PHYS851 Quantum Mechanics I, Fall 2009 HOMEWORK ASSIGNMENT 8

Topics Covered: Algebraic approach to the quantized harmonic oscillator, coherent states.

Some Key Concepts: Oscillator length, creation and annihilation operators, the phonon number operator.

- 1. Start from the harmonic oscillator Hamiltonian $H = \frac{1}{2M}P^2 + \frac{1}{2}M\omega^2 X^2$. Make the change of variables $X \to \lambda \bar{X}, P \to \frac{\hbar}{\lambda} \bar{P}$, and $H \to \frac{\hbar^2}{M\lambda^2} \bar{H}$. Find the value of λ for which $\bar{H} = \frac{1}{2} \left(\bar{X}^2 + \bar{P}^2 \right)$.
- Write down the harmonic oscillator Hamiltonian in terms of ω, A, and A[†], and then write the commutation relation between A and A[†]. Use these to derive the equation of motion for the expectation value a(t) = ⟨ψ(t)|A|ψ(t)⟩.
 Solve this equation for the general case a(0) = a₀.
 Prove that a^{*}(t) := ⟨A[†]⟩ = [a(t)]^{*}.
- 3. Starting from $\langle x|X|n-1\rangle = x\phi_{n-1}(x)$, express X in terms of A and A^{\dagger} , to derive a recursion relation of the form:

$$\phi_n(x) = f_n(x)\phi_{n-1}(x) + g_n(x)\phi_{n-2}.$$
(1)

Starting from $\phi_0(x) = \left[\sqrt{\pi\lambda}\right]^{-1/2} e^{-\frac{1}{2}(x/\lambda)^2}$, use your recursion relation to compute $\phi_2(x)$, $\phi_3(x)$, and $\phi_4(x)$.

- 4. Make the definition $\phi_n(p) = i^n \langle p | n \rangle$. Start from $\langle p | P | n 1 \rangle = p \langle p | n 1 \rangle$ and derive a recursion relation for $\phi_n(p)$ by making an analogy to your result from the last problem.
- 5. Consider a particle in the potential

$$V(x) = \begin{cases} \frac{1}{2}M\omega^2 x^2; & x > 0\\ \infty; & x < 0 \end{cases}.$$
 (2)

What boundary condition must the eigenstates satisfy at x = 0?

To find the eigenstates and eigenvalues, consider that the wave-function must also satisfy the harmonic oscillator wave equation for x > 0, as well be normalizable $(\lim_{x\to\infty} \psi(x) = 0)$. Can you think of any states that you already know of that satisfy all three conditions?

6. Consider the potential $V(x) = a + bX + cX^2$. Let $H = \frac{1}{2M}P^2 + V(X)$, so that the energy eigenstates and eigenvalues are defined via $H|E_n\rangle = E_n|E_n\rangle$. Make a change of variables to complete the square and map the problem onto the harmonic oscillator problem and then determine the allowed energies, $\{E_n\}$ and corresponding eigenfunctions $\psi_n(x) := \langle x|E_n\rangle$. 7. Consider the potential

$$V(x) = \begin{cases} 0; & 0 < x < W < L \\ V_0 > 0; & W < x < L \\ \infty; & \text{otherwise} \end{cases}$$
(3)

There are important boundary conditions at x = 0, x = W, and x = L, what are they? Assume that $E < V_0$, and make an ansatz for each of the two regions, which automatically satisfies the boundary conditions at x = 0 and x = L.

Show that the two boundary conditions at x = W can only be satisfied for certain values of E, and give a transcendental equation whose solutions yield the allowed energies.

8. A three level system is described by the Hamiltonian $H = \hbar \Omega(t) (|1\rangle \langle 3| - |3\rangle \langle 1|) + \hbar \Delta(t) |2\rangle \langle 2|$.

Determine the eigenvalues and eigenvectors of H.

At time t = 0, the system is prepared in state $|1\rangle$, with $\Delta(0) = 0$ and $\Omega(0) = 0$. Then Ω is suddenly increased to a value of Ω_0 , and held for a duration of T. What is the state of the system at time t = T?

At time T, the operator $J = j_0 (i|1\rangle\langle 2| - i|2\rangle\langle 1| + 3|3\rangle\langle 3|)$ is measured. What are the possible outcomes of the measurement and the associated probabilities?

For each possible outcome, what is the state immediately after the measurement?