Lecture 15: Simple problems in 1D and Probability Current I

Phy851 Fall 2009

Continuity Theorem

From previous Lecture:

Theorem:

- the wavefunction and its first derivative must be everywhere continuous.
- Exception: where there is a $\delta\left(x-x_{0}\right)$ or $\delta^{\prime}\left(x-x_{0}\right)$ in the potential.
- $\delta\left(x-x_{0}\right)$ potential \rightarrow discontinuity in $\psi^{\prime}(x)$ at $x=x_{0}$
- $\delta^{\prime}\left(x-x_{0}\right)$ potential \rightarrow discontinuity in $\psi(x)$ at $x=x_{0}$

Solution to the Step Potential Scattering Problem

- Assuming an incoming flux from the left only, we make the ansatz:

$$
\psi_{I}(x)=e^{i k_{1} x}+r e^{-i k_{1} x}
$$

$$
\psi_{I I}(x)=t e^{i k_{2} x}
$$

- As there is no δ or δ^{\prime} potential, we need to impose two boundary conditions at $x=0$:

Insert (1) into (2) $\quad i k_{1}(1-r)=i k_{2}(1+r)$
Collect r terms together

$$
-i\left(k_{1}+k_{2}\right) r=-i\left(k_{1}-k_{2}\right)
$$

Solve for r

$$
r=\frac{k_{1}-k_{2}}{k_{1}+k_{2}}
$$

Plug solutions into (1) and solve for t

$$
t=1+\frac{k_{1}-k_{2}}{k_{1}+k_{2}} \quad t=\frac{2 k_{1}}{k_{1}+k_{2}}
$$

$$
\| \square
$$

$$
\begin{align*}
& \psi_{I}(0)=\psi_{I I}(0) \longrightarrow \quad 1+r=t \tag{1}\\
& \psi_{I}^{\prime}(0)=\psi_{I I}^{\prime}(0) \quad i k_{1}(1-r)=i k_{2} t \tag{2}
\end{align*}
$$

Case I: Tunneling into the Barrier

- Consider the case where $E<V_{0}$:

$$
\psi_{I}(x)=e^{i k_{1} x}+r e^{-i k_{1} x} \quad \psi_{I I}(x)=t e^{i k_{2} x}
$$

E

$$
k_{1}=\frac{\sqrt{2 m E}}{\hbar}:=k
$$

$$
k_{2}=\frac{\sqrt{-2 m\left(V_{0}-E\right)}}{\hbar}=i \frac{\sqrt{2 m\left(V_{0}-E\right)}}{\hbar}:=i \gamma \quad \begin{gathered}
\text { Q: why did we } \\
\text { choose " }+i \text { ", } \\
\text { instead of "-i"? }
\end{gathered}
$$

$$
\psi_{I I}(x)=t e^{-\gamma x}
$$

$$
r=\frac{k_{1}-k_{2}}{k_{1}+k_{2}} \rightarrow \quad r=\frac{k-i \gamma}{k+i \gamma}
$$

A: If we had chosen
"-i", solution would 'blow up' as $x \rightarrow \infty$.

That would describe a particle at $x=\infty$, but not the particle we are interested in

$$
t=\frac{2 k_{1}}{k_{1}+k_{2}} \rightarrow \quad t=\frac{2 k}{k+i \gamma}
$$

Note that: $\quad|r|^{2}=1 \quad|t|^{2}=\frac{4 k^{2}}{k^{2}+\gamma^{2}}$
Q: What is physical meaning of $|r|^{2}$ and $|t|^{2}$?

Case II: Quantum Reflection

- Consider the case where $E>V_{0}$:

E

$$
\psi_{I}(x)=e^{i k_{1} x}+r e^{-i k_{1} x} \quad \psi_{I I}(x)=t e^{i k_{2} x}
$$

$$
\begin{gathered}
k_{1}=\frac{\sqrt{2 m E}}{\hbar}:=k \\
k_{2}=\frac{\sqrt{2 m\left(E-V_{0}\right)}}{\hbar}=\sqrt{k-\frac{2 M V_{0}}{\hbar^{2}}}:=\sqrt{k^{2}-k_{0}^{2}} \\
r=\frac{k_{1}-k_{2}}{k_{1}+k_{2}} \rightarrow r=\frac{k-\sqrt{k^{2}-k_{0}^{2}}}{k+\sqrt{k^{2}-k_{0}^{2}}} \quad \begin{array}{c}
\text { Note that } k_{2}<k_{1}, \\
\text { as it should }
\end{array} \\
t=\frac{2 k_{1}}{k_{1}+k_{2}} \rightarrow t=\frac{2 k}{\begin{array}{c}
\text { Quantum } \\
\text { particle has } \\
\text { non-zero } \\
\text { probability to }
\end{array}} \begin{array}{c}
\text { reflect! }
\end{array} \\
|r|^{2}=\frac{2 k^{2}-k_{0}^{2}-2 k \sqrt{k^{2}-k_{0}^{2}-k_{0}^{2}}}{2 k^{2}-k_{0}^{2}+2 k \sqrt{k^{2}-k_{0}^{2}}}|t|^{2}=\frac{2 k^{2}-k_{0}^{2}+2 k \sqrt{k^{2}-k_{0}^{2}}}{4 k^{2}}
\end{gathered}
$$

Note: $|r|^{2}+|t|^{2} \neq 1$ So $|r|^{2}$ and $|t|^{2}$ are not reflection and transmission probabilities!

