Lecture 18:
 Delta-function Scattering

Phy851 Fall 2009

Delta-Function Scatterer

- Any very narrow barrier can be approximated by a delta function:

$$
V(x)=g \delta(x)
$$

- The coefficient g is then the area under $V(x)$:

$$
\begin{aligned}
g & =h \times w \\
& =\text { Energy } \times \text { Length }
\end{aligned}
$$

- Conditions for validity of delta-function approximation:
- Incoming wave characterized by k, which gives a length-scale: $\lambda=2 \pi / k$

Thus we surely must require: $w<\lambda \rightarrow k w \ll 1$

- But the delta-function must have another length scale associated with it (from V_{0})
- Based on units only, we find a second length scale, let's call it ' a ':

$$
g=\frac{\hbar^{2}}{m a}=\frac{\hbar^{2}}{m a^{2}} a \quad a=\frac{\hbar^{2}}{m g} \text { Do we also }
$$

$$
k a \ll 1 ?
$$

In the limit $w \rightarrow 0$, scattering is governed by the scattering length

Delta-Function Scatterer

- Scattering by the delta-function will be handled by applying boundary conditions to connect the wavefunctions on the left and right sides

$$
\begin{aligned}
& \psi_{1}(x)=A e^{i k x}+B e^{-i k x} \\
& \psi_{2}(x)=C e^{i k x}+D e^{-i k x}
\end{aligned}
$$

- RECALL: a delta-function in the potential means that $\psi_{-}(x)$ is discontinuous
- But $\psi(x)$ remains continuous
- PRIMARY GOAL: Determine the proper boundary conditions for _ and _' at the location of a delta function scatterer
- Be able to solve `plug and chug' problems
- Secondary Goal: find M_{δ} for the delta potential:

$$
\binom{C}{D}=M_{\delta}\binom{A}{B}
$$

Delta-function Boundary Condition

- All boundary conditions are derived from Schrödinger's Equation:

$$
E \psi(x)=-\frac{\hbar^{2}}{2 m} \psi^{\prime \prime}(x)+g \delta(x) \psi(x)
$$

- For the delta-potential, the trick is to integrate both sides from $-\varepsilon$ to $+\varepsilon$
- Then take limit as $\varepsilon \rightarrow 0$

$$
\begin{gathered}
E \int_{-\varepsilon}^{\varepsilon} d x \psi(x)=-\frac{\hbar^{2}}{2 m} \int_{-\varepsilon}^{\varepsilon} d x \psi^{\prime \prime}(x)+g \int_{-\varepsilon}^{\varepsilon} d x \delta(x) \psi(x) \\
E \psi(0) 2 \varepsilon=-\frac{\hbar^{2}}{2 m}\left(\psi^{\prime}(\varepsilon)-\psi^{\prime}(-\varepsilon)\right)+g \psi(0) \\
- \text { Take } \varepsilon \rightarrow 0: \quad \psi^{\prime}(\varepsilon) \rightarrow \psi_{2}^{\prime}(0) \quad \psi^{\prime}(-\varepsilon) \rightarrow \psi_{1}^{\prime}(0) \\
0=-\frac{\hbar^{2}}{2 m}\left(\psi_{2}^{\prime}(0)-\psi_{1}^{\prime}(0)\right)+g \psi(0) \\
\psi_{2}^{\prime}(0)=\psi_{1}^{\prime}(0)+\frac{2 m g}{\hbar^{2}} \psi(0)
\end{gathered}
$$

Example

- Lets solve the delta-potential scattering problem via `plug and chug' method:
- Q : Let $V(x)=\mathrm{g}_{-}(x)$. For a single incident wave with momentum k, what are the reflection and transmission amplitudes and Probabilities?

