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Continuity Equation

• This is the standard continuity equation, valid for
any kind of fluid

• For energy eigenstates (stationary states), we
need:

• This gives:

• Must have spatially uniform current in steady
state (of course j can be zero)
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Derivation of the probability current:



Current of a plane wave

• For a plane wave we have:

• The corresponding probability current is:

• So for a plane wave, we find:
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This result  is fairly intuitive



Quantum Interference terms

• Consider a superposition of plane waves:

• The probability density is:

• The probability current density is:

• Note that the interference term in j(x,t)
vanishes for k2 = -k1
– This is always the case for Energy

Eigenstates  Currents are then purely
additive

– There is still interference in the 
probability density due to the presence of left
and right currents, just not in the probability
current.
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Return to the Step Potential

• The probability current density is:

• Spatially uniform current requires:
– So the probability conservation law is:
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get more intuitive

result



• Transmission and reflection probabilities are
derived from conservation law: jin = jout

• For step potential, this gives:
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T := jout (x > 0)
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R := jout (x < 0)
jin

Any constant we might
have put in front of the

incident wave would
cancel out here

2

21

21

1

2

2
4

kk

kk

k

kt
T

+
==

2

1

1

2

r
k

kr
R ==



Probability current:
Summary/conclusions

• The proper way to compute probability in
scattering is via probability current.

• The probability for a particle to scatter into a
certain channel is the ratio of the outgoing current
in that channel to the total incoming current.

• In 1D scattering at fixed energy, we can treat the
left-traveling and right-traveling components of the
current as independent
– because there are no interference terms in the current

density for +k and –k currents.
– Allows us to group components into ‘incoming’ and

‘outgoing’ currents

• For a plane-wave, the current is the amplitude
squared times the velocity.

Important Shortcut:
• If you are asked to compute R and T, for a 1d

scattering problem, you can:
– Compute R=|r|2

– Then use T=1-R (conservation law)
– i.e. you don’t need to compute t or worry about

current unless specifically asked to do so.
– Wrong: T=|t|2  then R = 1-T  would not work



Scattering From a Potential Step revisited

• Lets solve the step potential again, but with the
possibility for left and right travelling incoming
waves:

• Boundary condition equations:
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Scattering Matrix

• The scattering matrix gives the outgoing
amplitudes in terms of the incoming
amplitudes:
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Boundary
condition
equations

Solve for the
outgoing

amplitudes

Calculate the
inverse

Multiply
matrices to

get:

Move outgoing amplitudes to
l.h.s. and incoming to r.h.s.

Definition of
scattering matrix, S:

Result:
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Example: wave incident from left

• Consider case a=1,  b=r,  c=t,  and d=0:

• We find:

• For left and right incoming waves:
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