1. In problem 4.3, we used a change of variables to map the equations of motion for a sinusoidally driven two-level system onto the time-independent Rabi model. Here we will investigate how this change of variables can be treated more formally as a unitary transformation.

Unitary operators are those which, when acting on (transforming) any state, always preserve the norm of the state. Any Hermitian operator, G can be used to generate a unitary transformation, via the Unitary operator $U_{G}=e^{i G}$. The Unitary transformation is then defined by $\left|\psi^{\prime}(t)\right\rangle=U_{G}|\psi(t)\rangle$, where $|\psi(t)\rangle$ is the original state-vector, and $\left|\psi^{\prime}(t)\right\rangle$ is the state vector in the new 'frame of reference'.

For the case of a time-dependent Hamiltonian, $H(t)$ and a time-dependent generator $G(t)$, we would like to determine the effective Hamiltonian, $H^{\prime}(t)$, which governs the evolution of the state $\left|\psi^{\prime}(t)\right\rangle$.
(a) Begin by differentiating both sides of the equation $\left|\psi^{\prime}(t)\right\rangle=U_{G}(t)|\psi(t)\rangle$ with respect to time. Use Schrödinger's equation to eliminate $\frac{d}{d t}|\psi(t)\rangle$.
(Tip: keep in mind that in general $[H(t), G(t)] \neq 0$)
(b) The effective Hamiltonian in the new 'frame of reference' must satisfy the equation:

$$
i \hbar \frac{d}{d t}\left|\psi^{\prime}(t)\right\rangle=H^{\prime}(t)\left|\psi^{\prime}(t)\right\rangle .
$$

Use the fact that $U_{G}^{\dagger} U_{G}=I$, and your result from 1a, to give an expression for $H^{\prime}(t)$ in terms of $H(t)$ and $G(t)$.
(c) What is $H^{\prime}(t)$ in the special case where G is not explicitly time-dependent? What is H^{\prime} in the case where H and G are both time-independent and $[H, G]=0$?
(d) By definition, $H(t) \neq H^{\prime}(t)$ is defined as the energy operator. In general, would it be safe to assume that the eigenstates of $H^{\prime}(t)$ are the energy eigenstates of the system?
(e) Let us assume that the original Hamiltonian is explicitly time-dependent, but that $G(t)$ is chosen so that H^{\prime} is time-independent. Write an expression for $\left|\psi^{\prime}(t)\right\rangle$ in terms of the eigenvalues and eigenstates of H^{\prime}, and the initial state $\left|\psi^{\prime}(0)\right\rangle$.
(f) Use the relationship between $|\psi(t)\rangle$ and $\left|\psi^{\prime}(t)\right\rangle$, to convert your result from 1e, into an expression for $|\psi(t)\rangle$ in terms of the initial state $|\psi(0)\rangle$.
2. The Hamiltonian for an atom in the field of a standing-wave laser field is given in the two-level approximation by

$$
H=\frac{\hbar \omega_{a}}{2}(|2\rangle\langle 2|-|1\rangle\langle 1|)-d E_{0}(y, x) \cos \left(k_{L} z\right) \cos \left(\omega_{L} t\right)(|1\rangle\langle 2|+|2\rangle\langle 1|)
$$

