
PHYS851 Quantum Mechanics I, Fall 2009
HOMEWORK ASSIGNMENT 6

1. [10 points] The quantum state of a free-particle of mass, M , at time t is a wave-packet of the form

ψ(x, t) =
1

√

Γ(5/4)σ0

e
−

(x−x0)4

2σ
4
0

+ip0x/~

,

We can safely predict that the width of the wave packet will grow in time. Clearly, the spreading
velocity vs must be determined by the initial conditions x0, p0, and σ0, as well as the mass, M , and
Planck’s constant, ~, as there are no other parameters around to use.

(a) [2 pts] If there are no external forces acting on the particle, which parameters can we rule out
based on symmetry arguments ?
The parameters x0 and p0 are depend on choice of coordinate system and inertial frame. The
spread velocity of the wavefunction is not frame dependent. The basic equations for a free
particle are invariant under boost and translation, therefore the spreading dynamics should not
depend on frame-dependant parameters. Thus we conclude vs does not depend on x0 and p0.

(b) [2 pts] Of the remaining parameters, how many unique ways are there to combine them to make
an object with units of a velocity?
The remaining parameters are ~, M , and σ0. Thus units of ~ are kgm2 s−1, thus any combination
giving a velocity must depend only on ~/M , so that kg is cancelled. ~/M has units m2 s−1, and
the only parameter left is σ0, which has units of length. Since we need a s−1 for velocity, the
only possibility is

v =
~

Mσ0
. (1)

(c) [2 pts] Based on this result alone, give a units-based estimate for the velocity at which the
wave-packet should spread.
The spread velocity must be

vs ∼
~

Mσ0
, (2)

as there are no other possibilities.

(d) [2 pts] Again, by considering units alone, what energy scale, Es, would you associate with a
wave-packet of width σ0?
From the width σ0, and the constants ~ and M , the only energy we can form is

Es =
~

2

Mσ2
0

. (3)

(e) [2 pts] We can assign a temperature to the wave-packet by setting Es = kBT . Solve this equation
for σ0 as a function of temperature, T . This is known as the thermal de Broglie wavelength,
or the thermal coherence length, usually denoted as λcoh. It gives the length-scale on which a
particle at temperature T exhibits spatial coherence (quantum superposition).
If we set kBT = ~

2/(Mσ2
0), we find

λcoh =
~√

MkBT
. (4)

This increases as the temperature decreases, which makes some kind of intuitive sense.
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2. [10 points] The mass of a small virus is about 10−21kg. What is the thermal coherence length of the
virus at room temperature? What is it a liquid Helium temperature?

With kB ∼ 10−23 and ~ ∼ 10−34, we find that at room temperature, T ∼ 300K, we find

λcoh(300K) ∼ 10−34−(−21−23+2)/2

3
∼ 10−34+21−1 ∼ 10−14m. (5)

At liquid Helium temperature, T ∼ 3K, the temperature decreases by two orders of magnitude, so
the coherence length increases by one order, giving

λcoh(3K) ∼ 10−13m (6)

Imagine a nano-scale double-slit apparatus consisting of a metal plate with two slits, each 1nm
accross, with a center-to-center separation of 4nm. What coherence length is required in order to
observe a double-slit interference pattern when passing many copies of the virus through the double-
slit apparatus? Explain your reasoning.

In order to see interference, we need that each virus goes through both slits in a coherent super-
position state, this requires that the coherence length be large enough to cover both slits. Thus we
should have

λcoh ∼ 5nm (7)

This is of the order 10−8m, and would require a temperature decrease over liquid Helium temperature
of 10 orders of magnitude, so we would need T = 10−10K.

