Lecture 10: Coordinate and
Momentum Representations

We will start by considering the quantum
description of the motion of a particle in
one dimension.

In classical mechanics, the state of the
particle is given by its position and
momentum coordinates, x and p.

In quantum mechanics, we will consider
position and momentum as observables
and therefore represent them by
Hermitian operators, X and P,
respectively.

Based on experimental evidence, we
have deduced that:

| X,P|=inl



Incompatible Observables

If two operators do not commute, then
an eigenstate of one cannot be an
eigenstate of the other.
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Coordinate Eigenstates

e Clearly X and P are incompatible, thus a
particle cannot simultaneously have a
well-defined position and momentum

e Since X is a Hermitian operator, it
follows that its eigenstates form a
complete set of unit vectors:
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Momentum Representation

e The same logic applies also to momentum
eigenstates:
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e In order to move fluidly between coordinate
and momentum basis, we need to know the
transformation coefficients (x|p) and (p|x):
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Deriving {x|p)

e This is the direct derivation

— Most textbooks use a round-about
approach to avoid mathematical subtleties

— We will just tackle them head on
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Derivation of (x|Plx')
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e At first glance this looks like a monstrosity, it
is zero for x=x’, but at x=x", it is infinity

divided by zero

— By treating the delta-distribution correctly, we
will see that we can easily understand the
meaning of this result



Distribution Theory

Q: is &(x) a function?
— A: no, technically it is a ‘distribution’
— A ‘function’ is a mapping from one space onto

another:
y=f(x)

— A ‘distribution’ is more general than a function
— A distribution is defined only under integration

y = [dx F(x)f(x)

e Here, F(x) is the distribution and f(x) is an ordinary
function

— For example, the delta-distribution is defined by:

[xd(x=x,) f(x) = £ (x,)

— A distribution can also be defined as the limit of a
sequence of functions. All properties of the
distribution are by definition, the limiting properties
of the sequence

e Example:
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(x|P|x") is a Distribution

e Qur previous result can be written as:
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— This is well-behaved for any finite o
— This proves that it has a clear meaning.

e Insert result into original equation:
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e Expand (x |p) around x =x:

¢ I___ _é 4 2 12



Continued
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