Lecture 17:
 Scattering in One Dimension Part 2

Phy851 Fall 2009

Transfer Matrix

- For the purpose of propagating a wave through multiple elements, it is more convenient to relate the amplitudes on the right-side of the boundary to those on the left-side via the 'Transfer Matrix':

Definition of transfer matrix, M:
Boundary

$$
\binom{c}{d}=M\binom{a}{b}
$$

We don't use T, because the T matrix is something

$$
a+b=c+d
$$

$$
k_{1}(a-b)=k_{2}(c-d)
$$

equations
b.c. eqs in matrix form

$$
\left(\begin{array}{cc}
1 & 1 \\
k_{2} & -k_{2}
\end{array}\right)\binom{c}{d}=\left(\begin{array}{cc}
1 & 1 \\
k_{1} & -k_{1}
\end{array}\right)\binom{a}{b}
$$

Solve for the
$\underset{\substack{\text { right amplitudes } \\ \text { in terms of the } \\ \text { left }}}{\text { So }} \quad\binom{c}{d}=\left(\begin{array}{cc}1 & 1 \\ k_{2} & -k_{2}\end{array}\right)^{-1}\left(\begin{array}{cc}1 & 1 \\ k_{1} & -k_{1}\end{array}\right)\binom{a}{b}$
Calculate the inverse

$$
\binom{c}{d}=\frac{1}{2 k_{2}}\left(\begin{array}{cc}
k_{2} & 1 \\
k_{2} & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
k_{1} & -k_{1}
\end{array}\right)\binom{a}{b}
$$

Multiply matrices to get:

$$
M\left(k_{1}, k_{2}\right)=\frac{1}{2 k_{2}}\left(\begin{array}{ll}
k_{2}+k_{1} & k_{2}-k_{1} \\
k_{2}-k_{1} & k_{2}+k_{1}
\end{array}\right)
$$

Extracting r and t from M

- Consider case $a=1, b=r, c=t$, and $d=0$:

$$
\binom{t}{0}=M\binom{1}{r}
$$

$$
\begin{aligned}
& M_{11}+M_{12} r=t \\
& M_{21}+M_{22} r=0
\end{aligned}
$$

$$
r=-\frac{M_{21}}{M_{22}}
$$

$$
t=M_{11}-\frac{M_{12} M_{21}}{M_{22}}
$$

$$
t=\frac{\operatorname{det}[M]}{M_{22}}
$$

A Generalized Transfer Matrix approach to complex scattering potentials

- How would you go about computing r and t for a complicated structure?

Systematic approach:

- compute the Transfer Matrix for each element, then multiply them all together to get a full
Transfer Matrix for the object
- For a problem with only one boundary, it will always save time to plug and chug.
- For 2 or more boundaries, the Transfer Matrix approach should save time
- Then compute probabilities via:

$$
R=\left|\frac{M_{12}}{M_{22}}\right|^{2} \quad T=1-R
$$

Definition of the 2 -vector representation of the wavefunction

- At any point, x, along the wave, the state of the system, $\psi(x)$, will be represented by a two vector:

$$
\psi(x)=\psi_{R}(x)+\psi_{L}(x) \rightarrow\binom{\psi_{R}(x)}{\psi_{L}(x)}
$$

- Example: consider a free particle:

The Transfer-matrix for free propagation

- Thus to propagate a two-vector over a distance L, with wavevector k, we have:

$$
M_{\text {friee }}(k L)=\left(\begin{array}{cc}
e^{i k L} & 0 \\
0 & e^{-i k L}
\end{array}\right)
$$

- A potential step can be characterized by k_{1} and k_{2}. We already determined that the M matrix is:

$$
\underset{R}{M_{\text {step }}\left(k_{2}, k_{1}\right)}=\frac{1}{2 k_{2}}\left(\begin{array}{ll}
k_{2}+k_{1} & k_{2}-k_{1} \\
k_{2}-k_{1} & k_{2}+k_{1}
\end{array}\right)
$$

- Now we are ready to go to work on some scattering problems

Transfer-Matrix Approach to Scattering through Multiple Elements

- Example: Scattering through two step potentials:

$$
\binom{a}{b}=M_{\text {step }}\left(k_{2}, k_{1}\right)\binom{1}{r}
$$

$\binom{c}{d}=M_{\text {free }}\left(k_{2} L\right)\binom{a}{b} \longrightarrow\binom{c}{d}=M_{\text {free }}\left(k_{2} L\right) M_{\text {step }}\left(k_{2}, k_{1}\binom{1}{r}\right.$
$\binom{t}{0}=M_{\text {step }}\left(k_{3}, k_{2}\right)\binom{c}{d} \longrightarrow\binom{t}{0}=M_{\text {step }}\left(k_{3}, k_{2}\right) M_{\text {free }}\left(k_{2} L\right) M_{\text {step }}\left(k_{2}, k_{1}\right)\binom{1}{r}$

- Thus the full M-matrix for this scatterer is:

$$
\begin{gathered}
M=M_{\text {step }}\left(k_{3}, k_{2}\right) M_{\text {free }}\left(k_{2} L\right) M_{\text {step }}\left(k_{2}, k_{1}\right) \\
R=\left|\frac{M_{12}}{M_{22}}\right|^{2} \quad T=1-R
\end{gathered}
$$

