PHYS851 Quantum Mechanics I, Fall 2009
HOMEWORK ASSIGNMENT 9
Topics Covered: parity operator, coherent states, tensor product spaces.
Some Key Concepts: unitary transformations, even/odd functions, creation/annihilation operators, displaced vacuum states, displacement operator, tensor-product states, tensor-product operators, Schmidt decomposition, configuration space.

1. The Parity Operator: [20 pts] Determine the matrix element $\langle x| \Pi\left|x^{\prime}\right\rangle$ and use it to simplify the identity $\Pi=\int d x d x^{\prime}|x\rangle\langle x| \Pi\left|x^{\prime}\right\rangle\left\langle x^{\prime}\right|$, then use this identity to compute Π^{2}, Π^{3}, and Π^{n}.
From these results find an expression for $S(u)=\frac{\exp [\Pi u]}{\cosh u}$ in the form $f(u)+g(u) \Pi$.
What is $\langle x| S(u)|\psi\rangle$? Express your answer in terms of $\psi_{\text {even }}(x)=\frac{1}{2}(\psi(x)+\psi(-x))$ and $\psi_{\text {odd }}(x)=$ $\frac{1}{2}(\psi(x)-\psi(-x))$.
Compute $\langle x| S(0)|\psi\rangle, \lim _{u \rightarrow \infty}\langle x| S(u)|\psi\rangle$, and $\lim _{u \rightarrow-\infty}\langle x| S(u)|\psi\rangle$.
2. [15 pts]The coherent state $|\alpha\rangle$ is defined by $|\alpha\rangle=e^{-|\alpha|^{2} / 2} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle$, where the states $\{|n\rangle\}$ are the harmonic oscillator energy eigenstates.
First, show that for $\alpha=0$, the coherent state $|\alpha=0\rangle$ is exactly equal to the harmonic oscillator ground-state, $|n=0\rangle$.
Then show that any other coherent state can be created by acting on the ground-state, $|0\rangle$, with the 'displacement operator' $D(\alpha)$, i.e. show that $|\alpha\rangle=D(\alpha)|0\rangle$, where

$$
\begin{equation*}
D(\alpha):=e^{\alpha A^{\dagger}-\alpha^{*} A} \tag{1}
\end{equation*}
$$

You may need the Zassenhaus formula $e^{B+C}=e^{B} e^{C} e^{-[B, C] / 2}$, which is valid only when $[B,[B, C]]=$ $[C,[B, C]]=0$.
What is $D\left(\alpha_{2}\right)\left|\alpha_{1}\right\rangle$?
3. [15 pts] Consider a system described by the Hamiltonian $H=\hbar \kappa\left(A+A^{\dagger}\right)$. Use your results from the previous problem to determine $|\psi(t)\rangle$ for a system initially in the ground-state, $|\psi(0)\rangle=|0\rangle$.
4. [10pts each] Cohen Tannoudji, pp341-350: problems 3.6, 3.7, 3.11

