
duration τ ≫ 1/Ω0. Use either the Sudden or Adiabatic approximation (whichever is appropriate) and
give the state |ψ(τ)〉 in this case.

4



In this case, the adiabatic approximation would be appropriate, so that for |ψ(0)〉 = |g(−∆0,Ω0)〉 ≈ |2〉,
we would have |ψ(τ)〉 = |g(∆0,Ω0)〉 ≈ |1〉. If the initial state where |e(−∆0,Ω0)〉 ≈ |1〉, then the final
state would be |e(∆0,Ω0)〉 ≈ |1〉. This illustrates how that physical state changes when adiabatically
traversing an avoided crossing.
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3. Prototypical Quantum Resonance: Consider a two-level system described, in the {|1〉, |2〉} basis, by the
bare Hamiltonian,

H0 =

(

−ω0/2 0
0 ω0/2

)

The system is then perturbed by a sinusoidal pertubation,

V (t) =

(

0 Ω cos(ωt)
Ω cos(ωt) 0

)

so that the total Hamiltonian is H = H0 + V (t).

(a) What is the resonance frequency of H0?

The resonance frequency of H0 is the difference between the bare energy levels, i.e. ω0.

(b) Derive the equations of motion for c1(t) := 〈1|ψ(t)〉 and c2(t) = 〈2|ψ(t)〉.

We have ċj = 〈j| d
dt |ψ〉 = −i〈j|H |ψ〉, which gives

ċ1 = i
ω0

2
c1 − iΩ cos(ωt)c2 (36)

ċ2 = −iω0

2
c2 − iΩ cos(ωt)c1 (37)

(c) Define a new set of variables via c1 = C1e
iωt/2 and c2 = C2e

−iωt/2. Define ∆ := ω0 − ω, and re-express
the equations of motion in terms of the new variables C1 and C2.

Differentiation gives ċ1 = Ċ1e
iωt/2 + iωC1e

iωt/2 and ċ2 = Ċ2e
−iωt/2 − iωC2e

−iωt/2, so that

Ċ1 = i
∆

2
C1 − iΩ cos(ωt)e−iωtC2 (38)

Ċ2 = −i∆
2
C2 − iΩ cos(ωt)eiωtC1 (39)

(d) Group the constant terms together so that the new equations take the form (Be sure to expand the cosine
onto exponentials):

d

dt

(

C1

C2

)

= −iH0

(

C1

C2

)

+ V(t)

(

C1

C2

)

where H0 is a 2x2 matrix with time-independent coefficients, and V is a 2x2 matrix with time-varying
coefficients.

with cos(ωt) = 1

2

(

eiωt + e−iωt
)

, we have

d

dt

(

C1

C2

)

= −i
(

−∆

2

Ω

2
Ω

2

∆

2

) (

C1

C2

)

− i

(

0 Ω

2
e−i2ωt

Ω

2
ei2ωt 0

) (

C1

C2

)

(40)

(e) What is the relation between H0 and the Rabi model? What is the condition on ω for H0 to generate
Rabi oscillations of maximum amplitude?

H0 is the exact Hamiltonian of the Rabi model. Maximum Rabi oscillations would occur at ∆ = 0,
therefore the resonance condition is ω0 = ω, which makes sense, as the drive frequency in V (t) matches
the resonance frequency of H0.
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(f) Find the eigenvalues of H0. What is the resonance frequency of a system governed by H0? Based on
this, what is the condition on ω, so that the term V(t) can be safely ignored? This ignoring is called the
‘Rotating Wave Approximation’ or RWA for short.

The eigenvalues of H0 are ± 1

2

√
∆2 + Ω2. The term V(t) drives the new system H0 at frequencies ±2ω.

The condition to be far from resonance is therefore ω ≫ 1

4

√
∆2 + Ω2.
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