1. The 2-Level Rabi Model: The standard Rabi Model consists of a bare Hamiltonian $H_{0}=\frac{\Delta}{2}(|2\rangle\langle 2|-|1\rangle\langle 1|)$ and a coupling term $V=\frac{\Omega^{*}}{2}|1\rangle\langle 2|+\frac{\Omega}{2}|2\rangle\langle 1|$.
(a) What is the energy, degeneracy, and state vector of the bare ground state for $\Delta>0, \Delta=0$, and $\Delta<0$?

For $\Delta>0$, the energy of the ground state is $-\Delta / 2$, the degeneracy is 1 , and the state vector is $|1\rangle$.
For $\Delta=0$, the energy of the ground state is 0 , the degeneracy is 2 and the degenerate subspace is $\{|1\rangle,|2\rangle\}$.
For $\Delta<0$, the energy of the ground state si $\Delta / 2=-|\Delta| / 2$, the degeneracy is 1 , and the state vector is $|2\rangle$.
(b) Let the full Hamiltonian be $H=H_{0}+V$. Write down the $2 x 2$ Hamiltonian matrix in the $\{|1\rangle,|2\rangle\}$ basis and then compute the 'dressed-state' energy levels for the case $\Omega \neq 0$. Use ω_{g} for the lowest eigenvalue, and ω_{e} for the highest (in energy).

The matrix representation of H in the $\{|1\rangle,|2\rangle\}$ basis is:

$$
H=\left(\begin{array}{cc}
-\frac{\Delta}{2} & \frac{\Omega^{*}}{2} \tag{1}\\
\frac{\Omega}{2} & \frac{\Delta}{2}
\end{array}\right)
$$

The characteristic equation is then:

$$
\begin{equation*}
\operatorname{det}|H-\omega I|=-\left(\frac{\Delta}{2}+\omega\right)\left(\frac{\Delta}{2}-\omega\right)-\frac{|\Omega|^{2}}{4}=\omega^{2}-\frac{1}{4}\left(\Delta^{2}+|\Omega|^{2}\right)=0 \tag{2}
\end{equation*}
$$

the solutions are then

$$
\begin{align*}
\omega_{g} & =-\frac{1}{2} \sqrt{\Delta^{2}+|\Omega|^{2}} \tag{3}\\
\omega_{e} & =\frac{1}{2} \sqrt{\Delta^{2}+|\Omega|^{2}} \tag{4}
\end{align*}
$$

(c) Following the method shown in lecture (i.e. treating positive and negative detunings separately, and matching the limiting values of the dressed and bare eigenstates in the limits $|\Delta| \rightarrow \infty)$, determine the normalized dressed-state eigenvectors. Label the state corresponding to ω_{g} as $|g\rangle$ and the other state as $|e\rangle$. Using Dirac notation, express the Full Hamiltonian as an operator in terms of the kets $|g\rangle$ and $|e\rangle$ and the corresponding bras, and then again using the kets $|1\rangle$ and $|2\rangle$ and the corresponding bras.

The eigenvalue equation is $(H-\omega I)|\omega\rangle=0$.
Hitting this with $\langle 1|$ and inserting the projector $I=|1\rangle\langle 1|+|2\rangle\langle 2|$, then doing the same for $\langle 2|$, gives

$$
\begin{align*}
& (\langle 1| H|1\rangle-\omega)\langle 1 \mid \omega\rangle+\langle 1| H|2\rangle\langle 2 \mid \omega\rangle=0 \tag{5}\\
& \langle 2| H|1\rangle\langle 1 \mid \omega\rangle+(\langle 2| H|2\rangle-\omega)\langle 2 \mid \omega\rangle=0 \tag{6}
\end{align*}
$$

putting in the matrix elements and multiplying by 2 gives

$$
\begin{align*}
-(\Delta+2 \omega)\langle 1 \mid \omega\rangle+\Omega^{*}\langle 2 \mid \omega\rangle & =0 \tag{7}\\
\Omega\langle 1 \mid \omega\rangle+(\Delta-2 \omega)\langle 2 \mid \omega\rangle & =0 \tag{8}
\end{align*}
$$