Assume that this coherence length can be obtained by velocity filtering. Based on what we have
learned about wave-packet spreading, and assuming a longitudinal velocity of vL, how far away from
the apparatus would we need to put our detector in order to observe the interference fringes? Explain
your reasoning

Assuming λcoh ≥ 1nm initially, after passing through a slit, the wavepacket of the virus will have
collapsed to a width of σ = 1 nm. The packet will then start expanding at velocity

vs =
~

Mσ
= 10−34+21+9 = 10−4m s−1 (8)

In order to see fringes, the screen must be far enough away that the right and left wavepackets have
significant overlap. Thus a good criterion would be to set the width of each packet equal to the
separation, s = 4nm, which implies a transit time of

t =
s

vs
=

4 × 10−9m

10−4m s−1
= 4 × 10−5s = 40µs (9)

the distance to the screen should therefore be ≥ vL · 4 × 10−5s
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3. [30 pts] Derive the equations of motion for x(t) := 〈ψ(t)|X|ψ(t)〉 and p(t) := 〈ψ(t)|P |ψ(t)〉, for a
particle of mass M , in

(a) free space, V (X) = V0,

(b) a uniform gravitational field, V (X) = MgX, where g = 9.8m s−1,

(c) a harmonic oscillator potential V (X) = 1
2Mω2X2.

For each case, solve the equations, and give x(t) and p(t) in terms of the initial values x(0) and p(0).

We learned in lecture that 〈X〉 and 〈P 〉 obey the equations:

d

dt
x(t) =

p(t)

M
(10)

d

dt
p(t) = −〈V ′(X)〉 (11)

For (a), we have V ′(x) = ∂
∂xV0 = 0, this gives:

d

dt
x =

p

M
(12)

d

dt
p = 0 (13)

since we solved this equation as undergraduates, we know that the answer for initial conditions
x0 = x(0) and p0 = p(0) is:

x(t) = x0 +
p0

M
t (14)

p(t) = p0 (15)

For case (b), we have V ′(x) = ∂
∂xMgx = Mg, which gives

d

dt
x =

p

M
(16)

d

dt
p = −Mg (17)

This has the solutions

x(t) = x0 +
p0

M
t− 1

2
g t2 (18)

p(t) = p0 −Mg t (19)

For part (c) we have: V ′(x) = ∂
∂x

1
2Mω2x2 = Mω2x, which gives

d

dt
x =

p

M
(20)

d

dt
p = −Mω2x (21)

The solutions to this well-known set of equations is

x(t) = x0 cos(ωt) +
p0

Mω
sin(ωt) (22)

p(t) = p0 cos(ωt) −Mωx0 sin(ωt) (23)
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4. [30 pts] For each of the three potentials in the above problem, derive a closed set of equations for

p2(t) := 〈ψ(t)|P 2|ψ(t)〉,

xp(t) := Re〈ψ(t)|XP |ψ(t)〉 =
1

2
[〈ψ(t)|XP |ψ(t)〉 + 〈ψ(t)|PX|ψ(t)〉] ,

x2(t) := 〈ψ(t)|X2|ψ(t)〉.
For the initial conditions, 〈X〉 = 0, 〈P 〉 = 0, 〈X2〉 = λ2

0/2, 〈XP 〉 = 0 and 〈P 2〉 = ~
2/2λ2

0, solve the
equations for the potentials in parts (a) and (b). (Hint: for (b) you will need to use your insert your
results from the previous problem) For these initial conditions, we can interpret x2(t) as the square
of the width of a wave-packet.

