PHYS851 Quantum Mechanics I, Fall 2009
HOMEWORK ASSIGNMENT 5

1. In problem 4.3, we used a change of variables to map the equations of motion for a sinusoidally driven two-level system onto the time-independent Rabi model. Here we will investigate how this change of variables can be treated more formally as a unitary transformation.

Unitary operators are those which, when acting on (transforming) any state, always preserve the norm of the state. Any Hermitian operator, G can be used to generate a unitary transformation, via the Unitary operator $U_{G}=e^{i G}$. The Unitary transformation is then defined by $\left|\psi^{\prime}(t)\right\rangle=U_{G}|\psi(t)\rangle$, where $|\psi(t)\rangle$ is the original state-vector, and $\left|\psi^{\prime}(t)\right\rangle$ is the state vector in the new 'frame of reference'.

For the case of a time-dependent Hamiltonian, $H(t)$ and a time-dependent generator $G(t)$, we would like to determine the effective Hamiltonian, $H^{\prime}(t)$, which governs the evolution of the state $\left|\psi^{\prime}(t)\right\rangle$.
(a) Begin by differentiating both sides of the equation $\left|\psi^{\prime}(t)\right\rangle=U_{G}(t)|\psi(t)\rangle$ with respect to time. Use Schrödinger's equation to eliminate $\frac{d}{d t}|\psi(t)\rangle$.
(Tip: keep in mind that in general $[H(t), G(t)] \neq 0$)

$$
\begin{align*}
\left|\dot{\psi}^{\prime}\right\rangle & =\dot{U}_{G}|\psi\rangle+U_{G}|\dot{\psi}\rangle \tag{1}\\
& =\dot{U}_{G}|\psi\rangle-\frac{i}{\hbar} U_{G} H|\psi\rangle \tag{2}
\end{align*}
$$

(b) The effective Hamiltonian in the new 'frame of reference' must satisfy the equation:

$$
i \hbar \frac{d}{d t}\left|\psi^{\prime}(t)\right\rangle=H^{\prime}(t)\left|\psi^{\prime}(t)\right\rangle .
$$

Use the fact that $U_{G}^{\dagger} U_{G}=I$, and your result from 1a, to give an expression for $H^{\prime}(t)$ in terms of $H(t)$ and $G(t)$.

$$
\begin{align*}
\frac{d}{d t}\left|\psi^{\prime}\right\rangle & =\dot{U}_{G} U_{G}^{\dagger}\left(U_{G}|\psi\rangle\right)-\frac{i}{\hbar} U_{G} H U_{G}^{\dagger}\left(U_{G}|\psi\rangle\right) \tag{3}\\
& =-\frac{i}{\hbar}\left[U_{G} H U_{G}^{\dagger}+i \hbar \dot{U}_{G} U_{G}^{\dagger}\right]\left|\psi^{\prime}\right\rangle \tag{4}
\end{align*}
$$

Thus we see that

$$
\begin{equation*}
H^{\prime}=U_{G} H U_{G}^{\dagger}+i \hbar \dot{U}_{G} U_{G}^{\dagger} \tag{5}
\end{equation*}
$$

(c) What is $H^{\prime}(t)$ in the special case where G is not explicitly time-dependent? What is H^{\prime} in the case where H and G are both time-independent and $[H, G]=0$?
If G is not time-dependent, then $\dot{U}_{G}=0$, so that

$$
\begin{equation*}
H^{\prime}=U_{G} H U_{G}^{\dagger} \tag{6}
\end{equation*}
$$

If $[H, G]=0$, then it follows that $\left[U_{G}, H\right]=0$, so that

$$
\begin{equation*}
H^{\prime}=U_{G} H U_{G}^{\dagger}=H U_{G} U_{G}^{\dagger}=H \tag{7}
\end{equation*}
$$