The first equation gives, before normalization,

$$
\begin{equation*}
|\omega\rangle=\Omega^{*}|1\rangle+(\Delta+2 \omega)|2\rangle \tag{9}
\end{equation*}
$$

The second gives,

$$
\begin{equation*}
|\omega\rangle=(\Delta-2 \omega)|1\rangle-\Omega|2\rangle . \tag{10}
\end{equation*}
$$

For positive detuning, $\Delta>0$, according to our answer for (a), we want $\lim _{\Omega \rightarrow 0}\langle 2 \mid g\rangle=0$ and $\lim _{\Omega \rightarrow 0}\langle 1 \mid e\rangle \rightarrow$ 0 , thus we should use (10) for $\left|\omega_{g}\right\rangle$ and (9) for $\left|\omega_{e}\right\rangle$. This gives

$$
\begin{align*}
|g\rangle & =\frac{\left(\Delta+\sqrt{\Delta^{2}+|\Omega|^{2}}\right)|1\rangle-\Omega|2\rangle}{\sqrt{\left(\Delta+\sqrt{\Delta^{2}+|\Omega|^{2}}\right)^{2}+|\Omega|^{2}}} \tag{11}\\
|e\rangle & =\frac{\Omega^{*}|1\rangle+\left(\Delta+\sqrt{\Delta^{2}+|\Omega|^{2}}\right)|2\rangle}{\sqrt{\left(\Delta+\sqrt{\Delta^{2}+|\Omega|^{2}}\right)^{2}+|\Omega|^{2}}} \tag{12}
\end{align*}
$$

For negative detuning, $\Delta<0$, the limits are reversed, so we need to use (9) for $|g\rangle$ and (10) for $|e\rangle$, and multiply each by -1 (a nonphysical global phase factor), giving

$$
\begin{align*}
|g\rangle & =\frac{-\Omega^{*}|1\rangle+\left(|\Delta|+\sqrt{\Delta^{2}+|\Omega|^{2}}\right)|2\rangle}{\sqrt{\left(|\Delta|+\sqrt{\Delta^{2}+|\Omega|^{2}}\right)^{2}+|\Omega|^{2}}} \tag{13}\\
|e\rangle & =\frac{\left.\left(|\Delta|+\sqrt{\Delta^{2}+|\Omega|^{2}}\right)|1\rangle+\Omega| | 2\right\rangle}{\sqrt{\left(|\Delta|+\sqrt{\Delta^{2}+|\Omega|^{2}}\right)^{2}+|\Omega|^{2}}} \tag{14}
\end{align*}
$$

In the $\{|g\rangle,|e\rangle\}$ basis, the Hamiltonian is

$$
\begin{equation*}
H=\omega_{g}|g\rangle\langle g|+\omega_{e}|e\rangle\langle e| \tag{15}
\end{equation*}
$$

while in the $\{|1\rangle,|2\rangle\}$ basis, this becomes

$$
\begin{equation*}
H=\frac{\Delta}{2}(|2\rangle\langle 2|-|1\rangle\langle 1|)+\frac{\Omega}{2}|2\rangle\langle 1|+\frac{\Omega^{*}}{2}|1\rangle\langle 2| \tag{16}
\end{equation*}
$$

(d) Sketch the energy spectrum versus Ω for the case of fixed $\Delta>0$. What are ω_{g} and ω_{e} at $\Omega=0$? What are the corresponding dressed states. What are the limiting values of ω_{g} and ω_{e}, and their corresponding eigenvectors, in the limits $\Omega \rightarrow \infty$ and $\Omega \rightarrow-\infty$. What do you expect to be different for the case $\Delta<0$?

