Lecture 16: Probability Current II and 1D Scattering

Phy851 Fall 2009

Continuity Equation

$$
\begin{gathered}
j(x-\varepsilon)-j(x+\varepsilon)=\frac{d P(x, t)}{d t} \\
j(x-\varepsilon)-j(x+\varepsilon)=\frac{d \rho(x, t) 2 \varepsilon}{d t} \\
\frac{j(x-\varepsilon)-j(x+\varepsilon)}{2 \varepsilon}=\frac{d \rho(x, t)}{d t} \\
-\frac{d}{d x} j(x, t)=\frac{d}{d t} \rho(x, t)
\end{gathered}
$$

- This is the standard continuity equation, valid for any kind of fluid
- For energy eigenstates (stationary states), we need:

$$
\begin{aligned}
\frac{d}{d t} \rho(x, t)=0 & \Rightarrow \rho(x, t)=\rho(x, 0) \\
\frac{d}{d t} j(x, t)=0 & \Rightarrow j(x, t)=j(x, 0)
\end{aligned}
$$

- This gives: $\quad \frac{d}{d x} j(x, t)=0 \quad \Rightarrow \quad j(x, t)=j_{0}$
- Must have spatially uniform current in steady state (of course j can be zero)

Derivation of the probability current:
Starting points:
-probability density: $\quad \rho(x, t)=\psi^{*}(x, t) \psi(x, t)$

$$
p=\psi^{\nabla} \psi
$$

- continuity equation:

$$
j^{\prime}=-\dot{p} \leftarrow \begin{aligned}
& \text { given } p, \\
& \text { defines } j
\end{aligned}
$$

$$
\begin{gathered}
\dot{j}^{\prime}=-\dot{p} \\
\\
=-\dot{\psi}^{*} \psi-\psi^{*} \dot{\psi} \\
\dot{\psi}=\frac{i \hbar}{2 \mu} \psi^{\prime \prime}-\frac{i}{\hbar} V \psi \underset{\text { c.c. }}{\longrightarrow} \dot{\psi}^{*}=-\frac{i \hbar}{2 \mu} \psi^{* \prime \prime}+\frac{i}{\hbar} V \psi^{*}
\end{gathered}
$$

therefore: $j^{\prime}=\frac{i \hbar}{2 m} \psi^{* \prime \prime} \psi-\frac{i}{\hbar} v \psi^{*} \psi-\frac{i \hbar}{2 m} \psi^{*} \psi^{\prime \prime}+\frac{i}{\hbar} \psi \psi^{*} \psi$

$$
j^{\prime}=\frac{i \hbar}{2 m}\left(\psi^{* \prime \prime} \psi-\psi^{*} \psi^{\prime \prime}\right)
$$

Trick:

$$
\begin{aligned}
\frac{d}{d x}\left(\psi^{* \prime} \psi-\psi^{*} \psi^{\prime}\right) & =\psi^{\prime \prime} \psi+\psi^{*} / \psi^{\prime}-\psi^{*} \psi^{\prime}-\psi^{*} \psi^{\prime \prime} \\
& =\psi^{\hbar \prime \prime} \psi-\psi^{*} \psi^{\prime \prime} \\
\frac{d}{d x} j(x, t) & =\frac{i \hbar}{2 m} \frac{d}{d x}\left(\psi^{*} \psi-\psi^{*} \psi^{\prime}\right)
\end{aligned}
$$

up to cons.

$$
j(x, t)=-\frac{i \hbar}{2 M}\left(\psi^{*}(x, t) \frac{d}{d x} \psi(x, t)-\psi(x, t) \frac{d}{d x} \psi^{*}(x, t)\right)
$$

Current of a plane wave

- For a plane wave we have:

$$
\psi(x)=a e^{i k x}
$$

- The corresponding probability current is:

$$
\begin{aligned}
j & =-i \frac{\hbar}{2 m}\left(\psi^{*} \psi^{\prime}-\psi^{* \prime} \psi\right) \\
& =-i \frac{\hbar|a|^{2}}{2 m}(i k-(-i k))=\underbrace{|a|^{2}}_{\text {density }} \frac{\hbar k}{m}<\text { velocity }^{\text {ver }}
\end{aligned}
$$

- So for a plane wave, we find:

$$
\vec{j}(x, t)=\rho_{0} \vec{v}_{0}
$$

This result is fairly intuitive

Quantum Interference terms

- Consider a superposition of plane waves:

$$
\psi(x)=a_{1} e^{i k_{1} x}+a_{2} e^{i k_{2} x}
$$

- The probability density is:

- The probability current density is:

$$
j(x)=\left|a_{1}\right|^{2} \frac{\hbar k_{1}}{m}+\left|a_{2}\right|^{2} \frac{\hbar k_{2}}{m}+\left(a_{1}^{*} a_{2} e^{i\left(k_{2}-k_{1}\right) x}+c c\right) \frac{\hbar\left(k_{1}+k_{2}\right)}{2 m}
$$

- Note that the interference term in $j(x, t)$ vanishes for $k_{2}=-k_{1}$
- This is always the case for Energy Eigenstates \rightarrow Currents are then purely additive
- There is still interference in the probability density due to the presence of left and right currents, just not in the probability current.

