Momentum vs. Wavevector

- Instead of momentum, it is often convenient to use wavevector states:
Wavevector definition: $\quad K=\frac{P}{\hbar}$
Important commutators: $\quad[X, K]=i \quad[P, K]=0$
Eigenvalue equation:

$$
K|k\rangle=k|k\rangle
$$

Relation to momentum eigenstates: $\quad|k\rangle=\left.c|p\rangle\right|_{p=h k}$

$$
\begin{array}{cl}
\left\langle k \mid k^{\prime}\right\rangle=\delta\left(k-k^{\prime}\right) & \text { Normalization } \\
\int_{-\infty}^{+\infty} d k|k\rangle\langle k|=1 & \text { Closure } \\
\langle x \mid k\rangle=\frac{e^{i k x}}{\sqrt{2 \pi}} & \text { Wavefunction }
\end{array}
$$

$$
\left\langle p \mid p^{\prime}\right\rangle=\delta\left(p-p^{\prime}\right)=\delta\left(\hbar k-\hbar k^{\prime}\right)=\frac{1}{\hbar} \delta\left(k-k^{\prime}\right)=\frac{1}{\hbar}\left\langle k \mid k^{\prime}\right\rangle
$$

$$
\therefore|k\rangle=\left.\sqrt{\hbar}|p\rangle\right|_{p=\hbar k}
$$

Wavefunction in K-space

- What is the wavefunction in K-basis?

Let $|\psi(0)\rangle=\left|k_{0}\right\rangle$
Then: $|\psi(t)\rangle=e^{-i \frac{t k 2_{0}^{2}}{2 M} t}\left|k_{0}\right\rangle$

$$
\begin{aligned}
\psi(k, t) & =\langle k \mid \psi(t)\rangle=e^{-i \frac{\hbar k_{0}^{2} t}{2 m}}\left\langle k \mid k_{0}\right\rangle \\
& =e^{-i \frac{t k_{0}^{2} t}{2 m}} \delta\left(k-k_{0}\right)
\end{aligned}
$$

Wavefunction in X-space

- Quantum mechanical kinetic-energy eigenstate:

$$
|\psi(t)\rangle=e^{-i \frac{p_{0}^{2}}{2 M \hbar} t}\left|p_{0}\right\rangle
$$

- Only Global phase is changing in time
- Global phase can't be observed
- Is anything actually moving?
$\psi(x, t)=\frac{e^{i \frac{p}{\hbar}\left(x-\frac{p_{0}}{2 M} t\right)}}{\sqrt{2 \pi \hbar}} \quad|\psi(x, t)|^{2}=\frac{1}{2 \pi \hbar}$
- The spatial phase-pattern is moving, but at:

$$
v=p_{0} / 2 M
$$

- This is called the 'phase velocity'
- Not related to particle velocity in classical limit
- Classical free-particle motion:

$$
\begin{aligned}
& x(t)=x_{0}+v t \\
& p(t)=p_{0}
\end{aligned}
$$

- How can we have a `classical limit' of QM if nothing moves at $\mathrm{v}=\mathrm{p} / \mathrm{M}$?

`Motion' in QM

- The answer is that in QM motion is in interference effect
- Consider a quantum-superposition of two plane-waves:

$$
\begin{gathered}
|\psi(t)\rangle=\frac{1}{\sqrt{2}}\left[e^{-i \frac{\hbar k_{0}^{2}}{2 M} t}\left|k_{0}\right\rangle+e^{-i \frac{2 \hbar k_{0}^{2}}{M} t}\left|2 k_{0}\right\rangle\right] \\
\psi(x, t)=\frac{e^{i k_{0}\left(x-\frac{\hbar k_{0}}{2 M} t\right)}}{2 \sqrt{\pi}}+\frac{e^{i 2 k_{0}\left(x-\frac{\hbar k_{0}}{M} t\right)}}{2 \sqrt{\pi}}
\end{gathered}
$$