For $\Delta>0$ and $\Omega=0$, we have $\omega_{g}=-\Delta / 2$ and $\omega_{e}=\Delta / 2$.
The corresponding dressed states are $|g\rangle=|1\rangle$ and $|e\rangle=|2\rangle$.
In the limit $|\Omega| \rightarrow \infty$, we apply the limit to (11) and (12), giving

$$
\begin{equation*}
|g\rangle \rightarrow \frac{1}{\sqrt{2}}\left(|1\rangle-\frac{\Omega}{|\Omega|}|2\rangle\right), \quad \quad|e\rangle \rightarrow \frac{1}{\sqrt{2}}\left(\frac{\Omega^{*}}{|\Omega|}|1\rangle+|2\rangle\right) \tag{17}
\end{equation*}
$$

For $\Omega \rightarrow \infty$, we assume that Ω is real and positive, so this simplifies to

$$
\begin{equation*}
|g\rangle \rightarrow \frac{1}{\sqrt{2}}(|1\rangle-|2\rangle), \quad \quad|e\rangle \rightarrow \frac{1}{\sqrt{2}}(|1\rangle+|2\rangle) \tag{18}
\end{equation*}
$$

while for the limit $\Omega \rightarrow-\infty$, we assume Ω is real and negative, to get

$$
\begin{equation*}
|g\rangle \rightarrow \frac{1}{\sqrt{2}}(|1\rangle+|2\rangle), \quad \quad|e\rangle \rightarrow \frac{1}{\sqrt{2}}(|2\rangle-|1\rangle) \tag{19}
\end{equation*}
$$

Based on the symmetry of the Hamiltonian, for real Ω, taking $\Delta \rightarrow-\Delta$ is equivalent to swapping $|1\rangle \leftrightarrow|2\rangle$, so that the symmetric $(+)$ states would be the same, while the antisymmetric $(-)$ states would acquire a π phase shift.
2. Adiabatic and Sudden Approximations A 2-level quantum system is prepared initially in the ground-state of H_{0} with a large, negative detuning, $\Delta(0)=\Delta_{0}<0$, and the coupling strength is initially zero, $\Omega(0)=0$.

In the following, when a state $|\psi(t)\rangle$ is requested, give two expressions for $|\psi(t)\rangle$, one using the $\{|1\rangle,|2\rangle\}$ basis and the other using $\{|g\rangle,|e\rangle\}$, where the later always refers to the instantaneous values of the system parameters at the specified time.
(a) The coupling strength, $\Omega(t)$, is slowly increased over a duration T_{1}, to the value $\Omega\left(T_{1}\right)=\Omega_{0}$, with $\left|\Omega_{0}\right| \ll \Delta_{0}$, where $T_{1} \gg \frac{1}{\Delta}$. What is the mean-energy, defined as $\langle H\rangle$ at time T_{1} ? Give the state vector of the system $\left|\psi\left(T_{1}\right)\right\rangle$. Expand your results for the energy and the state to first-order in $\frac{\Omega_{0}}{\Delta_{0}}$.

The system begins in the ground state $|\psi(0)\rangle=\left|g\left(\Delta_{0}, 0\right)\right\rangle=|2\rangle$, with energy $\omega_{g}\left(\Delta_{0}, 0\right)=-\left|\Delta_{0}\right| / 2$. As omega is increased, the smallest energy gap, $\left|\Delta_{0}\right|$, occurs at $t=0$, thus $T \gg 1 /\left|\Delta_{0}\right|$ is sufficient for adiabatic following.
At time $t=T_{1}$, the system is still in the ground-state, whose state is now given by

$$
\begin{equation*}
\left|\psi\left(T_{1}\right)\right\rangle=\left|g\left(\Delta_{0}, \Omega_{0}\right)\right\rangle=\frac{-\Omega_{0}^{*}|1\rangle+\left(\left|\Delta_{0}\right|+\sqrt{\Delta_{0}^{2}+\left|\Omega_{0}\right|^{2}}\right)|2\rangle}{\sqrt{\left(\left|\Delta_{0}\right|+\sqrt{\Delta_{0}^{2}+\left|\Omega_{0}\right|^{2}}\right)^{2}+\left|\Omega_{0}\right|^{2}}} \tag{20}
\end{equation*}
$$