In general, we have

d

dt
p2 = − i

~
〈
[

P 2,H
]

〉

= − i

2M~
〈
[

P 2, P 2
]

〉 − i

~
〈
[

P 2, V (X)
]

〉

= − i

~
〈
[

P 2, V (X)
]

(24)

d

dt
x2 = − i

~
〈
[

X2,H
]

〉

= − i

2M~
〈
[

X2, P 2
]

〉 − i

~
〈
[

X2, V (X)
]

〉

= − i

2M~
〈
[

X2, P 2
]

〉 (25)

and

d

dt
xp = − i

2~
〈[XP + PX,H]〉

= − i

4M~
〈
[

XP + PX,P 2
]

〉 − i

2~
〈[XP + PX,V (X)]〉 (26)

Now
[

P 2, V (X)
]

= P 2V (X) − V (X)P 2

= P 2V (X) − PV (X)P + PV (X) − V (X)P 2

= P [P, V (X)] + [P, V (X)]P (27)

using [P, V (X)] = −i~V ′(X) then gives
[

P 2, V (X)
]

= −i~
(

PV ′(X) + V ′(X)P
)

(28)

based on this result, we can immediately see that
[

X2, P 2
]

= 2i~ (PX +XP ) (29)

Then we find
[

XP + PX,P 2
]

= XP 3 − P 2XP + PXP 2 − P 3X

=
[

X,P 2
]

P + P
[

X,P 2
]

= i~

(

d

dp
P 2

)

P + i~P

(

d

dp
P 2

)

= 4i~P 2 (30)
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and

[XP + PX,V (X)] = XPV (X) − V (X)XP + PXV (X) − V (X)PX

= X [P, V (X)] + [P, V (X)]X

= −i~XV ′(X) − i~V ′(X)X

= −2i~XV ′(X) (31)

putting this all together gives:

d

dt
x2 =

2

M
xp (32)

d

dt
xp =

1

M
p2 − 〈XV ′(X)〉 (33)

d

dt
p2 = −〈PV ′(X) + V ′(X)P 〉 (34)

For V (x) = V0 this gives

d

dt
x2 =

2

M
xp (35)

d

dt
xp =

1

M
p2 (36)

d

dt
p2 = 0 (37)

This has the solution

p2(t) = p2(0) =
~

2

2λ2
0

(38)

xp(t) = xp(0) +
1

M
p2(0)t =

~
2

2Mλ2
0

t (39)

x2(t) = x2(0) + xp(0)t+
1

M2
p2(0)t2 =

λ2
0

2
+

~
2

2M2λ2
0

t2 (40)

For the gravitational potential, the equations are

d

dt
x2 =

2

M
xp (41)

d

dt
xp =

1

M
p2 −Mgx (42)

d

dt
p2 = −2Mg p (43)

from the previous problem, and with initial conditions x0 = 0 and p0 = 0, we know that

x(t) = −1

2
g t2 (44)

p(t) = −Mg t (45)

so this becomes

d

dt
x2 =

2

M
xp (46)

d

dt
xp =

1

M
p2 +

1

2
Mg2 t2 (47)

d

dt
p2 = 2M2g2 t (48)
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Integrating these equations, starting with p2, then gives

p2(t) = p2(0) +M2g2t2 =
~

2

2λ2
0

+M2g2 t2 (49)

xp(t) = xp(0) +
~

2

2Mλ2
0

t+
1

3
Mg2 t3 +

1

6
Mg2 t3 =

~
2

2Mλ2
0

t+
1

2
Mg2t3 (50)

x2(t) = x2(0) +
~

2

2M2λ2
0

t2 +
g2

4
t4 =

λ2
0

2
+

~
2

2M2λ2
0

t2 +
g2

4
t4 (51)

(a) How does the free-space result compare to our previous result for the spreading of a Gaussian
wave-packet?

For a gaussian of width σ centered at x0, it is readily shown that 〈X2〉 = x2
0 + σ2

2 , thus we
see that our results agree exactly with our previous calculation with the Gaussian wave-packet.

(b) Does the addition of a gravitational potential increase or decrease the spreading rate?

The addition of gravity appears to increase the rate of spreading. In fact, for long times,
the width grows quadratically as t2, rather than linearly in t.

