
PHYS851 Quantum Mechanics I, Fall 2009
HOMEWORK ASSIGNMENT 8: SOLUTIONS

Topics Covered: Algebraic approach to the quantized harmonic oscillator, coherent states.

Some Key Concepts: Oscillator length, creation and annihilation operators, the phonon number oper-
ator.

1. Start from the harmonic oscillator Hamiltonian H = 1
2MP 2+ 1

2Mω2X2. Make the change of variables

X → λX̄ , P → ~

λ P̄ , and H → ~2

Mλ2 H̄. Find the value of λ for which H̄ = 1
2

(

X̄2 + P̄ 2
)

.

We find
~

2

Mλ2
H̄ =

~
2

2Mλ2
P̄ 2 +

1

2
Mω2λ2X̄2 (1)

For all of the constants to cancel requires

Mω2λ2 =
~

2

Mλ2
(2)

solving for λ gives

λ =

√

~

Mλ
(3)

2. Write down the harmonic oscillator Hamiltonian in terms of ω, A, and A†, and then write the com-
mutation relation between A and A†. Use these to derive the equation of motion for the expectation
value a(t) = 〈ψ(t)|A|ψ(t)〉.
Solve this equation for the general case a(0) = a0.
Prove that a∗(t) := 〈A†〉 = [a(t)]∗.

The Hamiltonian is
H = ~ω(A†A+ 1/2) (4)

and the commutator is
[

A,A†
]

= 1 (5)

The equation of motion for the expectation value is

d

dt
〈A〉 = − i

~
〈[A,H]〉

= −iω〈A〉 (6)

With a(t) = 〈A〉, the solution is
a(t) = a(0)e−iωt (7)

For A†, we find

a∗(t) = 〈A†〉 = 〈ψ(t)|A†|ψ(t)〉 = 〈ψ(t)|A|ψ(t)〉† = 〈A〉∗ = [a(t)]∗ (8)

The point here is that we can say
a∗(t) = [a(0)]∗eiωt (9)

without deriving a separate equation of motion for A†.
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3. Starting from 〈x|X|n−1〉 = xφn−1(x), express X in terms of A and A†, to derive a recursion relation
of the form:

φn(x) = fn(x)φn−1(x) + gn(x)φn−2. (10)

Starting from φ0(x) = [
√
πλ]

−1/2
e−

1

2
(x/λ)2 , use your recursion relation to compute φ2(x), φ3(x), and

φ4(x).

xφn−1(x) = 〈x|X|n − 1〉

=
λ√
2

(

〈x|A|n−1〉 + 〈x|A†|n−1〉
)

=
λ√
2

(√
n−1〈x|n − 2〉 +

√
n〈x|n〉

)

=
λ
√
n−1√
2

φn−2(x) +
λ
√
n√
2
φn(x) (11)

solving for φn(x) gives

φn(x) =

√

2

n

x

λ
φn−1(x) −

√

n−1

n
φn−2(x) (12)

with n = 1, 2, 3, 4 this gives

φ1(x) =
√

2
x

λ
φ0(x)

=
[√
π2λ

]−1/2
2
(x

λ

)

e−
1

2
(x/λ)2 (13)

ψ2(x) =
x

λ
ψ1(x) −

√

1

2
ψ0(x)

=

√
2

[
√
πλ]1/2

x2

λ2
e−

x
2

2λ2 − 1

[2
√
πλ]1/2

e−
x
2

2λ2

=
1

[222!
√
πλ]1/2

(

4
x2

λ2
− 2

)

e−
x
2

2λ2

ψ3(x) =

√

2

3

x

λ
ψ2(x) −

√

2

3
ψ1(x)

=

√

2

24
√
πλ

(

4
x2

λ2
− 2

)

x

λ
e−

x
2

2λ2 −
√

4

3
√
πλ

x

λ
e−

x
2

2λ2

=
1

[233!
√
πλ]1/2

(

8
x3

λ3
− 12

x

λ

)

e−
x
2

2λ2

ψ4(x) =

√

2

4

x

λ
ψ3(x) −

√

3

4
ψ2(x)

=

√

1

96
√
πλ

(

8
x4

λ4
− 12

x2

λ2

)

e−
x
2

2λ2 −
√

3

32
√
πλ

(

4
x2

λ2
− 2

)

e−
x
2

2λ2

=
1

√

244!
√
πλ

(

16
x4

λ4
− 48

x2

λ2
+ 12

)

e−
x
2

2λ2
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4. Make the definition φn(p) = in〈p|n〉. Start from 〈p|P |n−1〉 = p〈p|n−1〉 and derive a recursion rela-
tion for φn(p) by making an analogy to your result from the last problem.