because the system is an an energy eigenstate, its mean energy is just its energy eigenvalue,

$$
\begin{equation*}
\omega_{g}\left(\Delta_{0}, \Omega_{0}\right)=-\frac{1}{2} \sqrt{\Delta_{0}^{2}+\left|\Omega_{0}\right|^{2}} \tag{21}
\end{equation*}
$$

Thus the energy of the system as actually decreased during the adiabatic transition. Expanding the energy and state at $t=T_{1}$ to first-order gives

$$
\begin{align*}
\left|\psi\left(T_{1}\right)\right\rangle & \approx|2\rangle-\frac{\Omega^{*}}{2\left|\Delta_{0}\right|}|1\rangle \tag{22}\\
\omega\left(\Delta_{0}, \Omega_{0}\right) & \approx \Delta_{0} \tag{23}
\end{align*}
$$

(b) The detuning is then increased to zero, over a very short duration T_{2}, while holding the coupling strength fixed, i.e. $\Omega\left(T_{1}+t\right)=\Omega_{0} \forall t \in\left(0, T_{2}\right)$. What condition on T_{2} sufficient to permit one to use the Sudden Approximation (Hint: it is the opposite of the adiabatic condition)? Assuming that your condition is satisfied, and keeping only the zeroth-order term in your previous expression for $\left|\psi\left(T_{1}\right)\right\rangle$, what is $\left|\psi\left(T_{1}+T_{2}\right)\right\rangle$?

As the magnitude of the detuning is decreased to zero, the smallest energy gap is $\left|\Omega_{0}\right|$, encountered at $t=T_{1}+T_{2}$. Thus the validity condition for the sudden approximation is $T \gg 1 /\left|\Omega_{0}\right|$.
Taking $\left|\psi\left(T_{1}\right)\right\rangle=|2\rangle$, in the sudden approximation, $\left|\psi\left(T_{1}+T_{2}\right)\right\rangle=\left|\psi\left(T_{1}\right)\right\rangle$, which gives

$$
\begin{equation*}
\left|\psi\left(T_{1}+T_{2}\right)\right\rangle=|2\rangle=\frac{1}{\sqrt{2}}\left(\left|g\left(0, \Omega_{0}\right)\right\rangle-\frac{\Omega_{0}}{\left|\Omega_{0}\right|}\left|e\left(0, \Omega_{0}\right)\right\rangle\right) \tag{24}
\end{equation*}
$$

(c) The parameters are then held fixed for duration $T_{3}=\frac{\pi}{\left|\Omega_{0}\right|}$. What is $\left|\psi\left(T_{1}+T_{2}+T_{3}\right)\right\rangle$? What is the mean energy as a function of time during this duration?

The parameters are held fixed at $\Delta=0, \Omega=\Omega_{0}$, for an interval $T_{3}=\pi /\left|\Omega_{0}\right|$, during which time the system freely evolves. The equations of motion are

$$
\begin{align*}
& \dot{c_{1}}=-i\left(\Omega_{0}^{*} / 2\right) c_{2} \tag{25}\\
& \dot{c_{2}}=-i\left(\Omega_{0} / 2\right) c_{1} \tag{26}
\end{align*}
$$