Return to the Step Potential

$$
\psi_{I}(x)=e^{i k_{1} x}+r e^{-i k_{1} x} \quad \psi_{I I}(x)=t e^{i k_{2} x}
$$

$$
r=\frac{k_{1}-k_{2}}{k_{1}+k_{2}}
$$

$$
t=\frac{2 k_{1}}{k_{1}+k_{2}}
$$

- The probability current density is:

$$
\begin{gathered}
j_{I}(x)=\frac{\hbar k_{1}}{m}-|r|^{2} \frac{\hbar k_{1}}{m}=\left(1-|r|^{2}\right) \frac{\hbar k_{1}}{m} \\
j_{I I}(x)=|t|^{2} \frac{\hbar k_{2}}{m}
\end{gathered}
$$

- Spatially uniform current requires: $j_{I}(x)=j_{I I}(x)$
- So the probability conservation law is:

$$
\left(1-|r|^{2}\right) \frac{\hbar k_{1}}{m}=|t|^{2} \frac{\hbar k_{2}}{m}
$$

Rearrange terms to get more intuitive result

$$
|r|^{2}+|t|^{2} \frac{k_{2}}{k_{1}}=1 \quad j_{\text {out }}=j_{\text {in }}
$$

Continued

$$
\begin{gathered}
|r|^{2}+|t|^{2} \frac{k_{2}}{k_{1}}=1 \\
t=\frac{2 k_{1}}{k_{1}+k_{2}} \quad r=\frac{k_{1}-k_{2}}{k_{1}+k_{2}}
\end{gathered}
$$

- Transmission and reflection probabilities are derived from conservation law: $j_{\text {in }}=j_{\text {out }}$

$$
\begin{aligned}
T & :=\left|\frac{j_{\text {out }}(x>0)}{j_{\text {in }}}\right| \\
R & :=\left|\frac{j_{\text {out }}(x<0)}{j_{\text {in }}}\right| \begin{array}{c}
\text { Any constant we might } \\
\text { have put in front of the } \\
\text { incident wave would } \\
\text { cancel out here }
\end{array}
\end{aligned}
$$

- For step potential, this gives:

$$
\begin{aligned}
& T=\frac{|t|^{2} k_{2}}{k_{1}}=\frac{4 k_{1} k_{2}}{\left|k_{1}+k_{2}\right|^{2}} \quad R=\frac{|r|^{2} k_{1}}{k_{1}}=|r|^{2} \\
& R+T=\frac{\left(k_{1}-k_{2}\right)^{2}+4 k_{1} k_{2}}{\left(k_{1}+k_{2}\right)^{2}}=\frac{k_{1}^{2}+2 k_{1} k_{2}+k_{2}^{2}}{\left(k_{1}+k_{2}\right)^{2}}=1
\end{aligned}
$$

Probability current: Summary/conclusions

- The proper way to compute probability in scattering is via probability current.
- The probability for a particle to scatter into a certain channel is the ratio of the outgoing current in that channel to the total incoming current.
- In 1D scattering at fixed energy, we can treat the left-traveling and right-traveling components of the current as independent
- because there are no interference terms in the current density for +k and -k currents.
- Allows us to group components into 'incoming' and 'outgoing' currents
- For a plane-wave, the current is the amplitude squared times the velocity.

Important Shortcut:

- If you are asked to compute R and T, for a 1d scattering problem, you can:
- Compute $R=|r|^{2}$
- Then use $T=1-R$ (conservation law)
- i.e. you don't need to compute t or worry about current unless specifically asked to do so.
- Wrong: $T=|t|^{2}$ then $R=1-T$ would not work

Scattering From a Potential Step revisited

- Lets solve the step potential again, but with the possibility for left and right travelling incoming waves:

$$
\begin{gathered}
\psi_{I}(x)=a e^{i k_{1} x}+b e^{-i k_{1} x}
\end{gathered}{\underset{x=0}{E} \psi_{I I}(x)=c e^{i k_{2} x}+d e^{-i k_{2} x}}_{V_{I I}}^{\substack{\text { II } \\
V_{I I}}} x
$$