Limiting case: Infinite Barrier

- Consider an infinitely high potential barrier:

$\psi_{I}(x)=e^{i k x}+r e^{-i k x}$	$\psi_{I I}(x)=t e^{-\gamma x}$
E	x
$\gamma=\frac{\sqrt{2 m\left(V_{0}-E\right)}}{\hbar}=$	$\frac{\sqrt{2 m(\infty-E)}}{\hbar}=\infty$
$\begin{aligned} & r=-\frac{(\gamma+i k)}{(\gamma-i k)}=-1 \\ & t=-\frac{2 i k}{\gamma-i k}=0 \end{aligned}$	π phase-shift upon reflection. no tunneling
$\psi_{I}(x)=\sin (k x)$	(up to a constant)
$\psi_{I I}(x)=0$	Wave function goes to zero at infinite barrier

Bound states: Infinite Square Well Solution

- Extend this result to the infinite square well

From continuity

$$
\psi_{I I}(0)=0 \quad \psi_{I I}(L)=0
$$

Most general
free-space

$$
\psi_{I I}(x)=\bar{a} e^{i k x}+\bar{b} e^{-i k x}=a \sin (k x)+b \cos (k x)
$$

solution:
Apply boundary conditions:

$$
\begin{aligned}
& \psi_{I I}(0)=0 \rightarrow b=0 \\
& \psi_{I I}(L)=0 \rightarrow k=\frac{n \pi}{L} ; \quad n=1,2,3, \ldots
\end{aligned}
$$

- Momentum and Energy are quantized by the boundary conditions at 0 and L :

$$
\begin{array}{cc}
k_{n}=\frac{n \pi}{L} & \begin{array}{c}
\text { Bound States are } \\
\text { normalizable: }
\end{array} \\
E_{n}=\frac{\hbar^{2} k_{n}^{2}}{2 m}=\frac{\hbar^{2} \pi^{2}}{2 m L^{2}} n^{2} \quad \varphi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right)
\end{array}
$$

Probability Current

- From studying quantum reflection at a step potential, we saw that $|r|^{2}+|t|^{2}=1$ is not always true
- Let R:= reflection probability
- Let $\mathrm{T}:=$ transmission probability
- Clearly we must have $R+T=1$
- So $R=|r|^{2}$ and $T=|t|^{2}$ must not always be correct
- The problem is that in this case the velocity in region I is not the same as in II
- This suggests that we need to think in terms of a probability current
- Derivation of probability current:
- Start from the probability density:

$$
\rho(x, t)=|\psi(x, t)|^{2}
$$

- Consider a tiny region of length 2ε located a position $x: \quad P(x, t)=\rho(x, t) 2 \varepsilon$
- Imagine currents are flowing through points $x-\varepsilon$ and $x+\varepsilon$: (A positive current flows from left to right)

Probability in region can increase or decrease

$$
\frac{d P(x, t)}{d t}=j(x-\varepsilon)-j(x+\varepsilon)
$$

Current at $-\varepsilon \quad$ Current at $+\varepsilon$

Continuity Equation

$$
\begin{gathered}
j(x-\varepsilon)-j(x+\varepsilon)=\frac{d P(x, t)}{d t} \\
j(x-\varepsilon)-j(x+\varepsilon)=\frac{d \rho(x, t) 2 \varepsilon}{d t} \\
\frac{j(x-\varepsilon)-j(x+\varepsilon)}{2 \varepsilon}=\frac{d \rho(x, t)}{d t} \\
-\frac{d}{d x} j(x, t)=\frac{d}{d t} \rho(x, t)
\end{gathered}
$$

- This is the standard continuity equation, valid for any kind of fluid
- For energy eigenstates (stationary states), we need:

$$
\begin{aligned}
& \frac{d}{d t} \rho(x, t)=0 \Rightarrow \rho(x, t)=\rho(x, 0) \\
& \frac{d}{d t} j(x, t)=0 \Rightarrow j(x, t)=j(x, 0)
\end{aligned}
$$

- This gives:

$$
\frac{d}{d x} j(x, t)=0 \quad \Rightarrow \quad j(x, 0)=j_{0}
$$

- Must have spatially uniform current in steady state (of course j_{0} can be zero)

