
Lecture 18:
Delta-function Scattering

Phy851 Fall 2009



Delta-Function Scatterer

• Any very narrow barrier can be approximated
by a delta function:

• The coefficient g is then the area under V(x):

• Conditions for validity of delta-function
approximation:
– Incoming wave characterized by k, which gives

a length-scale:

– But the delta-function must have another
length scale associated with it (from V0)

• Based on units only, we find a second
length scale, let’s call it `a’:
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In the limit  w → 0, scattering is governed by
the scattering length



Delta-Function Scatterer

• Scattering by the delta-function will be
handled by applying boundary conditions to
connect the wavefunctions on the left and
right sides

• RECALL: a delta-function in the potential
means that ψ_(x) is discontinuous
– But ψ(x) remains continuous

• PRIMARY GOAL: Determine the proper
boundary conditions for _ and _´ at the
location of a delta function scatterer
– Be able to solve `plug and chug’ problems

• Secondary Goal: find Mδ for the delta
potential:
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Delta-function Boundary Condition

• All boundary conditions are derived from
Schrödinger's Equation:

• For the delta-potential, the trick is to
integrate both sides from −ε  to +ε
– Then take limit as ε → 0

– Take ε 0:
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Example

• Lets solve the delta-potential scattering
problem via `plug and chug’ method:

– Q: Let V(x) = g _(x). For a single incident
wave with momentum k, what are the
reflection and transmission amplitudes
and Probabilities?
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Drat, I can’t remember the
boundary condition…



Solution:
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Transfer Matrix for Delta function



Continued
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a =
h2

mg



Summary of Transfer Matrix Results:

• Basic Elements:

• For n regions (n-1 boundaries):€ 
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