These can be combined to give

$$
\begin{equation*}
\ddot{c_{1}}=-\left(\left|\Omega_{0}\right|^{2} / 4\right) c_{1} \tag{27}
\end{equation*}
$$

which has the solution

$$
\begin{align*}
c_{1}\left(t_{0}+t\right) & =c_{1}\left(t_{0}\right) \cos \left(\left|\Omega_{0}\right| t / 2\right)+\frac{2 \dot{c}_{1}\left(t_{0}\right)}{\left|\Omega_{0}\right|} \sin \left(\left|\Omega_{0}\right| t / 2\right) \tag{28}\\
& =c_{1}\left(t_{0}\right) \cos \left(\left|\Omega_{0}\right| t / 2\right)-i \frac{\Omega_{0}^{*}}{\left|\Omega_{0}\right|} c_{2}\left(t_{0}\right) \sin \left(\left|\Omega_{0}\right| t / 2\right) \tag{29}
\end{align*}
$$

By symmetry, the solution for $c_{2}(t)$ is obtained from this by swapping the indices $1 \leftrightarrow 2$.
With $t_{0}=T_{1}+T_{2}$, and $t=T_{3}$, as well as the initial conditions $c_{1}\left(t_{0}\right)=0$ and $c_{2}\left(t_{0}\right)=1$, we find

$$
\begin{align*}
& c_{1}\left(T_{1}+T_{2}+T_{3}\right)=-i \frac{\Omega_{0}^{*}}{\left|\Omega_{0}\right|} \sin \left(\left|\Omega_{0}\right| T_{3} / 2\right) \tag{30}\\
& c_{2}\left(T_{1}+T_{2}+T_{3}\right)=\cos \left(\left|\Omega_{0}\right| T_{3} / 2\right) \tag{31}
\end{align*}
$$

setting $T_{3}=\pi /\left|\Omega_{0}\right|$ then gives

$$
\begin{align*}
& c_{1}\left(T_{1}+T_{2}+T_{3}\right)=-i \frac{\Omega_{0}^{*}}{\left|\Omega_{0}\right|} \tag{32}\\
& c_{2}\left(T_{1}+T_{2}+T_{3}\right)=0 \tag{33}
\end{align*}
$$

so that finally, we have

$$
\begin{equation*}
\left|\psi\left(T_{1}+T_{2}+T_{3}\right)\right\rangle=-i \frac{\Omega_{0}^{*}}{\left|\Omega_{0}\right|}|1\rangle=-i \frac{1}{\sqrt{2}}\left(\frac{\Omega_{0}^{*}}{\left|\Omega_{0}\right|}\left|g\left(0, \Omega_{0}\right)\right\rangle+\left|e\left(0, \Omega_{0}\right)\right\rangle\right) \tag{34}
\end{equation*}
$$

The system is equally likely to be in the ground or excited states at $t=T_{1}+T_{2}$, as can be deduced from (24). Under free evolution, these probabilities are conserved, so that during the evolution, we have $P_{g}(t)=1 / 2$ and $P_{e}(t)=1 / 2$. The average energy is $\langle H\rangle=\frac{1}{2} \hbar \omega_{g}+\frac{1}{2} \hbar \omega_{e}$. Since $\omega_{g}=-\omega_{e}$, the average energy is therefore zero throughout the evolution.
(d) Lastly, the detuning is adiabatically increased to $-\Delta_{0}$, over a duration, T_{4}. Give the adiabaticity condition on T_{4}, and give the state $\left|\psi\left(T_{1}+T_{2}+T_{3}+T_{4}\right)\right\rangle$.

Note that $-\Delta_{0}=\left|\Delta_{0}\right|>0$. The minimum gap energy for this leg of the trip is $\left|\Omega_{0}\right|$ which occurs at $t=T_{1}+T_{2}+T_{3}$. Thus the adiabaticity condition is $T_{4} \gg 1 /\left|\Omega_{0}\right|$.
Up to here, we haven't considered adiabatic following for a superposition. The adiabatic theorem predicts no transitions between eigenstates, but does allow for a phase to build up during the transition. For a single eigenstate, this is non-physical, but for a superposition, the difference between the two phase factors for the two states is physically observable. Thus we can only say that