$$
\psi_{1}(x)=e^{i k x}+r e^{-i k x} \prod_{x=0} \psi_{2}(x)=t e^{i k x}
$$

$$
\begin{aligned}
& \int_{-\epsilon}^{\epsilon} d E \psi=\frac{-\hbar^{2}}{2 m} \int_{-\epsilon}^{t} \psi^{\prime \prime} d x+g \int_{-\epsilon}^{t} \delta(x) d x \psi \\
& E \psi(0) 2 \epsilon=-\frac{\hbar^{2}}{2 m}\left(\psi^{\prime}(\epsilon)-\psi^{\prime}(-\epsilon)\right)+g \psi(0) \\
& \psi_{2}^{\prime}(0)=\psi_{1}^{\prime}(0)+\frac{2 m g}{\hbar^{2}} \psi(0)
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \psi_{1}(x)=e^{i k x}+r e^{-i k x} \\
& \psi_{2}(x)=t e^{i k x} \\
& \psi_{1}(0)=1+r \quad \psi_{2}(0)=t \\
& \psi_{1}^{\prime}(0)=i k(1-r) \quad \psi_{2}^{\prime}(0)=i k t \\
& \psi_{1}(0)=\psi_{2}(0) \rightarrow \quad 1+r=t \\
& \psi_{2}^{\prime}(0)=\psi_{1}^{\prime}(0)+\frac{2 m g}{\hbar^{2}} \psi(1) \rightarrow \quad i h t=i h(1-r) \\
& +\frac{2 m g}{\hbar^{2}}(1+r) \\
& 1+r=1-r-i \frac{2 m g}{\hbar^{2} k}(1+r) \\
& \left(2+\frac{2 i m g}{\hbar^{2} h}\right) r=-i \frac{2 m s}{\hbar^{2} k} \\
& r=\frac{-i \frac{m g}{\hbar^{2} k}}{1+\frac{i m g}{\hbar^{2} k}}=\frac{-1}{1-\frac{i \hbar^{2} k}{m g}} \\
& r=\frac{-1}{1-i k a} \quad R=\frac{1}{1+(k a)^{2}} \quad T=\frac{(k a)^{2}}{1+(k a)^{2}}
\end{aligned}
$$

Transfer Matrix for Delta function

$$
\begin{aligned}
& \psi_{I}(x)=A e^{i k x}+B e^{-i k x} \\
& \psi_{I I}(x)=C e^{i k x}+D e^{-i k x}
\end{aligned} \quad\binom{C}{D}=M_{\delta}\binom{A}{B}
$$

$$
\begin{gathered}
\psi_{2}(0)=\psi_{1}(0) \\
\psi_{2}^{\prime}(0)=\psi_{1}^{\prime}(0)+\frac{2}{a} \psi(0)
\end{gathered} \quad a=\frac{\hbar^{2}}{m g}
$$

$$
C+D=A+B \quad \text { b.c, } 1
$$

$$
\begin{aligned}
i k(C-D) & =i k(A-B)+\frac{2}{a}(A+B) \\
C-D & =A-B-i \frac{2}{k a}(A+B) \quad \text { b.c. } 2
\end{aligned}
$$

$$
\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{C}{D}=\left(\begin{array}{cc}
1 & 1 \\
1-i \frac{2}{k a} & -1-i \frac{2}{k a}
\end{array}\right)\binom{A}{B}
$$

Continued

$$
\begin{gathered}
\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{C}{D}=\left(\begin{array}{cc}
1 & 1 \\
1-i \frac{2}{k a} & -1-i \frac{2}{k a}
\end{array}\right)\binom{A}{B} \\
M_{\delta}(k a)=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)^{-1}\left(\begin{array}{cc}
1 & 1 \\
1-i \frac{2}{k a} & -1-i \frac{2}{k a}
\end{array}\right) \\
M_{\delta}(k a)=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1-i \frac{2}{k a} & -1-i \frac{2}{k a}
\end{array}\right) \\
M_{\delta}(k a)=\left(\begin{array}{cc}
1-\frac{i}{k a} & -\frac{i}{k a} \\
\frac{i}{k a} & 1+\frac{i}{k a}
\end{array}\right) \\
V_{\delta}(x)=g \delta(x) \\
a=\frac{\hbar^{2}}{m g}
\end{gathered}
$$

Summary of Transfer Matrix Results:

- Basic Elements:

$$
\begin{gathered}
M_{\text {free }}(k L)=\left(\begin{array}{cc}
e^{i k L} & 0 \\
0 & e^{-i k L}
\end{array}\right) \\
M_{\text {step }}\left(k_{2}, k_{1}\right)=\frac{1}{2 k_{2}}\left(\begin{array}{ll}
k_{2}+k_{1} & k_{2}-k_{1} \\
k_{2}-k_{1} & k_{2}+k_{1}
\end{array}\right) \\
M_{\delta}(k a)=\frac{1}{i k a}\left(\begin{array}{cc}
i k a+1 & 1 \\
-1 & i k a-1
\end{array}\right)
\end{gathered}
$$

- For n regions ($\mathrm{n}-1$ boundaries):

$$
\begin{gathered}
M=M^{[n, n-1]} M_{f}^{[n-1]} M^{[n-1, n-2]} \ldots M^{[3,2]} M_{f}^{[2]} M^{[2,1]} \\
R=\left|\frac{M_{12}}{M_{22}}\right|^{2} \quad T=1-R
\end{gathered}
$$

