
PHYS851 Quantum Mechanics I, Fall 2009
HOMEWORK ASSIGNMENT 5

1. In problem 4.3, we used a change of variables to map the equations of motion for a sinusoidally driven
two-level system onto the time-independent Rabi model. Here we will investigate how this change of
variables can be treated more formally as a unitary transformation.

Unitary operators are those which, when acting on (transforming) any state, always preserve the
norm of the state. Any Hermitian operator, G can be used to generate a unitary transformation, via
the Unitary operator UG = eiG. The Unitary transformation is then defined by |ψ′(t)〉 = UG|ψ(t)〉,
where |ψ(t)〉 is the original state-vector, and |ψ′(t)〉 is the state vector in the new ‘frame of reference’.

For the case of a time-dependent Hamiltonian, H(t) and a time-dependent generator G(t), we would
like to determine the effective Hamiltonian, H ′(t), which governs the evolution of the state |ψ′(t)〉.

(a) Begin by differentiating both sides of the equation |ψ′(t)〉 = UG(t)|ψ(t)〉 with respect to time.
Use Schrödinger’s equation to eliminate d

dt |ψ(t)〉.
(Tip: keep in mind that in general [H(t), G(t)] 6= 0)

(b) The effective Hamiltonian in the new ’frame of reference’ must satisfy the equation:

i~
d

dt
|ψ′(t)〉 = H ′(t)|ψ′(t)〉.

Use the fact that U †
GUG = I, and your result from 1a, to give an expression for H ′(t) in terms

of H(t) and G(t).

(c) What is H ′(t) in the special case where G is not explicitly time-dependent? What is H ′ in the
case where H and G are both time-independent and [H,G] = 0?

(d) By definition, H(t) 6= H ′(t) is defined as the energy operator. In general, would it be safe to
assume that the eigenstates of H ′(t) are the energy eigenstates of the system?

(e) Let us assume that the original Hamiltonian is explicitly time-dependent, but that G(t) is chosen
so that H ′ is time-independent. Write an expression for |ψ′(t)〉 in terms of the eigenvalues and
eigenstates of H ′, and the initial state |ψ′(0)〉.

(f) Use the relationship between |ψ(t)〉 and |ψ′(t)〉, to convert your result from 1e, into an expression
for |ψ(t)〉 in terms of the initial state |ψ(0)〉.
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2. The Hamiltonian for an atom in the field of a standing-wave laser field is given in the two-level
approximation by

H =
~ωa

2
(|2〉〈2| − |1〉〈1|) − dE0(y, x) cos(kLz) cos(ωLt) (|1〉〈2| + |2〉〈1|)

where ωa is the two-level transition frequency, d is the dipole moment of the transition, E0(x, y) cos(kLz)
is the amplitude of the electric field of the laser beam at the location of the atom, kL is the wave-vector
of the laser beam, and ωL is the frequency of the laser beam. Here x, y, z refer to the location of that
atom’s center of mass, whose motion we will treat classically. Thus you can just view x, y, z as param-
eters. Lasers typically have gaussian transverse profiles, so that E0(x, y) = E0 exp(−(x2 + y2)/W 2),
where W is the transverse dimension of the beam.

(a) Consider a Unitary transformation generated by the Hermitian operator G = ωL

2 (|2〉〈2|−|1〉〈1|)t.
Use the Taylor series for the exponential to compute the transformed states |1′〉 := UG(t)|1〉 and
|2′〉 := UG(t)|2〉.

(b) Use your results from 1b and part 2a to compute the effective Hamiltonian, H ′(t), for what
we will call the ‘rotating frame’ (i.e. rotating in Hilbert space) defined by the generator G =
ωL

2 (|2〉〈2| − |1〉〈1|)t. What are the matrix elements of H ′ in the {|1〉, |2〉} basis?

(c) Make the rotating wave approximation (RWA) by henceforth neglecting the oscillating terms
in H ′(t). How should we then define ∆ and Ω = Ω(x, y, z) in order to map H ′ onto the Rabi
model?

(d) The matrix elements of H ′ depend on the atom’s position ~r = (x, y, z), hence we can say
H ′ = H ′(x, y, z). We can therefore refer to the eigenstates of H ′(x, y, z) as |g′(x, y, z)〉 and
|e′(x, y, z)〉, and the eigenvalues as ω′

g and ω′
e. Use your results from problem 4.1 to write

expressions for ω′
g(x, y, z), ω

′
e(x, y, z), and expand |g′(x, y, z)〉 and |e′(x, y, z)〉 onto the basis

{|1〉, |2〉}.

(e) Assume that the atom starts out at coordinates ~r0 = (−x0, 0, 0), where |x0| ≫ W (i.e. outside
of the beam region). Take as the initial velocity of the atom ~v0 = (v0, 0, 0), and as the initial
internal state, |1〉. Show that in the limit x0 → −∞, this state corresponds to the state
|g′(−x0, 0, 0)〉 for ∆ > 0. What state does it correspond to for ∆ < 0?

(f) What is the minimum possible gap frequency ωgap(x, y, z) := ω′
e(x, y, z) − ω′

g(x, y, z) that the
atom would encounter it were to continue traveling along its initial trajectory? Expand ωgap in
powers of Ω(x, y, z)/∆, and keep only the leading term. Then, use this to derive the condition
on the initial velocity, v0, for the atom to adiabatically follow |g′(x, y, z)〉 or |e′(x, y, z)〉 as it
continues along its trajectory, again assuming uniform motion. (Hint: the answer should depend
on v0, W , and ∆ only). To put in some real numbers, take W = 10−3m and ∆ = 1GHz, and
compute the velocity at which adiabatic following breaks down. Assuming an atomic mass of
10−25kg, at what temperature would adiabatic following break down?

(g) Compute the mean internal energy of an atom in state |g′(x, y, z)〉, defined as 〈g′(x, y, z)|H|g′(x, y, z)〉,
and time-average any oscillating terms. Based on this result, give a reasonable argument as to
why the atom should be repelled by the laser field for negative ∆, and attracted by the laser field
for positive ∆ (Hint: Potential Energy is defined as any energy which depends on position).
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3. Use the fact that 〈x|P |ψ〉 = −i~ d
dx〈x|ψ〉 for any x and any state |ψ〉, to show that

[P,F (X)] = −i~F ′(X)

where F (x) is an arbitrary function, and F ′(x) = dF (x)
dx .

4. For a free-particle, we have

〈x|ψ(t)〉 =

∫

dp 〈x|p〉e−i p2

2m~
t〈p|ψ(0)〉.

For an initial Gaussian wavepacket,

〈x|ψ(0)〉 =
[

πσ2
0

]−1/4
e
−

(x−x0)2

2σ2
0 ,

use the formula

∫ ∞

−∞

dy e−ay2+by =

∫ ∞

−∞

dy e
−a

“

y−2 b
2a

+ b2

4a2

”

+ b2

4a = e
b2

4a

∫ ∞

−∞

dy e−a(y− b
2a)

2

= e
b2

4a

∫ ∞

−∞

du e−au2
=

√

π

a
e

b2

4a

to first compute 〈p|ψ(0)〉. Then use the same formula to do the final p-integration and obtain an
analytic expression for 〈x|ψ(t)〉.

Lastly, compute |〈x|ψ(t)〉|2, and show that the probability distribution remains a gaussian, whose
center moves as a classical free-particle with initial position, x0, and initial momentum p0. Give an
expression for the width of this gaussian as a function of time.
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