
Lecture 17:
Scattering in One Dimension
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Transfer Matrix

• For the purpose of propagating a wave
through multiple elements, it is more
convenient to relate the amplitudes on the
right-side of the boundary to those on the
left-side via the ‘Transfer Matrix’:
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Definition of
transfer

matrix, M:
Boundary
condition
equations

b.c. eqs in
matrix form

Solve for the
right amplitudes
in terms of the

left

Calculate the
inverse

Multiply
matrices to

get:

We don’t use T,
because the T-

matrix is something
else



Extracting r and t from M

• Consider case a=1,  b=r,  c=t,  and d=0:
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 A Generalized Transfer Matrix
approach to complex scattering

potentials

• How would you go about computing r and t
for a complicated structure?

Systematic approach:
• compute the Transfer Matrix for each element,

then multiply them all together to get a full
Transfer Matrix for the object
– For a problem with only one boundary, it will

always save time to plug and chug.
– For 2 or more boundaries, the Transfer Matrix

approach should save time

• Then compute probabilities via:
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Definition of the 2-vector
representation of the wavefunction

• At any point, x, along the wave, the state of
the system, ψ(x), will be represented by a two
vector:

• Example: consider a free particle:
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Thus we
have:

So we have:
matrix
form:
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The Transfer-matrix for free propagation

• Thus to propagate a two-vector over a
distance L, with wavevector k, we have:

• A potential step can be characterized by k1
and k2. We already determined that the M-
matrix is:

• Now we are ready to go to work on some
scattering problems
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• Example: Scattering through two step
potentials:

• Thus the full M-matrix  for this scatterer is:

x1=0

Transfer-Matrix Approach to Scattering
through Multiple Elements

x

x2=L

I II III

1

r

a

b

c

d

tk1 k2
k3

( ) 







=









r
kkM

b

a
step

1
, 12

( ) 







=









b

a
LkM

d

c
free 2 ( ) ( ) 








=









r
kkMLkM

d

c
stepfree

1
, 122

( ) 







=









d

c
kkM

t
step 23,0

( ) ( ) ( ) 







=









r
kkMLkMkkM

t
stepfreestep

1
,,

0 12223

2

22

12

M

M
R = RT −=1

( ) ( ) ( )12223 ,, kkMLkMkkMM stepfreestep=



• Example: Scattering through square barrier

• The full M-matrix  for this scatterer is:

Step potential result
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Example Continued:

• The reflection Amplitude is then:

• So the reflection probability is

• This has a minimum of R =0 whenever
KL=nπ

– These are the Transmission Resonances
– This describes a frequency filter
– Choose  L = (n/2)λ to transmit wavelength λ
– For KL=(n+1/2)π, transmission is reduced to:
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Transmission Resonance
• Analogy: light passing through a high-index

medium

• Interference due to multiple Transmission
Pathways
– Constructive Interference when:
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Resonance Transmission Profiles

α = 100

α = 10

•Common Approach:
•To increase α, increase V0

•Then use L to tune wavelength

Plots made with Mathematica



Generalized Approach

• With this Method we can calculate the
reflection and transmission amplitudes for
any sequence of potential steps:
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