
Momentum vs. Wavevector

• Instead of momentum, it is often convenient
to use wavevector states:
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Wavevector definition:

Important commutators:

Eigenvalue equation:

Relation to momentum eigenstates: kp
pck

h=
=

Normalization

Closure

Wavefunction



Wavefunction in K-space

• What is the wavefunction in K-basis?
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• Quantum mechanical kinetic-energy
eigenstate:

– Only Global phase is changing in time
– Global phase can’t be observed

• Is anything actually moving?

– The spatial phase-pattern is moving, but at:

– This is called the `phase velocity’
• Not related to particle velocity in classical limit

• Classical free-particle motion:

• How can we have a `classical limit’ of QM if
nothing moves at v=p /M?

Wavefunction in X-space
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`Motion’ in QM

• The answer is that in QM motion is in
interference effect

• Consider a quantum-superposition of two
plane-waves:

• The interference pattern can move!
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This is a moving
`standing wave’
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Wavepacket formation

• Measurement of position must produce a
`localized’ state
– How does this `wavepacket’ then move?

Physical versus non-physical states:
• States like |x0〉 and |k0〉 have  〈ψ|ψ〉=∞
• All physical states must have 〈ψ|ψ〉=1

• CONCLUSION 1: states such as |x0〉 and |k0〉
are non-physical, and  can therefore only be
used as intermediate states in calculations

• CONCLUSION 2: Since a measurement of X
produces the nonphysical state  |x0〉, such a
measurement must be impossible

• However, real detectors have finite resolution
– call the resolution σ
– Result of measurement is therefore:
– After measurement, state vector is projected

onto this subspace, as

– This state will be a `wavepacket’ with width σ
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Gaussian Wavepackets

• A proto-typical wave packet is the Gaussian state
|x0,σ〉, defined via:

– Has width σ, centered at x=x0

– The width σ can be arbitrarily small, but we will
always have 〈ψ|ψ〉=1

• Such wavepackets are the physical `position’
states

• A wavepacket centered at x0 and moving with
velocity v=p0/m, has the wavefunction:

• How does the intial state |x0,p0,σ〉 evolve in time?
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Phase and Group Velocities

• We can see that the phase velocity is

• What does the probability density look like?

• We see that the center of the wavepacket
moves at the velocity

– We call this the `group velocity’

• We can see that the group velocity correlates
with the velocity of a classical particle having
the same momentum
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Wavepacket Spreading

• The width of the Gaussian wavepacket is:

• Thus the timescale for wavepacket spreading is:

– For t << ts  we can ignore spreading
– For t >>ts  the size of the wavepacket grows

linearly in time:

– Thus `spreading’ at the velocity:

– The smaller the wavepacket, the faster it will
spread!
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Electron Wavepacket

• Lets consider an electron:
– m = 10-30 kg

– If position was measured using light, then the
electron will at most be localized to the size of
the wavelength

– Visible light  λ  = 10-7 m

• Electron wavepacket will start spreading   0.1
ns after being localized

•  Spreading velocity, 1 km/s, is fairly large

• Hard to keep an electron pinned down to a
deterministic position
 Classical Mechanics will not describe physics

correctly
– Repeated measurement of the electrons

position could maintain localization, but
random nature of measurements would
introduce `quantum Brownian motion’ so that
CM will still not be correct
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Wavepacket for a Baseball

• Here we have    m = 1 kg
– Let us still consider the center-of-mass of the electron

to be localized by neutron diffraction to .1 nanometer

• So the wavepacket will only start spreading after
1014 s = 30 million years

• After which it will start to spread at a rate of 10-24

m/s.
– In another 30 million years, it will have doubled in

size

• Note: the age of the universe is 13 billion years
• In that time it will have reached 10 nm.

• So classical mechanics (i.e. well-
defined/deterministic position and momentum)
should do pretty well
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