$$
\begin{aligned}
&|\psi(x, t)|^{2}=\frac{1}{2 \pi}\left[1+\frac{e^{i\left(k_{0} x-\frac{3}{2} \frac{\hbar k_{0}}{M} t\right)}}{2}+\frac{\left.e^{-i\left(k_{0} x-\frac{3 \hbar k_{0}}{M} t\right.}\right)}{2}\right] \\
&=\frac{1}{2 \pi}\left[1+\cos \left(k_{0} x-\frac{3}{2} \frac{\hbar k_{0}}{M} t\right)\right] \\
&=\frac{1}{\pi} \cos ^{2}\left[\frac{1}{2}\left(k_{0} x-\frac{3}{2} \frac{\hbar k_{0}}{M} t\right)\right] \quad \text { This is a moving } \\
& \text { 'standing wave' }
\end{aligned}
$$

Wavepacket formation

- Measurement of position must produce a 'localized' state
- How does this ‘wavepacket' then move?

Physical versus non-physical states:

- States like $\left|x_{0}\right\rangle$ and $\left|k_{0}\right\rangle$ have $\langle\psi \mid \psi\rangle=\infty$
- All physical states must have $\langle\psi \mid \psi\rangle=1$
- CONCLUSION 1: states such as $\left|x_{0}\right\rangle$ and $\left|k_{0}\right\rangle$ are non-physical, and can therefore only be used as intermediate states in calculations
- CONCLUSION 2: Since a measurement of X produces the nonphysical state $\left|x_{0}\right\rangle$, such a measurement must be impossible $x=x_{0} \pm \sigma$
- However, real detectors have finite resolution
- call the resolution σ
- Result of measurement is therefore:
- After measurement, state vector is projected onto this subspace, as

$$
\left|\psi^{\prime}\right\rangle=\int_{x_{0}-\sigma}^{x_{0}+\sigma} d x|x\rangle\langle x \mid \psi\rangle
$$

- This state will be a ` wavepacket' with width σ

Gaussian Wavepackets

- A proto-typical wave packet is the Gaussian state $\left|x_{0}, \sigma\right\rangle_{\text {, }}$ defined via:

$$
\left\langle x \mid x_{0}, \sigma\right\rangle=\frac{1}{\left[\pi \sigma^{2}\right]^{1 / 4}} e^{-\frac{\left(x-x_{0}\right)^{2}}{2 \sigma^{2}}}
$$

- Has width σ, centered at $x=x_{0}$
- The width σ can be arbitrarily small, but we will always have $\langle\psi \mid \psi\rangle=1$
- Such wavepackets are the physical 'position' states
- A wavepacket centered at x_{0} and moving with velocity $\nu=p_{0} / m$, has the wavefunction:

$$
\left\langle x \mid x_{0}, p_{0}, \sigma\right\rangle=\frac{1}{\left[\pi \sigma^{2}\right]^{1 / 4}} e^{-\frac{\left(x-x_{0}\right)^{2}}{2 \sigma^{2}}+i \frac{p_{0} x}{\hbar}}
$$

- How does the intial state $\left|x_{0}, p_{0}, \sigma\right\rangle$ evolve in time?

Analytic
solution exists:

$$
\begin{aligned}
& \psi(x, t)=\left[\pi\left(\sigma+\frac{i \hbar t}{m \sigma}\right)^{2}\right]^{-1 / 4} e^{-\frac{\left(x-\frac{p_{0} t}{m}-x_{0}\right.}{2 \sigma^{2}\left(1+\frac{i \hbar t}{m \sigma^{2}}\right)}+i \frac{p_{0}\left(x-\frac{p_{0} t}{2 m}\right)}{\hbar}} \\
& \psi(x, 0)=\left\langle x \mid x_{0}, p_{0}, \sigma\right\rangle
\end{aligned}
$$

Phase and Group Velocities

- We can see that the phase velocity is

$$
v_{p}=\frac{p_{0}}{2 m}
$$

- What does the probability density look like?