(d) By definition, $H(t) \neq H^{\prime}(t)$ is defined as the energy operator. In general, would it be safe to assume that the eigenstates of $H^{\prime}(t)$ are the energy eigenstates of the system?
No, it would not be a safe assumption, because H^{\prime} is not just a unitary transformation on H, due to the addition of the \dot{U}_{G} term. Thus H^{\prime} and H^{\prime} will likely not have the same spectrum.
(e) Let us assume that the original Hamiltonian is explicitly time-dependent, but that $G(t)$ is chosen so that H^{\prime} is time-independent. Write an expression for $\left|\psi^{\prime}(t)\right\rangle$ in terms of the eigenvalues and eigenstates of H^{\prime}, and the initial state $\left|\psi^{\prime}(0)\right\rangle$.
We start from

$$
\begin{equation*}
\left|\dot{\psi}^{\prime}\right\rangle=-\frac{i}{\hbar} H^{\prime}\left|\psi^{\prime}\right\rangle \tag{8}
\end{equation*}
$$

since H^{\prime} is time-independent, this has the solution

$$
\begin{equation*}
\left|\psi^{\prime}(t)\right\rangle=e^{-i H^{\prime} t / \hbar}\left|\psi^{\prime}(0)\right\rangle=\sum_{n}\left|\omega_{n}^{\prime}\right\rangle e^{-i \omega_{n}^{\prime} t}\left\langle\omega_{n}^{\prime} \mid \psi^{\prime}(0)\right\rangle \tag{9}
\end{equation*}
$$

where $H^{\prime}\left|\omega_{n}^{\prime}\right\rangle=\hbar \omega_{n}^{\prime}\left|\omega_{n}^{\prime}\right\rangle$
(f) Use the relationship between $|\psi(t)\rangle$ and $\left|\psi^{\prime}(t)\right\rangle$, to convert your result from 1e, into an expression for $|\psi(t)\rangle$ in terms of the initial state $|\psi(0)\rangle$.
Since $\left|\psi^{\prime}\right\rangle=U_{G}|\psi\rangle$ it follows that $|\psi\rangle=U_{G}^{-1}\left|\psi^{\prime}\right\rangle=U_{G}^{\dagger}\left|\psi^{\prime}\right\rangle$. Thus we have

$$
\begin{equation*}
|\psi(t)\rangle=\sum_{n} U_{G}^{\dagger}\left|\omega_{n}\right\rangle e^{-i \omega_{n}^{\prime} t}\left\langle\omega_{n}^{\prime}\right| U_{G}|\psi(0)\rangle \tag{10}
\end{equation*}
$$

2. The Hamiltonian for an atom in the field of a standing-wave laser field is given in the two-level approximation by

$$
H=\frac{\hbar \omega_{a}}{2}(|2\rangle\langle 2|-|1\rangle\langle 1|)-d E_{0}(y, x) \cos \left(k_{L} z\right) \cos \left(\omega_{L} t\right)(|1\rangle\langle 2|+|2\rangle\langle 1|)
$$

where ω_{a} is the two-level transition frequency, d is the dipole moment of the transition, $E_{0}(x, y) \cos \left(k_{L} z\right)$ is the amplitude of the electric field of the laser beam at the location of the atom, k_{L} is the wave-vector of the laser beam, and ω_{L} is the frequency of the laser beam. Here x, y, z refer to the location of that atom's center of mass, whose motion we will treat classically. Thus you can just view x, y, z as parameters. Lasers typically have gaussian transverse profiles, so that $E_{0}(x, y)=E_{0} \exp \left(-\left(x^{2}+y^{2}\right) / W^{2}\right)$, where W is the transverse dimension of the beam.
(a) Consider a Unitary transformation generated by the Hermitian operator $G=\frac{\omega_{L}}{2}(|2\rangle\langle 2|-|1\rangle\langle 1|) t$. Use the Taylor series for the exponential to compute the transformed states $\left|1^{\prime}\right\rangle:=U_{G}(t)|1\rangle$ and $\left|2^{\prime}\right\rangle:=U_{G}(t)|2\rangle$.