(c) For potential (c), find the condition on λ0 such that no spreading occurs. (You don’t need to
solve the equations, look for the condition so that all of the time-derivatives are zero)

The equations of motion for the case V (x) = 1
2Mω2x2 are

d

dt
x2 =

2

M
xp (52)

d

dt
xp =

1

M
p2 −Mω2x2 (53)

d

dt
p2 = −2Mω2xp (54)

These equations have a steady state solution x2(t) = x2(0), xp(t) = xp(0), and p2(t) = p2(0) for
conditions

xp(0) = 0 (55)

1

M
p2(0) = Mω2x2(0) (56)

the first is already assumed to be true, the second requires

~
2

2Mλ2
0

=
Mω2λ2

0

2
(57)

solving for λ0 gives

λ0 =

√

~

Mω
(58)

which is interesting because this is the width of the ground-state wavefunction. Note that for
the ground state, we would have x(0) = 0 and p(0) = 0, in which case it would makes sense
that the width was constant, as we would be in a stationary state. But we have shown that the
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width is constant for all x(0) and p(0), if the initial width is given by (58). Since we know that
x(t) and p(t) are in agreement with those of a classical particle, we see that wavepackets that
oscillate like classical particles will not even spread if they have the right width. Such states are
called ‘coherent states’, and they are thus the ‘most classical’ states for a quantum harmonic
oscillator.

(d) Extra credit: Solve the equations for the potential in part (c), for the same initial conditions.

5. [5 pts] Consider the potential V (X) = aX + bX2 + cX3. Starting from the equation for 〈X〉, show
that it is only possible to obtain a closed set of equations for the case c = 0.

The equation for x(t) is, as usual,
d

dt
x =

1

M
p (59)

thus we need an equation for p(t), which we know is going to be

d

dt
p = −a+ 2bx+ 3cx2 (60)

thus we see that the set would have closed for c = 0, for c 6= 0, we now need the equation for x2,
which we know is

d

dt
x2 =

2

M
xp (61)

and then the equation for xp(t) is

d

dt
xp =

1

M
p2 − ax− 2bx2 − 3cx3 (62)

thus in addition to p2 which we would have expected, we now need an equation for x3. The equation
for p2 is

d

dt
p2 = −2ap− 2bxp − 3c(px2 + x2p) (63)

so there is even a new variable px2 + x2p. Clearly the set is never going to close, because at each
step, the term proportional to c will generate terms of next-higher order.
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6. [15 pts]For an incoming wave of energy E, find the wavefunction for all x > 0, for the potential

V (X) =







0 x > L
V0 > 0 0 < x < L
∞ x < 0

Let us call the region L < x ‘Region I’, and the region 0 < x < L ‘Region II”. The region x < 0 is
forbidden. We then make the following ansatz:

ψ1(x) = e−ikx + reikx, (64)

ψ2(x) = aeiKx + be−iKx (65)

where k =
√

2ME/~ and K =
√

k2 − k2
0 , where k0 =

√

2M(E − V0)/~. The boundary condition at
the edge of an infinite barrier is that the wavefunction must go to zero. Thus we have

ψ2(0) = 0 (66)

which means b = −a. We can thus change our ansatz to

ψ2(x) = A sin(Kx) (67)

at x = L, we require

ψ1(L) = ψ2(L) (68)

ψ′

1(L) = ψ′

2(L) (69)

These boundary conditions lead to

e−ikL + reikL = A sin(KL) (70)

ik(−e−ikL + reikL) = AK cos(KL) (71)

solving the first for A gives

A =
e−ikL + reikL

sin(KL)
(72)

plugging this into the second gives

ik(−e−ikL + reikL) = (e−ikL + reikL)K tan(KL) (73)

solving for r then gives

r = e−2ikLk − iK tan(KL)

k + iK tan(KL)
(74)

The wavefunction is thus given by

ψ(x) = 2e−ikL [k cos[k(x−L)] +K tan(KL) sin[k(x−L)]] u(x−L) + k csc(KL) sin(Kx)u(x)u(L−x)
k + iK tan(KL)

(75)
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