(−i)n−1pφn−1(P ) = 〈p|P |n−1〉

= −i ~√
2λ

(

〈p|A|n−1〉 − 〈p|A†|n−1〉
)

= −i ~√
2λ

√
n−1(−i)n−2ψn−2(p) + i

~√
2λ

√
n(−i)nψn(p)

(14)

Solving for φn(p) gives

φn(p) =

√

2

n

(

λp

~

)

φn−1(p) −
√

n− 1

n
φn−2(p) (15)

This equation is exactly the same as the one for x, but with x
λ → λp

~
. Thus we must have

〈p|n〉 = (−i)nφn(p)

= (−i)n
[

2nn!
√
π~/λ

]−1/2
Hn

(

λ

~
p

)

e−
1

2
(λp/~)2 (16)

5. Consider a particle in the potential

V (x) =

{

1
2Mω2x2; x > 0

∞; x < 0
. (17)

What boundary condition must the eigenstates satisfy at x = 0?
To find the eigenstates and eigenvalues, consider that the wave-function must also satisfy the har-
monic oscillator wave equation for x > 0, as well be normalizable (limx→∞ ψ(x) = 0). Can you think
of any states that you already know of that satisfy all three conditions?

The boundary condition at x = 0 is ψ(0) = 0, and of course ψ(x) = 0 for x < 0.
Because we require the states to satisfy the harmonic oscillator wave equation, that doesn’t leave us
much to choose from, other than the harmonic oscillator states,

φn(x) =
[√
π2nn!λ

]−1/2
Hn(x/λ)e−

1

2
(x/λ)2 (18)

As we learned in lecture, in the case of an even potential, simultaneous eigenstates of energy and
parity must exist. If there is no degeneracy, then the energy eigenstates will automatically be parity
eigenstates. From problem 8.3, we see that φn(x) is even for n even, and odd for n odd. Since all
odd functions must vanish at x = 0, we see that the eigenstates we are looking for are the odd n,
harmonic oscillator eigenstates. Labeling them from 1 to ∞ in order of increasing energy, we let
n→ 2m− 1, and introduce the states |m〉, with m = 1, 2, 3, . . ., where En → E2m−1 gives

Em = ~ω(2m− 1/2) (19)

and φn(x) →
√

2φ2m−1(x) gives

φm(x) =
[√
π4m−1(2m− 1)!λ

]−1/2
φ2m−1(x/λ)e−

1

2
(x/λ)2 (20)

Note that the extra factor
√

2 is because the normalization integral is now from x = 0 to x = ∞.
The probability density must be doubled to compensate for the interval being halved.
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6. Consider the potential V (x) = a+ bX+ cX2. Let H = 1
2MP 2 +V (X), so that the energy eigenstates

and eigenvalues are defined via H|En〉 = En|En〉. Make a change of variables to complete the square
and map the problem onto the harmonic oscillator problem and then determine the allowed energies,
{En} and corresponding eigenfunctions ψn(x) := 〈x|En〉.

We can rearrange V (x) as

V (x) = c

[

X2 +
b

c
X

]

+ a

= c

[

X2 + 2
b

2c
X +

b2

4c2

]

+ a− b2

4c

= c

(

X +
b

2c

)2

+ a− b2

4c
(21)

With X ′ = X + b
2c , and P ′ = P , we have [X ′, P ′] = [X,P ] = i~, and

H =
P ′2

2M
+ cX ′2 + a− b2

4c
(22)

Thus by analogy with the Harmonic oscillator, we have

En = ~ω(n+ 1/2) + a− b2

4c
(23)

with c = 1
2Mω2, or

ω =

√

2c

M
(24)

The eigenfunctions are

φn(x′) =
[√
πsnn!λ

]−1/2
Hn(x/λ)e−

1

2
(x′/λ)2 (25)

with

λ =

√

~

Mω
=

(

~
2

2Mc

)1/4

(26)

with x′ = x+ b
2c this gives

φn(x) =
[√
πsnn!λ

]−1/2
Hn

(

x

λ
+

b

2cλ

)

e−
1

2
( x

λ
+ b

2cλ
)2 (27)
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7. Consider the potential

V (x) =







0; 0 < x < W < L
V0 > 0; W < x < L
∞; otherwise

. (28)

There are important boundary conditions at x = 0, x = W , and x = L, what are they? Assume that
E < V0, and make an ansatz for each of the two regions, which automatically satisfies the boundary
conditions at x = 0 and x = L.

Show that the two boundary conditions at x = W can only be satisfied for certain values of E,
and give a transcendental equation whose solutions yield the allowed energies.