We have

$$
\begin{equation*}
e^{i G(t)}=I+i G-\frac{i}{2} G^{2}-\frac{1}{6} G^{3}+\ldots \tag{11}
\end{equation*}
$$

with $G=\frac{\omega_{L} t}{2}(|2\rangle\langle 2|-|1\rangle\langle 1|)$, we see that

$$
\begin{equation*}
G^{n}|2\rangle=\left(\omega_{L} t / 2\right)^{n}|2\rangle \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
G^{n}|1\rangle=\left(-\omega_{L} t / 2\right)^{n}|1\rangle \tag{13}
\end{equation*}
$$

this leads to

$$
\begin{align*}
\left|1^{\prime}\right\rangle & =U_{G}(t)|1\rangle \\
& =\left[I+i G-\frac{i}{2} G^{2}-\frac{1}{6} G^{3}+\ldots\right]|1\rangle \\
& =\left[I+i\left(-\omega_{L} t / 2\right)-\frac{i}{2}\left(-\omega_{L} t / 2\right)^{2}-\frac{1}{6}\left(-\omega_{L} t / 2\right)^{3}+\ldots\right]|1\rangle \\
& =e^{-i \omega_{L} t / 2}|1\rangle \tag{14}
\end{align*}
$$

and similarly we find

$$
\begin{equation*}
\left|2^{\prime}\right\rangle=e^{i \omega_{L} t / 2}|2\rangle \tag{15}
\end{equation*}
$$

(b) Use your results from 1 b and part 2 a to compute the effective Hamiltonian, $H^{\prime}(t)$, for what we will call the 'rotating frame' (i.e. rotating in Hilbert space) defined by the generator $G=\frac{\omega_{L}}{2}(|2\rangle\langle 2|-|1\rangle\langle 1|) t$. What are the matrix elements of H^{\prime} in the $\{|1\rangle,|2\rangle\}$ basis?

First we compute

$$
\begin{equation*}
\dot{U}_{G}=i \frac{\omega_{L}}{2}(|2\rangle\langle 2|-|1\rangle\langle 1|) U_{G} \tag{16}
\end{equation*}
$$

so that

$$
\begin{align*}
H^{\prime} & =U_{G}\left[\frac{\hbar \omega_{a}}{2}(|2\rangle\langle 2|-|1\rangle\langle 1|)-d E_{0}(y, x) \cos \left(k_{L} z\right) \cos \left(\omega_{L} t\right)(|1\rangle\langle 2|+|2\rangle\langle 1|)\right] U_{G}^{\dagger} \\
& +-\hbar \frac{\omega_{L}}{2}(|2\rangle\langle 2|-|1\rangle\langle 1|) \tag{17}
\end{align*}
$$

using our results from (a) gives then
$H^{\prime}=\hbar \frac{\omega_{a}-\omega_{L}}{2}|2\rangle\langle 2|-\hbar \frac{\omega_{a}-\omega_{L}}{2}|1\rangle\langle 1|-d E_{0}(x, y) \cos \left(k_{L} z\right) \cos \left(\omega_{L} t\right)\left(e^{-i \omega_{L} t}|1\rangle\langle 2|+e^{i \omega_{L} t}|2\rangle\langle 1|\right)$
in the $\{|1\rangle,|2\rangle\}$ basis, this has the matrix form:

$$
H^{\prime}=\left(\begin{array}{cc}
\frac{\hbar\left(\omega_{a}-\omega_{L}\right)}{2} & -d E_{0}(x, y) \cos \left(k_{L} z\right) e^{-i \omega_{L} t} \tag{19}\\
-d E_{0}(x, y) \cos \left(k_{L} z\right) \cos \left(\omega_{L} t\right) e^{-i \omega_{L} t} & -\frac{\hbar\left(\omega_{a}-\omega_{L}\right)}{2}
\end{array}\right)
$$

(c) Make the rotating wave approximation (RWA) by henceforth neglecting the oscillating terms in $H^{\prime}(t)$. How should we then define Δ and $\Omega=\Omega(x, y, z)$ in order to map H^{\prime} onto the Rabi model?