$$
\begin{equation*}
\left|\psi\left(T_{1}+T_{2}+T_{3}+T_{4}\right)=\frac{1}{\sqrt{2}}\left(\left|g\left(\left|\Delta_{0}\right|, \Omega_{0}\right)\right\rangle+e^{i \phi}\left|e\left(\left|\Delta_{0}\right|, \Omega_{0}\right)\right\rangle\right)\right. \tag{35}
\end{equation*}
$$

where $\phi=\int_{0}^{T_{4}} d t\left(\omega_{e}(t)-\omega_{g}(t)\right)$, is a relative phase which depends on the path taken. If we assume a linear rate of change, then we have $\phi=\int_{0}^{T_{4}} d t \sqrt{\left|\Delta_{0}\right|^{2} t^{2}+\left|\Omega_{0}\right|^{2}}=\frac{T_{4}}{2} \sqrt{\left|\Omega_{0}\right|^{2}+\left|\Delta_{0}\right|^{2}}+\frac{\left|\Omega_{0}\right|^{2}}{2\left|\Delta_{0}\right|} \arcsin \left(\frac{T_{4}\left|\Delta_{0}\right|}{\left|\Omega_{0}\right|}\right)$.
(e) Now we switch to a completely new system, whose Hamiltonian is also H_{0}. This system initially has the parameters $\Omega(0)=\Omega_{0}$, and $\Delta(0)=-\Delta_{0}$, where $\Delta_{0}>0, \Omega_{0}>0$, and $\Delta_{0} \gg \Omega_{0}$. What is the initial state of this system, $|\psi(0)\rangle$? The detuning is then switched from $-\Delta_{0}$ to Δ_{0}, over a duration $\tau \ll 1 / \Omega_{0}$. Use either the Sudden or Adiabatic approximation (whichever is appropriate) to determine the state $|\psi(\tau)\rangle$.

The initial state is not specified, however, as the minimum gap frequency is $\left|\Omega_{0}\right|$, we see that the sudden approximation would be appropriate, so $|\psi(\tau)\rangle=|\psi(0)\rangle$.
(f) Starting from the same initial state as in part (e), instead the switch from $-\Delta_{0}$ to Δ_{0} is made over duration $\tau \gg 1 / \Omega_{0}$. Use either the Sudden or Adiabatic approximation (whichever is appropriate) and give the state $|\psi(\tau)\rangle$ in this case.

In this case, the adiabatic approximation would be appropriate, so that for $|\psi(0)\rangle=\left|g\left(-\Delta_{0}, \Omega_{0}\right)\right\rangle \approx|2\rangle$, we would have $|\psi(\tau)\rangle=\left|g\left(\Delta_{0}, \Omega_{0}\right)\right\rangle \approx|1\rangle$. If the initial state where $\left|e\left(-\Delta_{0}, \Omega_{0}\right)\right\rangle \approx|1\rangle$, then the final state would be $\left|e\left(\Delta_{0}, \Omega_{0}\right)\right\rangle \approx|1\rangle$. This illustrates how that physical state changes when adiabatically traversing an avoided crossing.
3. Prototypical Quantum Resonance: Consider a two-level system described, in the $\{|1\rangle,|2\rangle\}$ basis, by the bare Hamiltonian,

$$
H_{0}=\left(\begin{array}{cc}
-\omega_{0} / 2 & 0 \\
0 & \omega_{0} / 2
\end{array}\right)
$$

The system is then perturbed by a sinusoidal pertubation,

$$
V(t)=\left(\begin{array}{cc}
0 & \Omega \cos (\omega t) \\
\Omega \cos (\omega t) & 0
\end{array}\right)
$$

so that the total Hamiltonian is $H=H_{0}+V(t)$.
(a) What is the resonance frequency of H_{0} ?

The resonance frequency of H_{0} is the difference between the bare energy levels, i.e. ω_{0}.
(b) Derive the equations of motion for $c_{1}(t):=\langle 1 \mid \psi(t)\rangle$ and $c_{2}(t)=\langle 2 \mid \psi(t)\rangle$.

