PHYS851 Quantum Mechanics I, Fall 2009
HOMEWORK ASSIGNMENT 7
Topics Covered: 1D scattering problems with delta- and/or step-functions, transfer matrix approach to multi-boundary 1D scattering problems, finding bound-states for combinations of delta- and/or stepfunctions in 1D.

Some Key Concepts: Wave-vector, probability current, continuity equation, reflection and transmission amplitudes/probabilities, quantum tunneling, quantum reflection, continuity conditions, transfer matrix.

1. The continuity equation: The probability that a particle of mass m lies on the interval $[a, b]$ at time t is

$$
\begin{equation*}
P(t \mid a, b)=\int_{a}^{b} d x|\psi(x, t)|^{2} \tag{1}
\end{equation*}
$$

Differentiate (1) and use the definition of the probability current, $j=-\frac{i \hbar}{2 m}\left(\psi^{*} \frac{d}{d x} \psi-\psi \frac{d}{d x} \psi^{*}\right)$, to show that

$$
\begin{equation*}
\frac{d}{d t} P(t \mid a, b)=j(a, t)-j(b, t) . \tag{2}
\end{equation*}
$$

Next, take the limit as $b-a \rightarrow 0$ of both (1) and (2), and combine the results to derive the continuity equation: $\frac{d}{d x} j(x, t)=-\frac{d}{d t} \rho(x, t)$.
2. Bound-states of a delta-well: The inverted delta-potential is given by

$$
\begin{equation*}
V(x)=-g \delta(x), \tag{3}
\end{equation*}
$$

where $g>0$. For a particle of mass m, this potential supports a single bound-state for $E=E_{b}<0$.
(a) Based on dimensional analysis, estimate the energy, E_{b}, using the only available parameters, \hbar, m, and g.
(b) Assume a solution of the form:

$$
\begin{equation*}
\psi_{b}(x)=c e^{-\frac{|x|}{\lambda}}, \tag{4}
\end{equation*}
$$

and use the delta-function boundary conditions at $x=0$ to determine λ, as well as the the energy, E_{b}. You can then use normalization to determine c. What is $\left\langle X^{2}\right\rangle$ for this bound-state?
3. Inverted delta scattering: Consider a particle of mass m, subject to the inverted delta-potential, $V(x)=-g \delta(x)$, with $g>0$. Only this time, consider an incoming particle with energy $E>0$. What are the transmission and reflection probabilities, T, and R ?
4. Combination of delta and step: Consider a particle of mass m, whose potential energy is

$$
\begin{equation*}
V(x)=V_{0} u(x)+g \delta(x), \tag{5}
\end{equation*}
$$

where $u(x)$ is the unit step function and $V_{0}>0$.
(a) What are the two boundary conditions at $x=0$ that $\psi(x)$ must satisfy?
(b) For an incident wave of the form $e^{i k x}$, use the 'plug and chug' approach to find the reflection and transmission amplitudes, r and t.
(c) Compute the reflection probability, R, and the transmission probability, T. What is the relationship between T and $|t|^{2}$?
(d) Lastly, compute the transfer matrix for this potential at the discontinuity point, $x=0$.
(e) Compare your answer to the matrices

$$
\begin{equation*}
M_{\delta, \text { step }}=M_{\text {step }}(K, k) M_{\delta}(k a) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{\text {step }, \delta}=M_{\delta}(K a) M_{s t e p}(K, k) \tag{7}
\end{equation*}
$$

where $K=\sqrt{k^{2}-\frac{2 m V_{0}}{\hbar^{2}}}$ and $a=\hbar^{2} /(M g)$. Comment on your result.
5. Delta function Fabry Perot Resonator: Consider transmission of particles of mass m through two delta-function barriers, described by the potential

$$
\begin{equation*}
V(x)=g \delta(x)+g \delta(x-L), \tag{8}
\end{equation*}
$$

where $g>0$ and $L>0$.
(a) First, compute the allowed k-values for an infinite square well of length L, where $k=\sqrt{2 m E} / \hbar$.
(b) Next, use the transfer-matrix approach to compute the full transfer matrix of the resonator.
(c) Use the full transfer-matrix to compute the transmission probability, T, in terms of the dimensionless parameters $\theta=2 k L$ and $\Delta=1 / k a$, where $a=\hbar^{2} /(m g)$.
(d) Make plots of T versus θ for $\Delta=1, \Delta=2$, and $\Delta=4$. Compare the location of the transmission resonances on each plot to the locations of the allowed k-values from part (a).
6. Consider a particle of mass m incident on a square potential barrier of height $V_{0}>0$, and width W. Consider the case where the incident energy, E, is smaller than V_{0}.
(a) Compute the probability to tunnel through the barrier, T, as function of the incident wavevector, k.
(b) Write out the full form of the wavefunction of the particle in the tunneling region.
(c) Take limit as $W \rightarrow 0$ and $V_{0} \rightarrow \infty$, while holding $V_{0} W$ constant, and show that your answer agrees with the result for a delta-function potential, $V(x)=g \delta(x)$, with $g=V_{0} W$.