Dropping the rotating terms gives

$$
H^{\prime}=\left(\begin{array}{cc}
\frac{\hbar\left(\omega_{a}-\omega_{L}\right)}{2} & -\frac{1}{2} d E_{0}(x, y) \cos \left(k_{L} z\right) \tag{20}\\
-\frac{1}{2} d E_{0}(x, y) \cos \left(k_{L} z\right) & -\frac{\hbar\left(\omega_{a}-\omega_{L}\right)}{2}
\end{array}\right)
$$

with the definitions $\Delta=\omega_{a}-\omega_{L}$ and $\hbar \Omega(x, y, z)=-d E_{0}(x, y) \cos \left(k_{L} z\right)$, this becomes

$$
H^{\prime}=\frac{\hbar}{2}\left(\begin{array}{cc}
\Delta & \Omega(x, y, z) \tag{21}\\
\Omega(x, y, z) & -\Delta
\end{array}\right)
$$

which therefore maps the problem onto the Rabi Model.
(d) The matrix elements of H^{\prime} depend on the atom's position $\vec{r}=(x, y, z)$, hence we can say $H^{\prime}=H^{\prime}(x, y, z)$. We can therefore refer to the eigenstates of $H^{\prime}(x, y, z)$ as $\left|g^{\prime}(x, y, z)\right\rangle$ and $\left|e^{\prime}(x, y, z)\right\rangle$, and the eigenvalues as ω_{g}^{\prime} and ω_{e}^{\prime}. Use your results from problem 4.1 to write expressions for $\omega_{g}^{\prime}(x, y, z), \omega_{e}^{\prime}(x, y, z)$, and expand $\left|g^{\prime}(x, y, z)\right\rangle$ and $\left|e^{\prime}(x, y, z)\right\rangle$ onto the basis $\{|1\rangle,|2\rangle\}$.

We have

$$
\begin{align*}
& \omega_{g}^{\prime}(x, y, z)=-\frac{1}{2} \sqrt{\Delta^{2}+\Omega^{2}(x, y, z)} \tag{22}\\
& \omega_{e}^{\prime}(x, y, z)=\frac{1}{2} \sqrt{\Delta^{2}+\Omega^{2}(x, y, z)} \tag{23}
\end{align*}
$$

for $\Delta>0$ we have

$$
\begin{align*}
\left|g^{\prime}(x, y, z)\right\rangle & =\frac{\left(\Delta+\sqrt{\Delta^{2}+\Omega^{2}(x, y, z)}\right)|1\rangle-\Omega(x, y, z)|2\rangle}{\sqrt{\left(\Delta+\sqrt{\Delta^{2}+\Omega^{2}(x, y, z)}\right)^{2}+\Omega^{2}(x, y, z)}} \tag{24}\\
\left|e^{\prime}(x, y, z)\right\rangle & =\frac{\Omega(x, y, z)|1\rangle+\left(\Delta+\sqrt{\Delta^{2}+\Omega^{2}(x, y, z)}\right)|2\rangle}{\sqrt{\left(\Delta+\sqrt{\Delta^{2}+\Omega^{2}(x, y, z)}\right)^{2}+\Omega^{2}(x, y, z)}} \tag{25}
\end{align*}
$$

while for $\Delta<0$ we have

$$
\begin{align*}
\left|g^{\prime}(x, y, z)\right\rangle & =\frac{-\Omega(x, y, z)|1\rangle+\left(|\Delta|+\sqrt{\Delta^{2}+\Omega^{2}(x, y, z)}\right)|2\rangle}{\sqrt{\left(|\Delta|+\sqrt{\Delta^{2}+\Omega^{2}(x, y, z)}\right)^{2}+\Omega^{2}(x, y, z)}} \tag{26}\\
\left|e^{\prime}(x, y, z)\right\rangle & =\frac{\left.\left(|\Delta|+\sqrt{\Delta^{2}+\Omega^{2}(x, y, z)}\right)|1\rangle+\Omega(x, y, z)| | 2\right\rangle}{\sqrt{\left(|\Delta|+\sqrt{\Delta^{2}+\Omega^{2}(x, y, z)}\right)^{2}+\Omega^{2}(x, y, z)}} \tag{27}
\end{align*}
$$

(e) Assume that the atom starts out at coordinates $\vec{r}_{0}=\left(-x_{0}, 0,0\right)$, where $\left|x_{0}\right| \gg W$ (i.e. outside of the beam region). Take as the initial velocity of the atom $\vec{v}_{0}=\left(v_{0}, 0,0\right)$, and as the initial internal state, $|1\rangle$. Show that in the limit $x_{0} \rightarrow \infty$, this state corresponds to the state $\left|g^{\prime}\left(-x_{0}, 0,0\right)\right\rangle$ for $\Delta>0$. What state does it correspond to for $\Delta<0$?

