Lecture 14: Motion in 1D

Phy851/fall 2009

Simple Problems in 1D

- To Describe the motion of a particle in 1D, we need the following four QM elements:

$$
\begin{array}{cc}
i \hbar \frac{d}{d t}|\psi(t)\rangle=H|\psi(t)\rangle & \begin{array}{c}
\text { Schrödinger's } \\
\text { equation }
\end{array} \\
H=\frac{P^{2}}{2 m}+V(X) & \begin{array}{c}
\text { Energy of a } \\
\text { particle }
\end{array} \\
\langle x \mid \psi(t)\rangle=\psi(x, t) & \begin{array}{l}
\text { Definition of } \\
\text { wavefunction }
\end{array} \\
\langle x| P|\psi(t)\rangle=-i \hbar \frac{\partial}{\partial x} \psi(x, t) & \begin{array}{l}
\text { Action of momentum } \\
\text { operator in } x \text {-basis }
\end{array}
\end{array}
$$

- Putting them together yields the Schrödinger wave equation:

$$
i \hbar \frac{d}{d t} \psi(x, t)=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi(x, t)+V(x) \psi(x, t)
$$

Bound States vs Scattering States

- Problems dealing with motion in 1D fall into one of two categories

1. Bound-state problems:

- $\quad V(x)<$ E over finite region only
- Energy levels are discrete
- Typical problem:
- Find Energy eigenvalues: $\left\{E_{n}\right\} ; n=1,2,3, \ldots$
- Find corresponding Energy eigenstates: $\left\{\left|E_{n}\right\rangle\right\}$
- Find time evolution of an arbitrary state

2. Scattering problems:

- $\quad V(x)<$ E in region extending to infinity in at least one direction
- Energy spectrum is continuous
- Typical problem:
- For a given incident k find reflection and transmission probabilities, $R(k)$ and $T(k)$.

Example: Scattering from a Step Potential

- Consider the potential:

$$
V(x)= \begin{cases}0 & x<0 \\ V_{0} & x>0\end{cases}
$$

- Goal: find eigenstates
- Strategy:
- Divide into regions of constant V
- Make suitable Ansatz for each region
- Use boundary conditions to connect regions

General Solution for Constant V

- Solving the energy eigenvalue equation:

Start with the basic

$$
H\left|\psi_{E}\right\rangle=E\left|\psi_{E}\right\rangle
$$

equation
$\begin{aligned} & \text { Specify the } \\ & \text { Hamiltonian }\end{aligned} \quad\left(\frac{P^{2}}{2 M}+V\right)\left|\psi_{E}\right\rangle=E\left|\psi_{E}\right\rangle$
Hit with $\langle k|$ from left

$$
\langle k|\left(E-\frac{P^{2}}{2 M}-V\right)\left|\psi_{E}\right\rangle=0
$$

Use $\langle k| P=\hbar k\langle k| \quad\left(E-\frac{\hbar^{2} k^{2}}{2 M}-V\right)\left\langle k \mid \psi_{E}\right\rangle=0$

- Solution:

Either $\left(E-\frac{\hbar^{2} k^{2}}{2 M}-V\right)=0 \quad$ or $\quad\left\langle k \mid \psi_{E}\right\rangle=0$

For given E can only be

$$
E-\frac{\hbar^{2} k^{2}}{2 M}-V=0
$$

satisfied for two k
values, so $\langle k \mid \psi\rangle$ must be
zero for all other k :
$k= \pm \frac{\sqrt{2 M(E-V)}}{\hbar}$
$\left\langle k \mid \psi_{E}\right\rangle=c_{+} \delta\left(k-\frac{\sqrt{2 m(E-V)}}{\hbar}\right)+c_{-} \delta\left(k+\frac{\sqrt{2 m(E-V)}}{\hbar}\right)$

Wavefunction for constant V

- We have found:

$$
\left\langle k \mid \psi_{E}\right\rangle=c_{+} \delta\left(k-\frac{\sqrt{2 m(E-V)}}{\hbar}\right)+c_{-} \delta\left(k+\frac{\sqrt{2 m(E-V)}}{\hbar}\right)
$$

- Closure tells us that:

$$
\begin{aligned}
& |\psi\rangle=\int d k|k\rangle\langle k \mid \psi\rangle \\
& |\psi\rangle=\int d k|k\rangle\left[c_{+} \delta\left(k-\frac{\sqrt{2 m(E-V)}}{\hbar}\right)+c_{-} \delta\left(k+\frac{\sqrt{2 m(E-V)}}{\hbar}\right)\right] \\
& |\psi\rangle=c_{+}\left|k_{E}\right\rangle+c_{-}\left|-k_{E}\right\rangle \quad k_{E}=\frac{\sqrt{2 m(E-V)}}{\hbar}
\end{aligned}
$$

- Hit with $\langle x|$ to construct the wavefunction:

$$
\begin{aligned}
& \left\langle x \mid \psi_{E}\right\rangle=c_{+}\left\langle x \mid k_{E}\right\rangle+c_{-}\left\langle x \mid-k_{E}\right\rangle \\
& \psi_{E}(x)=c_{+} e^{i k_{E} x}+c_{-} e^{-i k_{E} x}
\end{aligned}
$$

c_{+}and $c_{\text {. }}$ will be set by boundary conditions ||

Energy Eigenstate Wave Function

 for Step Potential:

- So we have for each region:

$$
\psi_{E}(x)=c_{+} e^{i k_{E} x}+c_{-} e^{-i k_{E} x}
$$

- Applying this for each region gives

$$
\begin{array}{cc}
\psi_{I}(x)=a_{1} e^{i k_{1} x}+b_{1} e^{-i k_{1} x} & k_{1}=\frac{\sqrt{2 m E}}{\hbar} \\
\psi_{I I}(x)=a_{2} e^{i k_{2} x}+b_{2} e^{-i k_{2} x} & k_{2}=\frac{\sqrt{2 m\left(E-V_{0}\right)}}{\hbar}
\end{array}
$$

- Q: How do we find the coefficients?
- A: We need to specify boundary conditions:
- 4 unknowns required 4 boundary condition eqs.

