Lecture 19:
 Quantization of the simple harmonic oscillator

Phy851 Fall 2009

Systems near equilibrium

- The harmonic oscillator Hamiltonian is:

$$
H=\frac{P^{2}}{2 m}+\frac{1}{2} k X^{2}
$$

- Or alternatively, using $\omega=\sqrt{\frac{k}{m}}$

$$
H=\frac{P^{2}}{2 m}+\frac{1}{2} m \omega^{2} X^{2}
$$

- Why is the SHO so important?
- Answer: any system near a stable equilibrium is equivalent to an SHO

Definition of stable equilibrium point:

$$
V^{\prime}\left(x_{0}\right)=0
$$

Expand around x_{0} :

$$
\begin{aligned}
V(x) & =V\left(x_{0}\right)+V^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \\
& +\frac{1}{2} V^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+\ldots
\end{aligned}
$$

Stable equilibrium points

$$
y=x-x_{0} \quad V(y)=V_{0}+\frac{1}{2} k y^{2}
$$

Analysis of energy and length scales

$$
H=\frac{P^{2}}{2 m}+\frac{1}{2} m \omega_{o s c}^{2} X^{2}
$$

- The parameters available in the SHO Hamiltonian are:

$$
\hbar, m, \omega_{o s c}
$$

The SHO introduces a single new parameter, which must govern all of the physics

- The frequency defines a quantum energy [J] scale via:

$$
E_{o s c}=\hbar \omega_{o s c}
$$

- The frequency also defines a quantum length scale via:

$$
E_{o s c}=\frac{\hbar^{2}}{m \lambda_{o s c}^{2}} \hbar \omega_{o s c}=\frac{\hbar^{2}}{m \lambda_{o s c}^{2}} \quad \lambda_{o s c}=\sqrt{\frac{\hbar}{m \omega_{o s c}}}
$$

- This length scale then defines a quantum momentum scale:

$$
\mu_{o s c}=\frac{\hbar}{\lambda_{o s c}} \quad \mu_{o s c}=\sqrt{\hbar m \omega_{o s c}}
$$

Dimensionless Variables

- To solve the QM SHO it is very useful to introduce the natural units:

$$
\begin{aligned}
& \text { - Let } \\
& \bar{X}=\frac{X}{\lambda_{\text {osc }}} \\
& \bar{P}=\frac{P}{\mu_{\text {osc }}}=\frac{\lambda_{\text {ose }}}{\hbar} P \\
& \bar{H}=\frac{H}{\hbar \omega_{o s c}} \\
& \hbar \omega_{\text {osc }} \bar{H}=\frac{1}{2} \frac{\hbar^{2}}{m \lambda_{\text {osc }}^{2}} \bar{P}^{2}+\frac{1}{2} m \omega_{\text {osc }}^{2} \lambda_{\text {osc }}^{2} \bar{X}^{2} \\
& \frac{\hbar^{2}}{m \lambda_{o s c}^{2}}=\frac{\hbar^{2}}{m} \frac{m \omega_{o s c}}{\hbar}=\hbar \omega_{o s c} \\
& m \omega_{o s c}^{2} \lambda_{o s c}^{2}=m \omega_{o s c}^{2} \frac{\hbar}{m \omega_{o s c}}=\hbar \omega_{o s c} \\
& \hbar \omega_{o s c} \bar{H}=\frac{1}{2} \hbar \omega_{o s c} \bar{P}^{2}+\frac{1}{2} \hbar \omega_{o s c} \bar{X}^{2} \\
& \bar{H}=\frac{1}{2} \bar{P}^{2}+\frac{1}{2} \bar{X}^{2}
\end{aligned}
$$