We have $\Delta \neq 0$ but $\Omega(-\infty, 0,0) \rightarrow 0$. For $\Delta>0$, the state $\left|g^{\prime}(-\infty, 0,0)\right\rangle \rightarrow|1\rangle$, so the atom is initially in state $\left|g^{\prime}\right\rangle$.
For negative detuning, $\Delta<0$, the state $\left|e^{\prime}(-\infty, 0,0)\right\rangle=|1\rangle$, so in this case, the atom would be initially in state $\left|e^{\prime}\right\rangle$.
(f) What is the minimum possible gap frequency $\omega_{\text {gap }}(x, y, z):=\omega_{e}^{\prime}(x, y, z)-\omega_{g}^{\prime}(x, y, z)$ that the atom would encounter it were to continue traveling along its initial trajectory? Expand $\omega_{\text {gap }}$ in powers of $\Omega(x, y, z) / \Delta$, and keep only the leading term. Then, use this to derive the condition on the initial velocity, v_{0}, for the atom to adiabatically follow $\left|g^{\prime}(x, y, z)\right\rangle$ or $\left|e^{\prime}(x, y, z)\right\rangle$ as it continues along its trajectory, again assuming uniform motion. (Hint: the answer should depend on v_{0}, W, and Δ only). To put in some real numbers, take $W=10^{-3} \mathrm{~m}$ and $\Delta=1 \mathrm{GHz}$, and compute the velocity at which adiabatic following breaks down. Assuming an atomic mass of $10^{-25} \mathrm{~kg}$, at what temperature would adiabatic following break down?

The minimum gap energy is $\hbar|\Delta|$, which occurs at the beginning of its motion. As it moves into the region where Ω becomes non-zero, the gap is always greater than $\hbar|\Delta|$.
We have

$$
\begin{align*}
\omega_{g a p}(x, y, z) & =\sqrt{\Delta^{2}+\Omega^{2}(x, y, z)} \\
& =|\Delta| \sqrt{1+\frac{\Omega^{2}(x, y, z)}{\Delta^{2}}} \\
& =|\Delta|\left(1+\frac{\Omega^{2}(x, y, z)}{2 \Delta^{2}}+\ldots\right) \\
& \approx|\Delta|+\frac{\Omega^{2}(x, y, z)}{2|\Delta|} \tag{28}
\end{align*}
$$

The adiabaticity condition is $T \gg \hbar / \min \left(E_{\text {gap }}\right)$ which gives $T \gg 1 /|\Delta|$.
The length scale over which the field changes is W, so we must have $v_{0} T \sim W$, which gives $v_{0} \sim W / T$ so that adiabaticity requires $v_{0} \ll W|\Delta|$.
For $W=10^{-3} \mathrm{~m}$ and $\Delta=10^{9} \mathrm{~s}^{-1}$, this gives $v_{0} \ll 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$.
With $\frac{1}{2} M v^{2}=k_{B} T$, we have $T=\frac{M v^{2}}{2 k_{B}}$. Taking $M=10^{-25} \mathrm{~kg}$ and $k_{B}=10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$, gives a temperature of $T=10^{10} \mathrm{~K}$. The point being that atoms will never move this fast outside of a particle accelerator.
(g) Compute the mean internal energy of an atom in state $\left|g^{\prime}(x, y, z)\right\rangle$, defined as $\left\langle g^{\prime}(x, y, z)\right| H\left|g^{\prime}(x, y, z)\right\rangle$, and time-average any oscillating terms. Based on this result, give a reasonable argument as to why the atom should be repelled by the laser field for negative Δ, and attracted by the laser field for positive Δ (Hint: Potential Energy is defined as any energy which depends on position).

