
Lecture 14: Motion in 1D

Phy851/fall 2009



Simple Problems in 1D

• To Describe the motion of a particle in 1D, we
need the following four QM elements:

• Putting them together yields the Schrödinger
wave equation:
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Bound States vs Scattering States

• Problems dealing with motion in 1D fall into
one of two categories

1. Bound-state problems:
– V(x) < E over finite region only
– Energy levels are discrete
– Typical problem:

• Find Energy eigenvalues: {En}; n=1,2,3,…

• Find corresponding Energy eigenstates: {|En〉}

• Find time evolution of an arbitrary state

2. Scattering problems:
– V(x) < E in region extending to infinity in at

least one direction
– Energy spectrum is continuous
– Typical problem:

• For a given incident k find reflection and
transmission probabilities, R(k) and T(k).
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Example: Scattering from a Step
Potential

• Consider the potential:

• Goal: find eigenstates

• Strategy:
– Divide into regions of constant V
– Make suitable Ansatz for each region
– Use boundary conditions to connect regions
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General Solution for Constant V

• Solving the energy eigenvalue equation:

• Solution:
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For given E can only be
satisfied for two k
values, so 〈k|ψ〉 must be
zero for all other k:

Either

Start with the basic
equation

Specify the
Hamiltonian

Hit with 〈k|
from left

Use 〈k|P = hk〈k|
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Wavefunction for constant V

• We have found:

• Closure tells us that:

• Hit with 〈x| to construct the wavefunction:
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Energy Eigenstate Wave Function
for Step Potential:

• So we have for each region:

• Applying this for each region gives

• Q: How do we find the coefficients?

• A: We need to specify boundary conditions:
– 4 unknowns required 4 boundary condition eqs.
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Boundary conditions at ±∞

• In scattering problems, we need to specify
the asymptotic forms of the wavefunction for
x → ±∞.
– i.e. specify c+ and c- for the left-most and

right-most regions

• For 1-d scattering, the most common
approach is:

– For left-most region, take:

– For right-most region, take:

• For step-potential, this translates to:
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Boundary conditions at a Potential
discontinuity

• The remaining unknown constants are
determined from `continuity conditions’
applied to each Potential discontinuity

• Strategy:

– Let x=0 be the location of the discontinuity:
– Let ψ(x) be a continuous smooth function

– Define:

– Differentiation gives:

allow  Ψ(x) and its derivatives to be
discontinuous and see if the eigenvalue
equation can still be satisfied
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Continuity conditions

• Taking the limit as x → 0 from the left gives:

• Taking the limit as x → 0 from the right gives:

• Thus α  is the discontinuity in Ψ(x) at x=0:

• Likewise:

– And so on …
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• Projecting the  Energy Eigenvalue equation
onto 〈x| gives:

• This gives:

• Conclusions:
– There is nothing on the L.h.s. to cancel the

delta functions on the R.h.s. unless V(x)
contains a ψ(x) and/or a ψ’(x) term.

– Unless this is the case, we must have α=0 and
β =0

Theorem:
• the wavefunction and its first derivative must

be everywhere continuous.
– Exception: where there is a ψ(x-x0) or ψ’(x-x0)

in the potential.
• δ(x-x0) potential  discontinuity in ψ’(x) at x=x0

• δ’(x-x0) potential  discontinuity in ψ(x) at x=x0

Plugging into the Energy Eigenvalue
Equation
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