$$
\begin{aligned}
& |\psi(x, t)|^{2}=\frac{1}{\sqrt{\pi} \sigma(t)} e^{-\frac{\left(x-x_{0}(t)\right)^{2}}{\sigma^{2}(t)}} \\
& x_{0}(t)=x_{0}+\frac{p_{0}}{m} t \quad \sigma(t)=\sigma \sqrt{1+\left(\frac{\hbar t}{m \sigma^{2}}\right)^{2}}
\end{aligned}
$$

- We see that the center of the wavepacket moves at the velocity

$$
v_{g}=\frac{p_{0}}{m}
$$

- We call this the `group velocity'
- We can see that the group velocity correlates with the velocity of a classical particle having the same momentum

Wavepacket Spreading

- The width of the Gaussian wavepacket is:

$$
\sigma(t)=\sigma \sqrt{1+\left(\frac{\hbar t}{m \sigma^{2}}\right)^{2}}
$$

- Thus the timescale for wavepacket spreading is:

$$
t_{s}=\frac{m \sigma^{2}}{\hbar} \quad \sigma(t)=\sigma \sqrt{1+\left(t / t_{s}\right)^{2}}
$$

- For $t \ll t_{s}$ we can ignore spreading $\sigma(t) \approx \sigma$
- For $t \gg t_{s}$ the size of the wavepacket grows linearly in time:

$$
\sigma(t) \approx \frac{\hbar}{m \sigma} t
$$

- Thus `spreading' at the velocity: $v_{s}=\frac{\hbar}{m \sigma}$
- The smaller the wavepacket, the faster it will spread!

Electron Wavepacket

- Lets consider an electron:
$-\mathrm{m}=10^{-30} \mathrm{~kg}$
- If position was measured using light, then the electron will at most be localized to the size of the wavelength
- Visible light $\lambda=10^{-7} \mathrm{~m}$

$$
t_{s}=\frac{m \sigma^{2}}{\hbar}=\frac{10^{-30} \mathrm{~kg} \cdot 10^{-14} \mathrm{~m}^{2}}{10^{-34} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}}=10^{-10} \mathrm{~s}
$$

- Electron wavepacket will start spreading 0.1 ns after being localized

$$
v_{s}=\frac{\hbar}{m \sigma}=\frac{10^{-34} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}}{10^{-30} \mathrm{~kg} \cdot 10^{-7} \mathrm{~m}}=10^{3} \frac{\mathrm{~m}}{\mathrm{~s}}=1 \frac{\mathrm{~km}}{\mathrm{~s}}
$$

- Spreading velocity, $1 \mathrm{~km} / \mathrm{s}$, is fairly large
- Hard to keep an electron pinned down to a deterministic position
\rightarrow Classical Mechanics will not describe physics correctly
- Repeated measurement of the electrons position could maintain localization, but random nature of measurements would introduce `quantum Brownian motion' so that CM will still not be correct

Wavepacket for a Baseball

- Here we have $m=1 \mathrm{~kg}$
- Let us still consider the center-of-mass of the electron to be localized by neutron diffraction to .1 nanometer

$$
t_{s}=\frac{m \sigma^{2}}{\hbar}=\frac{1 \mathrm{~kg} \cdot 10^{-20} \mathrm{~m}^{2}}{10^{-34} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}}=10^{14} \mathrm{~s}
$$

- So the wavepacket will only start spreading after $10^{14} \mathrm{~s}=30$ million years

$$
v_{s}=\frac{\hbar}{m \sigma}=\frac{10^{-34} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}}{1 \mathrm{~kg} \cdot 10^{-10} \mathrm{~m}}=10^{-24} \frac{\mathrm{~m}}{\mathrm{~s}} \quad \frac{1 \mathrm{~nm}}{300 \text { million years }}
$$

- After which it will start to spread at a rate of 10^{-24} m / s.
- In another 30 million years, it will have doubled in size
- Note: the age of the universe is 13 billion years
- In that time it will have reached 10 nm .
- So classical mechanics (i.e. welldefined/deterministic position and momentum) should do pretty well