Following the problem as worded, we find that after time-averaging, we have

$$
\begin{equation*}
\left\langle g^{\prime}\right| H\left|g^{\prime}\right\rangle=\frac{\hbar \omega_{a}}{2}\left[\left\langle g^{\prime} \mid 2\right\rangle\left\langle 2 \mid g^{\prime}\right\rangle-\left\langle g^{\prime} \mid 1\right\rangle\left\langle 1 \mid g^{\prime}\right\rangle\right] \tag{29}
\end{equation*}
$$

This gives for $\Delta>0$

$$
\begin{equation*}
\left\langle g^{\prime}\right| H\left|g^{\prime}\right\rangle=1+\frac{2 \Omega^{2}(\vec{r})}{2 \Delta^{2}+2 \Omega^{2}(\vec{r})+2|\Delta| \sqrt{\Delta^{2}+\Omega^{2}(\vec{r})}} \tag{30}
\end{equation*}
$$

while for $\Delta<0$ this gives

$$
\begin{equation*}
\left\langle g^{\prime}\right| H\left|g^{\prime}\right\rangle=-1-\frac{2 \Omega^{2}(\vec{r})}{2 \Delta^{2}+2 \Omega^{2}(\vec{r})+2|\Delta| \sqrt{\Delta^{2}+\Omega^{2}(\vec{r})}} \tag{31}
\end{equation*}
$$

3. Use the fact that $\langle x| P|\psi\rangle=-i \hbar \frac{d}{d x}\langle x \mid \psi\rangle$ for any x and any state $|\psi\rangle$, to show that

$$
[P, F(X)]=-i \hbar F^{\prime}(X)
$$

where $F(x)$ is an arbitrary function, and $F^{\prime}(x)=\frac{d F(x)}{d x}$.
We start by evaluating $\langle x|[P, F(X)]|\psi\rangle$, which gives

$$
\begin{align*}
\langle x|[P, F(X)]|\psi\rangle & =\langle x| P F(X)|\psi\rangle-\langle x| F(X) P|\psi\rangle \\
& =-i \hbar \frac{d}{d x}\langle x| F(X)|\psi\rangle-F(x)\langle x| P|\psi\rangle \\
& =-i \hbar \frac{d}{d x} F(x) \psi(x)+i \hbar F(x) \frac{d}{d x} \psi(x) \\
& =-i \hbar F(x) \frac{d}{d x} \psi(x)-i \hbar \psi(x) \frac{d}{d x} F(x)+i \hbar F(x) \frac{d}{d x} \psi(x) \\
& =-i \hbar \psi(x) F^{\prime}(x) \\
& =-i \hbar\langle x| F^{\prime}(X)|\psi\rangle \tag{32}
\end{align*}
$$

Since this is true for any x and any $|\psi\rangle$, it follows that

$$
\begin{equation*}
[P, F(X)]=-i \hbar F^{\prime}(X) \tag{33}
\end{equation*}
$$

4. For a free-particle, we have

$$
\langle x \mid \psi(t)\rangle=\int d p\langle x \mid p\rangle e^{-i \frac{p^{2}}{2 m \hbar} t}\langle p \mid \psi(0)\rangle .
$$

For an initial Gaussian wavepacket,

$$
\langle x \mid \psi(0)\rangle=\left[\pi \sigma_{0}^{2}\right]^{-1 / 4} e^{-\frac{\left(x-x_{0}\right)^{2}}{2 \sigma_{0}^{2}}},
$$

use the formula
$\int_{-\infty}^{\infty} d y e^{-a y^{2}+b y}=\int_{-\infty}^{\infty} d y e^{-a\left(y-2 \frac{b}{2 a}+\frac{b^{2}}{4 a^{2}}\right)+\frac{b^{2}}{4 a}}=e^{\frac{b^{2}}{4 a}} \int_{-\infty}^{\infty} d y e^{-a\left(y-\frac{b}{2 a}\right)^{2}}=e^{\frac{b^{2}}{4 a}} \int_{-\infty}^{\infty} d u e^{-a u^{2}}=\sqrt{\frac{\pi}{a}} \frac{b}{}^{\frac{b^{2}}{4 a}}$
to first compute $\langle p \mid \psi(0)\rangle$. Then use the same formula to do the final p-integration and obtain an analytic expression for $\langle x \mid \psi(t)\rangle$.

