Lecture 14: Motion in 1D
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Simple Problems in 1D

e To Describe the motion of a particle in 1D, we
need the following four QM elements:

7 % ‘U} (t)> — H‘w (t)> Schraédinger's

equation
2
H = P_ +V(X) EnergY of a
2m particle
<X ‘lp (f)> _ w (X, f) Defml’rlon'of

wavefunction

Action of momentum

<X‘P‘I/J (t)> = —ih I W(x ) operator in x-basis

e Putting them together yields the Schrodinger
wave equation:

2 2

ih %q) (x,1)=- h—a—w (x,)+V(xn(x,t)

2m ox>

I



Bound States vs Scattering States

Problems dealing with motion in 1D fall into
one of two categories

1. Bound-state problems:
—  V(x) <E over finite region only
- Energy levels are discrete
— Typical problem:
e Find Energy eigenvalues: {E };n=1,23,...

Find corresponding Energy eigenstates: {|E )}
Find time evolution of an arbitrary state

V(x) — 1 No

2. Scattering problems:

V(x) <Ein region extending to infinity in at
least one direction

Energy spectrum is continuous

— Typical problem:

e For a given incident % find reflection and
transmission probabilities, R(k) and T(k).
A
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Example: Scattering from a Step

Potential
e (Consider the potential:
0 x<0
V(x)=
V, x>0
Ar
VO
I IT
> x
0

e Goal: find eigenstates

e Strategy:
— Divide into regions of constant V
— Make suitable Ansatz for each region
— Use boundary conditions to connect regions
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General Solution for Constant V

e Solving the energy eigenvalue equation:

Start with the basic
H =F
equation ‘wE> ‘wE>
Specify the P +V‘?./J >=E‘UJ >
Hamiltonian M E E
Hit with (K (k][ £ - P’ 1 |p,) =0
from left M E
nk’
Use (k|P = hk(k E - -V Kk =0
=ik (B2l |l
e Solution:
hk’
Either | E - -V 1{=0 r k =0
ther (E=SiV|=0 o {elys)
k- V=0
For given E can only be oM
satisfied for two k
values, so (k|y) must be - \/2M(E - V)
zero for all other k: h

(Kfy ) = .0 (k=) + e b (k +225)

el



Wavefunction for constant V

e We have found:

(Kl e) = .0 (k=770 4 e 5k +2750)

e C(Closure tells us that:
W) = [k |ke)(k|w)

) = [ aklk) .ok =20 4 ok + 2D

kE>+C_‘—kE> kE _ N2m(E-V)

w)=c.

e Hit with (x| to construct the wavefunction:

(rlwe) = el ki) + (x| =)

—ikgx

Y- (x) = c+eikEx +ce

¢, and c_will be set by
boundary conditions ||‘




Energy Eigenstate Wave Function
for Step Potential:

AE

0
e So we have for each region:

—ikgx

Y. (x) = c+eikEx +ce

e Applying this for each region gives

Y, (x)= aleikl" + ble'iklx k, =

IIJH(X) _ azeikzx +b2€—ik2x k2 _ \/Zm(E—VO)
h

e Q: How do we find the coefficients?

e A: We need to specify boundary conditions:
- 4 unknowns required 4 boundary condition egs.

I




Boundary conditions at £oo

e In scattering problems, we need to specify
the asymptotic forms of the wavefunction for
X — o0,

- i.e. specify c, and c. for the left-most and
right-most regions

e For 1-d scattering, the most common
approach is:

— For left-most region, take:

win (X) _ eikinx + 7 e—ikinx

— For right-most region, take:

_ ik, x
wout =le

e For step-potential, this translates to:

A

Y, (x)= e +re Y, (x)= te'”

=



Boundary conditions at a Potential
discontinuity

e The remaining unknown constants are
determined from " continuity conditions’
applied to each Potential discontinuity

allow W(x) and its derivatives to be
e Strategy: discontinuous and see if the eigenvalue
equation can still be satisfied

— Let x=0 be the location of the discontinuity:

- Let y(x) be a continuous smooth function
— Define:

W(x) =y (x) +aU(x) + BxU(x) + %sz(x) ...

0 x<O

" Unit Step-function'
I x>0

U(x)={

— Differentiation gives:

Y(x)=y'(x)+ad(x)+ BUxX)+yxU(x) +...
P'(x)=y"(x)+ad' (x)+L6(x)+yU(x)+...

Recall that:

U'(x)=8(x) ||‘




Continuity conditions

Yx)=y(x)+aU(x)+ [)’XU(X)+%X2U(X)+...
P'x)=y'(x)+ad(x)+ BUX)+yxU(x) +...
PYx)=p"(x)+ad' (x)+Bo(x)+yU(x)+...

Taking the limit as x — 0 from the /eft gives:
w(07)=y(0)

Taking the limit as x — 0 from the right gives:

YO0 )=y (0)+c

Thus a is the discontinuity in ¥(x) at x=0:
P(0")-W(0 )=«

Likewise:

W(0')-W'(07) = B
W'(0%) - W'(07) = y

- And soon ...



Plugging into the Energy Eigenvalue
Equation

e Projecting the Energy Eigenvalue equation
onto (x| gives:

E +£a—22— V(x)}l/} (x,2)=0

2m ox

W(x) = (x) +alU(x)+ BxU(x) +%x2U(x) ;.

o T oi__.
[E- V(x){lp (x)+aU(x) + BxU(x) + %sz(x) ‘. )

hz " !
_ Y (x)+ad (x)+po(x)+yU(x)+...
e Conclusions: 2M( )
— There is nothing on the L.h.s. to cancel the
delta functions on the R.h.s. unless V(x)
contains a y(x) and/or a y(x) term.

— Unless this is the case, we must have a=0 and
B =0

Theorem:

e the waverunction and Its first derivative must
be everywhere continuous.
- Exception: where there is a y(x-x,) or v’ (x-x,)

in the potential.
I

e §(x-x,) potential - discontinuity in y’(x) at x=x,
e 6'(x-x,) potential - discontinuity in y(x) at x=x,