Step potential result

- Example: Scattering through square barrier

- The full M-matrix for this scatterer is:

$$
\begin{gathered}
M=M_{\text {step }}(k, K) M_{\text {free }}(K L) M_{\text {step }}(K, k) \\
M_{\text {step }}(K, k)=\frac{1}{2 K}\left(\begin{array}{cc}
K+k & K-k \\
R-k & K+k
\end{array}\right) \\
M_{\text {free }}(K L)=\left(\begin{array}{cc}
e^{i K L} & 0 \\
0 & e^{-i K L}
\end{array}\right) \\
M_{\text {step }}(k, K)=\frac{1}{2 k}\left(\begin{array}{ll}
k+K & k-K \\
k-K & k+K
\end{array}\right) \\
\mathbf{M}=\left(\begin{array}{cc}
\cos [K L]+i \frac{\left(k^{2}+K^{2}\right)}{2 k K} \sin [K L] & -\frac{i\left(k^{2}-K^{2}\right)}{2 k K} \sin [K L] \\
+\frac{i\left(k^{2}-K^{2}\right)}{2 k K} \sin [K L] & \cos [K L]-i \frac{\left(k^{2}+K^{2}\right)}{2 k K} \sin [K L]
\end{array}\right)
\end{gathered}
$$

Example Continued:

$$
\mathbf{M}=\left(\begin{array}{cc}
\cos [K L]+i \frac{\left(k^{2}+K^{2}\right)}{2 k K} \sin [K L] & -\frac{i\left(k^{2}-K^{2}\right)}{2 k K} \sin [K L] \\
+\frac{i\left(k^{2}-K^{2}\right)}{2 k K} \sin [K L] & \cos [K L]-i \frac{\left(k^{2}+K^{2}\right)}{2 k K} \sin [K L]
\end{array}\right)
$$

- The reflection Amplitude is then:

$$
r=-\frac{M_{21}}{M_{22}}=-\frac{\left(k^{2}-K^{2}\right) \sin [K L]}{\left(K^{2}+k^{2}\right) \sin [K L]+2 i k K \cos [K L]}
$$

- So the reflection probability is

$$
R=|r|^{2}=\frac{\left(k^{2}-K^{2}\right)^{2}}{\left(k^{2}+K^{2}\right)^{2}+4 k^{2} K^{2} \cot ^{2}[K L]}
$$

- This has a minimum of $R=0$ whenever $K L=n \pi$

$$
\cot (n \pi)=\frac{\cos (n \pi)}{\sin (n \pi)}=\frac{(-1)^{n}}{0}=\infty \quad T=1-R \rightarrow 1
$$

- These are the Transmission Resonances
- This describes a frequency filter
- Choose $L=(\mathrm{n} / 2) \lambda$ to transmit wavelength λ
- For $K L=(n+1 / 2) \pi$, transmission is reduced to:

$$
\cot \left(\left(n+\frac{1}{2}\right) \pi\right)=\frac{\cos \left(\left(n+\frac{1}{2}\right) \pi\right)}{\sin \left(\left(n+\frac{1}{2}\right) \pi\right)}=\frac{0}{(-1)^{2}}=0
$$

$T=1-\frac{\left(k^{2}-K^{2}\right)^{2}}{\left(k^{2}+K^{2}\right)^{2}}=\frac{4 K^{2} k^{2}}{\left(k^{2}+K^{2}\right)^{2}} \approx 4 \frac{K^{2}}{k^{2}}$
For $K \ll k$
can be very small

Transmission Resonance

- Analogy: light passing through a high-index medium

- Interference due to multiple Transmission Pathways
- Constructive Interference when: $K(2 L)=n(2 \pi)$

Round-trip phase shift

$$
\begin{array}{r}
=1-R=1-\frac{\left((k L)^{2}-(K L)^{2}\right)^{2}}{\left((k L)^{2}+(K L)^{2}\right)^{2}+4(k L)^{2}(K L)^{2} \cot ^{2}[K L]} \\
\frac{\hbar^{2} k^{2}}{2 m}=\frac{\hbar^{2} K^{2}}{2 m}+V_{0} \quad k=\sqrt{K^{2}+k_{0}^{2}} \\
k L=\sqrt{(K L)^{2}+\alpha^{2}}
\end{array}
$$

Depends only on $K L$ and α
K is wavevector inside material

$$
\alpha=k_{0} L=\sqrt{\frac{2 m V_{0}}{\hbar^{2}}} L
$$ α is a measure of barrier `area'

Resonance Transmission Profiles

$\alpha=100 \quad$ Plots made with Mathematica

-Common Approach:

- To increase α, increase V_{0}
-Then use L to tune wavelength

Generalized Approach

- With this Method we can calculate the reflection and transmission amplitudes for any sequence of potential steps:

$$
M=M_{s}^{[6,5]} M_{f}{ }^{[5]} M_{s}^{[5,4]} M_{f}^{[4]} M_{s}^{[4,3]} M_{f}^{[3]} M_{s}^{[3,2]} M_{f}^{[2]} M_{s}^{[2,1]}
$$

$$
\begin{aligned}
& M_{s}^{[n, m]}=\frac{1}{2 k_{n}}\left(\begin{array}{cc}
k_{n}+k_{m} & k_{n}-k_{m} \\
k_{n}-k_{m} & k_{n}+k_{m}
\end{array}\right) \quad k_{n}=\frac{\sqrt{2 m\left(E-V_{n}\right)}}{\hbar} \\
& M_{f}^{[m]}=\left(\begin{array}{cc}
e^{i k_{m}\left(x_{m}-x_{m-1}\right)} & 0 \\
0 & e^{-i k_{m}\left(x_{m}-x_{m-1}\right)}
\end{array}\right)
\end{aligned}
$$

$$
r=-\frac{M_{21}}{M_{22}} \quad R=|r|^{2} \quad T=1-R
$$