Dimensionless Commutation Relations

- Let's compute the commutator for the new variables:

$$
\begin{aligned}
& {[\bar{X}, \bar{P}]=\bar{X} \bar{P}-\bar{P} \bar{X}} \\
& X=\lambda \bar{X} \rightarrow \bar{X}=\frac{X}{\lambda} \quad \begin{array}{c}
\text { We have stoppe } \\
\text { writing the } \\
\text { subscript 'osc }
\end{array} \\
& P=\frac{\hbar}{\lambda} \bar{P} \rightarrow \bar{P}=\frac{\lambda}{\hbar} P \\
& {[\bar{X}, \bar{P}]=\frac{X}{\lambda} \frac{\lambda P}{\hbar}-\frac{\lambda P}{\hbar} \frac{X}{\lambda}} \\
& =\frac{1}{\hbar}(X P-P X) \\
& =\frac{1}{\hbar}[X, P] \\
& {[\bar{X}, \bar{P}]=i \quad \begin{array}{l}
\text { since the new } \\
\text { variables have no } \\
\text { units, we lose } \\
\text { the }
\end{array}}
\end{aligned}
$$

Switch to` Normal' Variables

- We can make a change of variables:

$$
\begin{aligned}
& A=\frac{1}{\sqrt{2}}(\bar{X}+i \bar{P}) \\
& A^{\dagger}=\frac{1}{\sqrt{2}}(\bar{X}-i \bar{P})
\end{aligned}
$$

- It's more common to use: a, a^{\dagger}
- We use A, A^{\dagger} to stick with our convention to use capital letters for operators

$$
\begin{aligned}
{\left[A, A^{\leq}\right] } & =\left[\frac{1}{\sqrt{2}}(\bar{X}+i \bar{P}), \frac{1}{\sqrt{2}}(\bar{X}-i \bar{P})\right] \\
& =\frac{1}{2}([\bar{X},-i \bar{P}]+[i \bar{P}, \bar{X}]) \\
& =\frac{1}{2}(-i[\bar{X}, \bar{P}]+i[\bar{P}, \bar{X}]) \\
= & 1 \\
& {\left[A, A^{\dagger}\right]=1 \quad \frac{\text { Boson }}{\text { commutation }} \begin{array}{l}
\text { relation }
\end{array} }
\end{aligned}
$$

$$
\text { Fermions } \rightarrow A A^{+}+A^{+} A=1
$$

Inverse Transformation

$$
\begin{aligned}
& A=\frac{1}{\sqrt{2}}(\bar{X}+i \bar{P}) \\
& A^{\dagger}=\frac{1}{\sqrt{2}}(\bar{X}-i \bar{P})
\end{aligned}
$$

- Inverting the transformation gives:

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}\left(A+A^{\dagger}\right)=\frac{1}{2}(\bar{X}+i \bar{P}+\bar{X}-i \bar{P})=\bar{X} \\
& \frac{1}{\sqrt{2}}\left(A-A^{\dagger}\right)=\frac{1}{2}(\bar{X}+i \bar{P}-\bar{X}+i \bar{P})=i \bar{P} \\
& \bar{X}=\frac{1}{\sqrt{2}}\left(A+A^{\dagger}\right) \quad X=\frac{\lambda}{\sqrt{2}}\left(A+A^{\dagger}\right) \\
& \bar{P}=\frac{-i}{\sqrt{2}}\left(A-A^{\dagger}\right) \\
& P=\frac{-i \hbar}{\sqrt{2} \lambda}\left(A-A^{\dagger}\right)
\end{aligned}
$$

Transforming the Hamiltonian

- The Harmonic Oscillator Hamiltonian was:

$$
\begin{gathered}
\bar{H}=\frac{1}{2}\left(\bar{P}^{2}+\bar{X}^{2}\right) \\
\bar{X}=\frac{1}{\sqrt{2}}\left(A+A^{\dagger}\right) \quad \bar{P}=\frac{-i}{\sqrt{2}}\left(A-A^{\dagger}\right) \\
\bar{X}^{2}=\frac{1}{2}\left(A+A^{\dagger}\right)\left(A+A^{\dagger}\right) \\
\bar{X}^{2}=\frac{1}{2}\left(A A+A A^{\dagger}+A^{\dagger} A+A^{\dagger} A^{\dagger}\right) \\
\bar{P}^{2}=-\frac{1}{2}\left(A A-A A^{\dagger}-A^{\dagger} A+A^{\dagger} A^{\dagger}\right) \\
=\frac{1}{2}\left(-A A+A A^{\dagger}+A^{\dagger} A-A^{\dagger} A^{\dagger}\right) \\
\bar{H}=\frac{1}{2}\left(\bar{P}^{2}+\bar{X}^{2}\right) \\
=\frac{1}{2}\left(A A^{\dagger}+A^{\dagger} A\right) \quad \therefore A A^{\dagger}=A^{\dagger} A+1 \\
\bar{H}=A^{\dagger} A+\frac{1}{2}
\end{gathered}
$$

