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Quick review:
P][bS P E P‘fb)

gAY/<¥|P]Y'S(K'|P) = P <&l

crply'y = ThEGD

Ce—x')
>
,0 /\/\—\
,kgd\é $ (%~ ><J m,» s (X - x&m S F (Y- x)zJ‘a,PH 3
(x -% dk?
> ]>“If>>
d (v §lev) < &
S p> \ Ry s(x=f) = Lpcxlpd
cx P *"P g
_é;éﬁ\p: ::Pa(f)
Ax h
gé 1exip> S‘Pol* opX
il e ‘ (X\P\'-:C&
I Letpy +InC = iﬂ



Normalization

e The constant C is found from normalization:
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e This leads to the results:
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The momentum operator

e But we have really learned even more.

- By the same logic we must have: i.e., let [p—> wﬁ
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- So when we say:
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While you can argue that its meaning might be
understandable, my point is just that it is not
proper use of Dirac notation.

- We really mean:

(x[Phw) = =in“(xlw)

- In fact, this is all you need
to remember
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I think that a correct
statement would be:
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This is now clearly an
operator in Hilbert space,
whose meaning is precisely
defined by the definition of
the derivative.

It then seems reasonable
to represent the r.h.s. as:
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In analogy to:
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" Coordinate Representation’

e If we make a decision to work in x-basis only,
we can abandon Dirac notation, and resort to
another common notation:

e The " coordinate representation’ of the QM
theory for a single particle in 1D is related to
the Dirac-notation representation via:
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Deriving the wave-equation of a
particle

Start from Schrédinger's Equation:
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For a particle we have:
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Hit with (x| from left:
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Use the properties:
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To arrive at:
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- Where, as usual:
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Time evolution of the wavefunction

e To find the time evolution of a wavefunction, we
can start from the form of the propagator in
energy-eigenstate basis:
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Example: a Free Particle

e Consider a free particle of mass M.
e The Hamiltonian is thus:
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e Since H=H(P), it is clear that the momentum
eigenstates are also eigenstates of H :
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e Assume that the initial wavefunction, y(x,0) is
known

e What is y(x,7), the wavefunction at a later
time?

2
ip(x=x")/h-i P

Y(x,0) = [dp [ dx'e 2 4y x'0)