We have $\dot{c}_{j}=\langle j| \frac{d}{d t}|\psi\rangle=-i\langle j| H|\psi\rangle$, which gives

$$
\begin{align*}
& \dot{c}_{1}=i \frac{\omega_{0}}{2} c_{1}-i \Omega \cos (\omega t) c_{2} \tag{36}\\
& \dot{c}_{2}=-i \frac{\omega_{0}}{2} c_{2}-i \Omega \cos (\omega t) c_{1} \tag{37}
\end{align*}
$$

(c) Define a new set of variables via $c_{1}=C_{1} e^{i \omega t / 2}$ and $c_{2}=C_{2} e^{-i \omega t / 2}$. Define $\Delta:=\omega_{0}-\omega$, and re-express the equations of motion in terms of the new variables C_{1} and C_{2}.

Differentiation gives $\dot{c_{1}}=\dot{C}_{1} e^{i \omega t / 2}+i \omega C_{1} e^{i \omega t / 2}$ and $\dot{c_{2}}=\dot{C}_{2} e^{-i \omega t / 2}-i \omega C_{2} e^{-i \omega t / 2}$, so that

$$
\begin{align*}
\dot{C}_{1} & =i \frac{\Delta}{2} C_{1}-i \Omega \cos (\omega t) e^{-i \omega t} C_{2} \tag{38}\\
\dot{C}_{2} & =-i \frac{\Delta}{2} C_{2}-i \Omega \cos (\omega t) e^{i \omega t} C_{1} \tag{39}
\end{align*}
$$

(d) Group the constant terms together so that the new equations take the form (Be sure to expand the cosine onto exponentials):

$$
\frac{d}{d t}\binom{C_{1}}{C_{2}}=-i \mathcal{H}_{0}\binom{C_{1}}{C_{2}}+\mathcal{V}(t)\binom{C_{1}}{C_{2}}
$$

where \mathcal{H}_{0} is a 2 x 2 matrix with time-independent coefficients, and \mathcal{V} is a 2 x 2 matrix with time-varying coefficients.
with $\cos (\omega t)=\frac{1}{2}\left(e^{i \omega t}+e^{-i \omega t}\right)$, we have

$$
\frac{d}{d t}\binom{C_{1}}{C_{2}}=-i\left(\begin{array}{cc}
-\frac{\Delta}{2} & \frac{\Omega}{2} \tag{40}\\
\frac{\Omega}{2} & \frac{\Delta}{2}
\end{array}\right)\binom{C_{1}}{C_{2}}-i\left(\begin{array}{cc}
0 & \frac{\Omega}{2} e^{-i 2 \omega t} \\
\frac{\Omega}{2} e^{i 2 \omega t} & 0
\end{array}\right)\binom{C_{1}}{C_{2}}
$$

(e) What is the relation between \mathcal{H}_{0} and the Rabi model? What is the condition on ω for \mathcal{H}_{0} to generate Rabi oscillations of maximum amplitude?
H_{0} is the exact Hamiltonian of the Rabi model. Maximum Rabi oscillations would occur at $\Delta=0$, therefore the resonance condition is $\omega_{0}=\omega$, which makes sense, as the drive frequency in $V(t)$ matches the resonance frequency of H_{0}.
(f) Find the eigenvalues of \mathcal{H}_{0}. What is the resonance frequency of a system governed by \mathcal{H}_{0} ? Based on this, what is the condition on ω, so that the term $\mathcal{V}(t)$ can be safely ignored? This ignoring is called the 'Rotating Wave Approximation' or RWA for short.

The eigenvalues of \mathcal{H}_{0} are $\pm \frac{1}{2} \sqrt{\Delta^{2}+\Omega^{2}}$. The term $\mathcal{V}(t)$ drives the new system \mathcal{H}_{0} at frequencies $\pm 2 \omega$. The condition to be far from resonance is therefore $\omega \gg \frac{1}{4} \sqrt{\Delta^{2}+\Omega^{2}}$.

