PHYS851 Quantum Mechanics I, Fall 2009 Semester Outline

- 1. Dirac Notation
 - (a) Bras and Kets
 - i. Hermitian conjugation
 - (b) Operators
 - i. Hermitian conjugation of operators
 - ii. Properties of Hermitian operators
 - iii. Properties of Unitary operators
 - (c) c-numbers
 - i. The inner product
 - ii. Matrix elements
 - (d) Hilbert Spaces
 - i. Discrete indices
 - A. Summation over indices
 - B. Orthonormality via Kronecker delta
 - C. Vector/Matrix and Tensor representations
 - ii. Continuous indices
 - A. Integration over indices
 - B. Orthonormality via Dirac delta
 - C. Single- and multi-variable function representations
- 2. Quantum Postulates
 - (a) Closed system described by state vector in Hilbert space
 - (b) Observables described by Hermitian operators
 - (c) Evolution of state vector governed by Schrödinger's equation
 - (d) Measurement Postulates
 - i. Possible results of a single measurement
 - ii. Probabilities associated with possible results
 - iii. Wave function 'collaps' occurs immediately after result obtained

3. Rabi Model

- (a) Two-level approximation
- (b) Generic Rabi Hamiltonian
 - i. Mapping for sinusoidally driven systems
 - ii. Eigenvalues and eigenvectors
- (c) The avoided crossing
 - i. Energy gap
 - ii. Adiabatic Theorem
 - iii. Sudden Approximation
- 4. Motion in 1D
 - (a) X and P
 - (b) Wavepacket dynamics
 - i. Delay time and spreading velocity
 - ii. as classical limit of QM
 - iii. Heisenberg equations for expectation values
 - (c) Infinite square well
 - (d) Scattering in 1d
 - i. Boundary conditions
 - ii. Probability current
 - A. Dependence of T on t
 - iii. Potential step scattering
 - iv. delta-function scattering
 - A. Trick to derive boundary condition on ψ'
- 5. Quantum Harmonic Oscillator
 - (a) Dimensionless variables
 - i. Natural Units
 - ii. Energy scale
 - iii. Oscillator Length
 - (b) Raising and lowering operators
 - (c) Energy eigenstates
 - i. Number operator
 - ii. Energy eigenvalues
 - iii. Eigenstate wavefunctions
- 6. Random Topics
 - (a) Parity Operator
 - (b) Uncertainty Principle

- 7. Quantum Theory of Angular Momentum
 - (a) Angular and radial Hilbert spaces
 - (b) Angular momentum commutation relations
 - (c) L_+ and L_-
 - (d) Simultaneous eigenstates of L^2 and L_z
 - (e) Allowed values of ℓ and m
 - (f) Motion on a ring: L_z^2
 - (g) Motion on a sphere: L^2
- 8. Motion in a Central Potential
 - (a) Conservation of angular momentum
 - (b) Radial wave equation
 - (c) Principle quantum number
 - (d) Spherical harmonic oscillator
- 9. Quantum two-body problem
 - (a) Separation of relative and center-of-mass motions
 - (b) Hydrogen atom
 - (c) Energy levels
 - (d) Energy level diagram
 - (e) Orbitals: 1s, 2p, etc...
 - (f) Allowed values of n, ℓ , and m_{ℓ}
 - (g) degeneracies
- 10. Hamiltonian of a charged particle
 - (a) Minimal coupling Hamiltonian
 - (b) Uniform B field
 - i. Orbital magnetic dipole moment
 - ii. Paramagnetic term
 - iii. Diamagnetic term
 - iv. Weak-field approximation
 - (c) Hydrogen atom in uniform magnetic field
 - (d) Electric dipole transitions in Hydrogen
 - i. Electric dipole Hamiltonian
 - ii. Selection rules
- 11. Spin
 - (a) Simultaneous eigenstates of S^2 and S_z
 - (b) Allowed values of s and m_s
 - (c) Spin magnetic dipole Hamiltonian
 - (d) Effects on Hydrogen atom level splittings and degeneracies