Lastly, compute $|\langle x \mid \psi(t)\rangle|^{2}$, and show that the probability distribution remains a gaussian, whose center moves as a classical free-particle with initial position, x_{0}, and initial momentum p_{0}. Give an expression for the width of this gaussian as a function of time.

Compute first $\langle p \mid \psi(0)\rangle$

$$
\begin{align*}
\langle p \mid \psi(0)\rangle & =\int d x\langle p \mid x\rangle\langle x \mid \psi(0)\rangle \\
& =\frac{\left[\pi \sigma_{0}^{2}\right]^{-1 / 4}}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} d x e^{-\frac{\left(x-x_{0}\right)^{2}}{2 \sigma_{0}^{2}}-i p x / \hbar} \\
& =\frac{\left[\pi \sigma_{0}^{2}\right]^{-1 / 4}}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} d x e^{-\frac{x^{2}}{2 \sigma_{0}^{2}}-i p\left(x+x_{0}\right) / \hbar} \\
& =\frac{\left[\pi \sigma_{0}^{2}\right]^{-1 / 4}}{\sqrt{2 \pi \hbar}} e^{-i p x_{0} / \hbar} \sqrt{2 \pi \sigma_{0}^{2}} e^{-\frac{p^{2} \sigma_{0}^{2}}{2 \hbar^{2}}} \\
& =\frac{\sqrt{\sigma_{0}}}{\sqrt{\hbar} \sqrt[4]{\pi}} e^{-\frac{p^{2} \sigma_{0}^{2}}{2 \hbar^{2}}} e^{-i p x_{0} / \hbar} \tag{34}
\end{align*}
$$

we can then compute the wave-function at later times

$$
\begin{equation*}
\langle x \mid \psi(t)\rangle=\frac{1}{\sqrt{2 \pi \hbar}} \frac{\sqrt{\sigma_{0}}}{\sqrt{\hbar} \sqrt[4]{\pi}} \int_{-\infty}^{\infty} d p e^{i p\left(x-x_{0}\right) / \hbar} e^{-i \frac{p^{2}}{2 m \hbar} t} e^{-\frac{p^{2} \sigma_{0}^{2}}{2 \hbar^{2}}} \tag{35}
\end{equation*}
$$

so we have

$$
\begin{equation*}
a=\frac{\sigma_{0}^{2}}{2 \hbar^{2}}+i \frac{t}{2 m \hbar} \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
b=i\left(x-x_{0}\right) / \hbar \tag{37}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\langle x \mid \psi(t)\rangle=\frac{1}{\sqrt[4]{\pi} \sqrt{\sigma_{0}+i \frac{\hbar t}{m \sigma_{0}}}} e^{-\frac{\left(x-x_{0}\right)^{2}}{2 \sigma_{0}^{2}\left(1+i \frac{\hbar t}{m \sigma_{0}^{2}}\right)}} \tag{38}
\end{equation*}
$$

taking the absolute value squared gives

$$
\begin{equation*}
|\langle x \mid \psi(t)\rangle|^{2}=\frac{1}{\sqrt{\pi} \sigma_{0} \sqrt{1+\frac{\hbar^{2} t^{2}}{m^{2} \sigma_{0}^{4}}} e^{\frac{\left(x-x_{0}\right)^{2}}{\sigma_{0}^{2}\left(1+\frac{\hbar^{2} t^{2}}{m^{2} \sigma_{0}^{4}}\right)}} \text {)}} \tag{39}
\end{equation*}
$$

The center is at rest, which is correct for a free particle with $p_{0}=0$. The width as a function of time is

$$
\begin{equation*}
\sigma(t)=\sigma_{0} \sqrt{1+\left(\frac{\hbar t}{m \sigma_{0}^{2}}\right)} \tag{40}
\end{equation*}
$$

