
Lecture 15: Simple problems in 1D
and Probability Current I

Phy851 Fall 2009



Continuity Theorem

From previous Lecture:

Theorem:
• the wavefunction and its first derivative

must be everywhere continuous.
– Exception: where there is a δ(x-x0) or

δ’(x-x0) in the potential.
• δ(x-x0) potential  discontinuity in ψ’(x) at

x=x0

• δ’(x-x0) potential  discontinuity in ψ(x) at
x=x0



Solution to the Step Potential
Scattering Problem

• Assuming an incoming flux from the left only,
we make the ansatz:

• As there is no δ or δ’ potential, we need to
impose two boundary conditions at x=0:
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Insert (1) into (2)

Collect r terms
together

Solve for r

Plug solutions into
(1) and solve for t
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Case I: Tunneling into the Barrier

• Consider the case where E < V0:
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Q: why did we
choose “+i”,

instead of “–i”?
A: If we had chosen
“-i”, solution would
‘blow up’ as x→∞.

That would describe a
particle at x =∞, but
not the particle we
are interested in
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Q: What is physical meaning of |r|2 and |t|2 ?

A classical particle would reflect from x=0



Case II: Quantum Reflection

• Consider the case where E > V0:
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A classical particle would have 100% transmission
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So |r|2 and |t|2 are not reflection
and transmission probabilities !

Note that k2 < k1,
as it should

Quantum
particle has

non-zero
probability to

reflect!



x
x=0

Limiting case: Infinite Barrier

• Consider an infinitely high potential barrier:
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0)( =xIIψ  Wave function goes to
zero at infinite barrier
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Bound states: Infinite Square Well Solution

• Extend this result to the infinite square well

• Momentum and Energy are quantized by the
boundary conditions at 0 and L:
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Most general
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Apply boundary
conditions:
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Probability Current

• From studying quantum reflection at a step
potential, we saw that |r|2+|t|2=1 is not always
true
– Let R:= reflection probability
– Let T:= transmission probability
– Clearly we must have R +T = 1

– So R = |r|2 and T = |t|2 must not always be correct

• The problem is that in this case the velocity in
region I is not the same as in II

• This suggests that we need to think in terms of
a probability current

• Derivation of probability current:
– Start from the probability density:

– Consider a tiny region of length 2ε located a
position x:

– Imagine currents are flowing through points x-ε
and x+ε: (A positive current flows from left to right)
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Continuity Equation

• This is the standard continuity equation, valid for
any kind of fluid

• For energy eigenstates (stationary states), we
need:

• This gives:

• Must have spatially uniform current in steady
state (of course j0 can be zero)
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