where ω_{a} is the two-level transition frequency, d is the dipole moment of the transition, $E_{0}(x, y) \cos \left(k_{L} z\right)$ is the amplitude of the electric field of the laser beam at the location of the atom, k_{L} is the wave-vector of the laser beam, and ω_{L} is the frequency of the laser beam. Here x, y, z refer to the location of that atom's center of mass, whose motion we will treat classically. Thus you can just view x, y, z as parameters. Lasers typically have gaussian transverse profiles, so that $E_{0}(x, y)=E_{0} \exp \left(-\left(x^{2}+y^{2}\right) / W^{2}\right)$, where W is the transverse dimension of the beam.
(a) Consider a Unitary transformation generated by the Hermitian operator $G=\frac{\omega_{L}}{2}(|2\rangle\langle 2|-|1\rangle\langle 1|) t$. Use the Taylor series for the exponential to compute the transformed states $\left|1^{\prime}\right\rangle:=U_{G}(t)|1\rangle$ and $\left|2^{\prime}\right\rangle:=U_{G}(t)|2\rangle$.
(b) Use your results from 1 b and part 2 a to compute the effective Hamiltonian, $H^{\prime}(t)$, for what we will call the 'rotating frame' (i.e. rotating in Hilbert space) defined by the generator $G=$ $\frac{\omega_{L}}{2}(|2\rangle\langle 2|-|1\rangle\langle 1|) t$. What are the matrix elements of H^{\prime} in the $\{|1\rangle,|2\rangle\}$ basis?
(c) Make the rotating wave approximation (RWA) by henceforth neglecting the oscillating terms in $H^{\prime}(t)$. How should we then define Δ and $\Omega=\Omega(x, y, z)$ in order to map H^{\prime} onto the Rabi model?
(d) The matrix elements of H^{\prime} depend on the atom's position $\vec{r}=(x, y, z)$, hence we can say $H^{\prime}=H^{\prime}(x, y, z)$. We can therefore refer to the eigenstates of $H^{\prime}(x, y, z)$ as $\left|g^{\prime}(x, y, z)\right\rangle$ and $\left|e^{\prime}(x, y, z)\right\rangle$, and the eigenvalues as ω_{g}^{\prime} and ω_{e}^{\prime}. Use your results from problem 4.1 to write expressions for $\omega_{g}^{\prime}(x, y, z), \omega_{e}^{\prime}(x, y, z)$, and expand $\left|g^{\prime}(x, y, z)\right\rangle$ and $\left|e^{\prime}(x, y, z)\right\rangle$ onto the basis $\{|1\rangle,|2\rangle\}$.
(e) Assume that the atom starts out at coordinates $\vec{r}_{0}=\left(-x_{0}, 0,0\right)$, where $\left|x_{0}\right| \gg W$ (i.e. outside of the beam region). Take as the initial velocity of the atom $\vec{v}_{0}=\left(v_{0}, 0,0\right)$, and as the initial internal state, $|1\rangle$. Show that in the limit $x_{0} \rightarrow-\infty$, this state corresponds to the state $\left|g^{\prime}\left(-x_{0}, 0,0\right)\right\rangle$ for $\Delta>0$. What state does it correspond to for $\Delta<0$?
(f) What is the minimum possible gap frequency $\omega_{g a p}(x, y, z):=\omega_{e}^{\prime}(x, y, z)-\omega_{g}^{\prime}(x, y, z)$ that the atom would encounter it were to continue traveling along its initial trajectory? Expand $\omega_{g a p}$ in powers of $\Omega(x, y, z) / \Delta$, and keep only the leading term. Then, use this to derive the condition on the initial velocity, v_{0}, for the atom to adiabatically follow $\left|g^{\prime}(x, y, z)\right\rangle$ or $\left|e^{\prime}(x, y, z)\right\rangle$ as it continues along its trajectory, again assuming uniform motion. (Hint: the answer should depend on v_{0}, W, and Δ only). To put in some real numbers, take $W=10^{-3} \mathrm{~m}$ and $\Delta=1 \mathrm{GHz}$, and compute the velocity at which adiabatic following breaks down. Assuming an atomic mass of $10^{-25} \mathrm{~kg}$, at what temperature would adiabatic following break down?
(g) Compute the mean internal energy of an atom in state $\left|g^{\prime}(x, y, z)\right\rangle$, defined as $\left\langle g^{\prime}(x, y, z)\right| H\left|g^{\prime}(x, y, z)\right\rangle$, and time-average any oscillating terms. Based on this result, give a reasonable argument as to why the atom should be repelled by the laser field for negative Δ, and attracted by the laser field for positive Δ (Hint: Potential Energy is defined as any energy which depends on position).
3. Use the fact that $\langle x| P|\psi\rangle=-i \hbar \frac{d}{d x}\langle x \mid \psi\rangle$ for any x and any state $|\psi\rangle$, to show that

$$
[P, F(X)]=-i \hbar F^{\prime}(X)
$$

where $F(x)$ is an arbitrary function, and $F^{\prime}(x)=\frac{d F(x)}{d x}$.
4. For a free-particle, we have

$$
\langle x \mid \psi(t)\rangle=\int d p\langle x \mid p\rangle e^{-i \frac{p^{2}}{2 m \hbar} t}\langle p \mid \psi(0)\rangle .
$$

For an initial Gaussian wavepacket,

$$
\langle x \mid \psi(0)\rangle=\left[\pi \sigma_{0}^{2}\right]^{-1 / 4} e^{-\frac{\left(x-x_{0}\right)^{2}}{2 \sigma_{0}^{2}}},
$$

use the formula
$\int_{-\infty}^{\infty} d y e^{-a y^{2}+b y}=\int_{-\infty}^{\infty} d y e^{-a\left(y-2 \frac{b}{2 a}+\frac{b^{2}}{4 a^{2}}\right)+\frac{b^{2}}{4 a}}=e^{\frac{b^{2}}{4 a}} \int_{-\infty}^{\infty} d y e^{-a\left(y-\frac{b}{2 a}\right)^{2}}=e^{\frac{b^{2}}{4 a}} \int_{-\infty}^{\infty} d u e^{-a u^{2}}=\sqrt{\frac{\pi}{a}} e^{\frac{b^{2}}{4 a}}$
to first compute $\langle p \mid \psi(0)\rangle$. Then use the same formula to do the final p-integration and obtain an analytic expression for $\langle x \mid \psi(t)\rangle$.

Lastly, compute $|\langle x \mid \psi(t)\rangle|^{2}$, and show that the probability distribution remains a gaussian, whose center moves as a classical free-particle with initial position, x_{0}, and initial momentum p_{0}. Give an expression for the width of this gaussian as a function of time.

