PHYS851 Quantum Mechanics I, Fall 2009
HOMEWORK ASSIGNMENT 8
Topics Covered: Algebraic approach to the quantized harmonic oscillator, coherent states.
Some Key Concepts: Oscillator length, creation and annihilation operators, the phonon number operator.

1. Start from the harmonic oscillator Hamiltonian $H=\frac{1}{2 M} P^{2}+\frac{1}{2} M \omega^{2} X^{2}$. Make the change of variables $X \rightarrow \lambda \bar{X}, P \rightarrow \frac{\hbar}{\lambda} \bar{P}$, and $H \rightarrow \frac{\hbar^{2}}{M \lambda^{2}} \bar{H}$. Find the value of $\lambda$ for which $\bar{H}=\frac{1}{2}\left(\bar{X}^{2}+\bar{P}^{2}\right)$.
2. Write down the harmonic oscillator Hamiltonian in terms of $\omega, A$, and $A^{\dagger}$, and then write the commutation relation between $A$ and $A^{\dagger}$. Use these to derive the equation of motion for the expectation value $a(t)=\langle\psi(t)| A|\psi(t)\rangle$.
Solve this equation for the general case $a(0)=a_{0}$.
Prove that $a^{*}(t):=\left\langle A^{\dagger}\right\rangle=[a(t)]^{*}$.
3. Starting from $\langle x| X|n-1\rangle=x \phi_{n-1}(x)$, express $X$ in terms of $A$ and $A^{\dagger}$, to derive a recursion relation of the form:

$$
\begin{equation*}
\phi_{n}(x)=f_{n}(x) \phi_{n-1}(x)+g_{n}(x) \phi_{n-2} . \tag{1}
\end{equation*}
$$

Starting from $\phi_{0}(x)=[\sqrt{\pi} \lambda]^{-1 / 2} e^{-\frac{1}{2}(x / \lambda)^{2}}$, use your recursion relation to compute $\phi_{2}(x), \phi_{3}(x)$, and $\phi_{4}(x)$.
4. Make the definition $\phi_{n}(p)=i^{n}\langle p \mid n\rangle$. Start from $\langle p| P|n-1\rangle=p\langle p \mid n-1\rangle$ and derive a recursion relation for $\phi_{n}(p)$ by making an analogy to your result from the last problem.
5. Consider a particle in the potential

$$
V(x)=\left\{\begin{array}{cl}
\frac{1}{2} M \omega^{2} x^{2} ; & x>0  \tag{2}\\
\infty ; & x<0
\end{array} .\right.
$$

What boundary condition must the eigenstates satisfy at $x=0$ ?
To find the eigenstates and eigenvalues, consider that the wave-function must also satisfy the harmonic oscillator wave equation for $x>0$, as well be normalizable $\left(\lim _{x \rightarrow \infty} \psi(x)=0\right)$. Can you think of any states that you already know of that satisfy all three conditions?
6. Consider the potential $V(x)=a+b X+c X^{2}$. Let $H=\frac{1}{2 M} P^{2}+V(X)$, so that the energy eigenstates and eigenvalues are defined via $H\left|E_{n}\right\rangle=E_{n}\left|E_{n}\right\rangle$. Make a change of variables to complete the square and map the problem onto the harmonic oscillator problem and then determine the allowed energies, $\left\{E_{n}\right\}$ and corresponding eigenfunctions $\psi_{n}(x):=\left\langle x \mid E_{n}\right\rangle$.
7. Consider the potential

$$
V(x)=\left\{\begin{array}{cc}
0 ; & 0<x<W<L  \tag{3}\\
V_{0}>0 ; & W<x<L \\
\infty ; & \text { otherwise }
\end{array} .\right.
$$

There are important boundary conditions at $x=0, x=W$, and $x=L$, what are they? Assume that $E<V_{0}$, and make an ansatz for each of the two regions, which automatically satisfies the boundary conditions at $x=0$ and $x=L$.

Show that the two boundary conditions at $x=W$ can only be satisfied for certain values of $E$, and give a transcendental equation whose solutions yield the allowed energies.
8. A three level system is described by the Hamiltonian $H=\hbar \Omega(t)(|1\rangle\langle 3|-|3\rangle\langle 1|)+\hbar \Delta(t)|2\rangle\langle 2|$.

Determine the eigenvalues and eigenvectors of $H$.
At time $t=0$, the system is prepared in state $|1\rangle$, with $\Delta(0)=0$ and $\Omega(0)=0$. Then $\Omega$ is suddenly increased to a value of $\Omega_{0}$, and held for a duration of $T$. What is the state of the system at time $t=T$ ?

At time $T$, the operator $J=j_{0}(i|1\rangle\langle 2|-i|2\rangle\langle 1|+3|3\rangle\langle 3|)$ is measured. What are the possible outcomes of the measurement and the associated probabilities?

For each possible outcome, what is the state immediately after the measurement?