Boundary conditions at $\pm \infty$

- In scattering problems, we need to specify the asymptotic forms of the wavefunction for $x \rightarrow \pm \infty$.
- i.e. specify c_{+}and c_{-}for the left-most and right-most regions
- For 1-d scattering, the most common approach is:
- For left-most region, take:

$$
\psi_{i n}(X)=e^{i k_{i n} x}+r e^{-i k_{i n} x}
$$

- For right-most region, take:

$$
\psi_{o u t}=t e^{i k_{o u t} x}
$$

- For step-potential, this translates to:

Boundary conditions at a Potential discontinuity

- The remaining unknown constants are determined from `continuity conditions' applied to each Potential discontinuity
allow $\Psi(x)$ and its derivatives to be
- Strategy: discontinuous and see if the eigenvalue equation can still be satisfied
- Let $x=0$ be the location of the discontinuity:
- Let $\psi(x)$ be a continuous smooth function
- Define:
$\Psi(x)=\psi(x)+\alpha U(x)+\beta x U(x)+\frac{\gamma}{2} x^{2} U(x)+\ldots$

$$
U(x)=\left\{\begin{array}{ll}
0 & x<0 \\
1 & x>0
\end{array} \quad\right. \text { Unit Step-function' }
$$

- Differentiation gives:

$$
\begin{gathered}
\Psi^{\prime}(x)=\psi^{\prime}(x)+\alpha \delta(x)+\beta U(x)+\gamma x U(x)+\ldots \\
\Psi^{\prime \prime}(x)=\psi^{\prime \prime}(x)+\alpha \delta^{\prime}(x)+\beta \delta(x)+\gamma U(x)+\ldots \\
\vdots \\
\text { Recall that: } \\
U^{\prime}(x)=\delta(x)
\end{gathered}
$$

Continuity conditions

$$
\begin{aligned}
& \Psi(x)=\psi(x)+\alpha U(x)+\beta x U(x)+\frac{\gamma}{2} x^{2} U(x)+\ldots \\
& \Psi^{\prime}(x)=\psi^{\prime}(x)+\alpha \delta(x)+\beta U(x)+\gamma x U(x)+\ldots \\
& \Psi^{\prime \prime}(x)=\psi^{\prime \prime}(x)+\alpha \delta^{\prime}(x)+\beta \delta(x)+\gamma U(x)+\ldots
\end{aligned}
$$

- Taking the limit as $x \rightarrow 0$ from the left gives:

$$
\Psi\left(0^{-}\right)=\psi(0)
$$

- Taking the limit as $x \rightarrow 0$ from the right gives:

$$
\Psi\left(0^{+}\right)=\psi(0)+\alpha
$$

- Thus α is the discontinuity in $\Psi(x)$ at $x=0$:

$$
\Psi\left(0^{+}\right)-\Psi\left(0^{-}\right)=\alpha
$$

- Likewise:

$$
\begin{aligned}
& \Psi^{\prime}\left(0^{+}\right)-\Psi^{\prime}\left(0^{-}\right)=\beta \\
& \Psi^{\prime \prime}\left(0^{+}\right)-\Psi^{\prime \prime}\left(0^{-}\right)=\gamma
\end{aligned}
$$

- And so on ...

Plugging into the Energy Eigenvalue Equation

- Projecting the Energy Eigenvalue equation onto $\langle x|$ gives:

$$
\left[E+\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}-V(x)\right] \psi(x, t)=0
$$

$\Psi(x)=\psi(x)+\alpha U(x)+\beta x U(x)+\frac{\gamma}{2} x^{2} U(x)+\ldots$

$$
[E-V(x)]\left(\psi(x)+\alpha U(x)+\beta x U(x)+\frac{\gamma}{2} x^{2} U(x)+\ldots\right)
$$

$$
=-\frac{\hbar^{2}}{2 M}\left(\psi^{\prime \prime}(x)+\alpha \delta^{\prime}(x)+\beta \delta(x)+\gamma U(x)+\ldots\right)
$$

- There is nothing on the L.h.s. to cancel the delta functions on the R.h.s. unless $V(x)$ contains a $\psi(x)$ and/or a $\psi^{\prime}(x)$ term.
- Unless this is the case, we must have $\alpha=0$ and $\beta=0$

Theorem:

- the wavefunction and its first derivative must be everywhere continuous.
- Exception: where there is a $\psi\left(x-x_{0}\right)$ or $\psi^{\prime}\left(x-x_{0}\right)$ in the potential.
- $\delta\left(x-x_{0}\right)$ potential \rightarrow discontinuity in $\psi^{\prime}(x)$ at $x=x_{0}$
- $\delta^{\prime}\left(x-x_{0}\right)$ potential \rightarrow discontinuity in $\psi(x)$ at $x=x_{0}$