Let region 1 cover the interval (0,W ) and region 2 cover the interval (W,L).
The boundary condition at x = 0 are then

ψ1(0) = 0 (29)

The boundary conditions at x = W are

ψ1(W ) = ψ2(W ) (30)

ψ′
1(W ) = ψ′

2(W ) (31)

and the boundary condition at x = L is
ψ2(L) = 0 (32)

For E < V0, we can use the ansatz

ψ1(x) = A sin(kx) (33)

ψ2(x) = B sinh(γ(L− x)) (34)

where k =
√

2ME/~ and γ =
√

2M(V0 − E)/~. The nice thing about this ansatz is that it automat-
ically satisfies the boundary conditions at x = 0 and x = L, so that we can find A and B from the
boundary at x = W . Putting our ansatz into the Eqs. (30) and (31) gives

A sin(kW ) = B sinh(γ(L−W )) (35)

Ak cos(kW ) = −Bγ cosh(γ(L−W )) (36)

solving (35) for B gives B = A sin(kW )/ sinh(γ(L−W )). Putting this into (36) gives

Ak cos(kW ) = −Aγ tanh(γ(L−W )) sin(kW ) (37)

Thus we see that this equation has a solution only when

cot(kW ) = −γ
k

tanh(γ(L−W )) (38)

in which case A will be set by normalization. As k = k(E) and γ = γ(E), the equation depends only
on E,

cot(
√

2MEW/~) = −
√

V0

E
− 1 tanh(

√

2M(V0 − E)(L−W )/~) (39)

Finding all values of E on the interval 0 < E < V0 will generate a list of the energy eigenstates with
energies below V0.
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8. A three level system is described by the Hamiltonian H = ~Ω(t) (|1〉〈3| − |3〉〈1|) + ~∆(t)|2〉〈2|.

Determine the eigenvalues and eigenvectors of H.

At time t = 0, the system is prepared in state |1〉, with ∆(0) = 0 and Ω(0) = 0. Then Ω is suddenly
increased to a value of Ω0, and held for a duration of T . What is the state of the system at time t = T ?

At time T , the operator J = j0 (i|1〉〈2| − i|2〉〈1| + 3|3〉〈3|) is measured. What are the possible
outcomes of the measurement and the associated probabilities?

For each possible outcome, what is the state immediately after the measurement?

In order for H to be Hermitian, we see that Ω must be purely imaginary. Writing Ω(t) = iΩI(t) then
gives

H = ~ΩI(t)i (|1〉〈3| − |3〉〈1|) + ~∆(t)|2〉〈2| (40)

We see that the Hilbert space defined by {|1〉, |2〉, |3〉} separates into two uncoupled subspaces
{|1〉, |3〉} and {|2〉}. In the {|1〉, |3〉} subspace we have

H = −~ΩI(t)

(

0 −i
i 0

)

(41)

and in the {|2〉} subspace we have
H = ~∆(t) (42)

The eigenvalues of the system are therefore E± = ±i~ΩI(t) and E0 = ~∆(t). For the case ΩI > 0,
the corresponding eigenvectors are

|+〉 =
1√
2

(|1〉 + i|3〉) (43)

|0〉 = |2〉 (44)

|−〉 =
1√
2

(|1〉 − i|3〉) (45)

We see that the initial state is

|1〉 =
1√
2

(|−〉 + |+〉) (46)

Thus at time T , the system is in state

|ψ(T )〉 =
1√
2

(

|−〉e−Ω0T + |+〉eΩ0T
)

(47)

with Ω0 purely imaginary. We can write this in the original basis as

|ψ(T )〉 = cosh(Ω0T )|1〉 + i sinh(Ω0T )|3〉 (48)

Generally speaking, the possible outcomes of a measurement of J are the eigenvalues of J . From in-
spection, we see that the possible outcomes are −|j0|, +|j0|, and 3j0. The corresponding eigenvectors

6



of J are given by

| − j0〉 =
1√
2

(|1〉 + i|2〉) (49)

|j0〉 =
1√
2

(|1〉 − i|2〉) (50)

|3j0〉 = |3〉 (51)

for the state |ψ(T )〉, the corresponding probabilities are

P (−j0) = |〈−j0|ψ(T )〉|2

=
1

2
cosh(Ω∗

0T ) cosh(Ω0T )

=
1

2
cosh(−Ω0T ) cosh(Ω0T )

=
1

2
cosh(Ω0T )

=
1

2
cos2(|Ω0|T ) (52)

P (j0) = |〈j0|ψ(T )〉|2

=
1

2
cos2(|Ω0|T ) (53)

and from conservation of probability, we must have

P (3j0) = sin2(|Ω0|T ) (54)

If eigenvalue −j0 is obtained, we have

|ψ(T+)〉 = | − j0〉 =
1√
2

(|1〉 + i|2〉) (55)

If eigenvalue j0 is obtained, we have

|ψ(T+)〉 = |j0〉 =
1√
2

(|1〉 − i|2〉) (56)

Note that this leads to the well-known, but somewhat paradoxical result that before the measurement,
the probability of the system to be in state |2〉 is zero, but after the measurement of J , it becomes
non-zero.
Lastly, if the result 3j0 is obtained, we have

|ψ(T+)〉 = |3〉 (57)
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