- Boundary condition equations:

$$
\begin{gathered}
\psi_{I}(0)=\psi_{I I}(0) \quad \Rightarrow \quad a+b=c+d \\
\psi_{I}^{\prime}(0)=\psi_{I I}^{\prime}(0) \quad \Rightarrow \quad k_{1}(a-b)=k_{2}(c-d)
\end{gathered}
$$

Scattering Matrix

- The scattering matrix gives the outgoing amplitudes in terms of the incoming amplitudes:
$\underset{\text { scattering matrix, s: }}{\text { Definition of }}\binom{b}{c}=S\binom{a}{d}$
$a+b=c+d$
$k_{1}(a-b)=k_{2}(c-d) \quad \begin{gathered}b-c=-a+d \\ k_{1} b+k_{2} c=k_{1} a+k_{2} d\end{gathered}$
Boundary condition l.h.s. and incoming to r.h.s.
equations

$$
\left(\begin{array}{cc}
1 & -1 \\
k_{1} & k_{2}
\end{array}\right)\binom{b}{c}=\left(\begin{array}{cc}
-1 & 1 \\
k_{1} & k_{2}
\end{array}\right)\binom{a}{d}<\begin{gathered}
\text { b.c. eqs in } \\
\text { matrix } \\
\text { form }
\end{gathered}
$$

Solve for the outgoing amplitudes

$$
\binom{b}{c}=\left(\begin{array}{cc}
1 & -1 \\
k_{1} & k_{2}
\end{array}\right)^{-1}\left(\begin{array}{cc}
-1 & 1 \\
k_{1} & k_{2}
\end{array}\right)\binom{a}{d}
$$

Calculate the inverse

$$
\binom{b}{c}=\frac{1}{k_{1}+k_{2}}\left(\begin{array}{cc}
k_{2} & 1 \\
-k_{1} & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 1 \\
k_{1} & k_{2}
\end{array}\right)\binom{a}{d}
$$

Multiply
matrices to get:

$$
\binom{b}{c}=\frac{1}{k_{1}+k_{2}}\left(\begin{array}{cc}
k_{1}-k_{2} & 2 k_{2} \\
2 k_{1} & k_{2}-k_{1}
\end{array}\right)\binom{a}{d}
$$

Result:

$$
S=\frac{1}{k_{1}+k_{2}}\left(\begin{array}{cc}
k_{1}-k_{2} & 2 k_{2} \\
2 k_{1} & k_{2}-k_{1}
\end{array}\right)
$$

Example: wave incident from left

- Consider case $a=1, b=r, c=t$, and $d=0$:

$$
\begin{aligned}
& \binom{b}{c}=S\binom{a}{d} \quad S=\frac{1}{k_{1}+k_{2}}\left(\begin{array}{cc}
k_{1}-k_{2} & 2 k_{2} \\
2 k_{1} & k_{2}-k_{1}
\end{array}\right) \\
& \quad\binom{r}{t}=\frac{1}{k_{1}+k_{2}}\left(\begin{array}{cc}
k_{1}-k_{2} & 2 k_{2} \\
2 k_{1} & k_{2}-k_{1}
\end{array}\right)\binom{1}{0} \\
& \text { We find: } \quad r=\frac{k_{1}-k_{2}}{k_{1}+k_{2}} \quad t=\frac{2 k_{1}}{k_{1}+k_{2}}
\end{aligned}
$$

- For left and right incoming waves:

$$
\begin{gathered}
\binom{r}{t}=\frac{1}{k_{1}+k_{2}}\left(\begin{array}{cc}
k_{1}-k_{2} & 2 k_{2} \\
2 k_{1} & k_{2}-k_{1}
\end{array}\right)\binom{c_{L}}{c_{R}} \\
r=\frac{\left(k_{1}-k_{2}\right) c_{L}+2 k_{2} c_{R}}{k_{1}+k_{2}} \quad t=\frac{2 k_{1} c_{L}+\left(k_{2}-k_{1}\right) c_{R}}{k_{1}+k_{2}} \\
R=\frac{|r|^{2} k_{1}}{j_{i n}}=\frac{\left|k_{1}-k_{2}\right|^{2}\left|c_{L}\right|^{2}+4\left|k_{2}\right|^{2}\left|c_{R}\right|^{2}+4 \operatorname{Re}\left\{k_{2}^{*}\left(k_{1}-k_{2}\right) k_{R}^{*} c_{L}\right\}}{\left|k_{1}+k_{2}\right|^{2}\left(\left.c_{L}\right|^{2} k_{1}+\left|c_{R}\right|^{2} k_{2}\right)} \\
T=1-R
\end{gathered}
$$