Energy Eigenvalues

- In original units we have:

$$
\begin{aligned}
H & =\frac{\hbar^{2}}{m \lambda^{2}} \bar{H} \\
& =\frac{\hbar^{2}}{m} \frac{m \omega}{\hbar}\left(A^{\dagger} A+\frac{1}{2}\right) \\
H & =\hbar \omega\left(A^{\dagger} A+\frac{1}{2}\right)
\end{aligned}
$$

$$
\lambda=\sqrt{\frac{\hbar}{m \omega}}
$$

- Let's define the energy eigenstates via

$$
\begin{gathered}
\bar{H}|\varepsilon\rangle=\varepsilon|\varepsilon\rangle \\
\left(A^{\dagger} A+\frac{1}{2}\right)|\varepsilon\rangle=\varepsilon|\varepsilon\rangle \\
\left\langle\varepsilon \mid \varepsilon^{\prime}\right\rangle=\delta_{\varepsilon, \varepsilon^{\prime}}
\end{gathered}
$$

We expect a discrete spectrum as the classical motion is bounded

Proof that there is a ground state

- For any energy eigenstate we have:

$$
\begin{aligned}
\langle\varepsilon| \bar{H}|\varepsilon\rangle & =\varepsilon\langle\varepsilon \mid \varepsilon\rangle=\varepsilon \\
\langle\varepsilon| A^{\dagger} A+\frac{1}{2}|\varepsilon\rangle & =\langle\varepsilon| A^{\dagger} A|\varepsilon\rangle+\frac{1}{2}\langle\varepsilon \mid \varepsilon\rangle \\
& =|A| \varepsilon\rangle\left.\right|^{2}+\frac{1}{2}
\end{aligned}
$$

- The norm of a vector is always a real positive number

$$
\| \psi\rangle\left.\right|^{2} \geq 0
$$

- Thus we see that:

$$
\varepsilon \geq \frac{1}{2}
$$

- So the energy eigenvalues are bounded from below by _.

Setting up for The Big Trick

- Lets look at the commutator:
$[A, \bar{H}]=\left[A, A^{\dagger} A+\frac{1}{2}\right]=\left[A, A^{\dagger} A\right]$

$$
\begin{aligned}
& =A A^{\dagger} A-A^{\dagger} A A \\
& =\left(1+A^{\dagger} A\right) A-A^{\dagger} A A \\
& =A
\end{aligned}
$$

$$
A \bar{H}-\bar{H} A=A
$$

$$
\bar{H} A=A \bar{H}-A
$$

$$
\bar{H} A=A(\bar{H}-1)
$$

$$
\begin{aligned}
\bar{H} A^{\dagger}-A^{\dagger} \bar{H} & =A^{\dagger} \\
\bar{H} A^{\dagger} & =A^{\dagger} \bar{H}+A^{\dagger} \\
\bar{H} A^{\dagger} & =A^{\dagger}(\bar{H}+1)
\end{aligned}
$$

The Big Trick Begins

- Combine these relations with the eigenvalue equation:

$$
\begin{gathered}
\bar{H}|\varepsilon\rangle=\varepsilon|\varepsilon\rangle \\
\bar{H} A=A(\bar{H}-1) \quad \bar{H} A^{\dagger}=A^{\dagger}(\bar{H}+1)
\end{gathered}
$$

$$
\begin{aligned}
\bar{H} A|\varepsilon\rangle & =A(\bar{H}-1)|\varepsilon\rangle \\
& =A(\varepsilon-1)|\varepsilon\rangle \\
\bar{H}(A|\varepsilon\rangle) & =(\varepsilon-1)(A|\varepsilon\rangle)
\end{aligned}
$$

Definition of $|\varepsilon-1\rangle$

- This means that $A|\varepsilon\rangle$ is proportional to the eigenstate $|\varepsilon-1\rangle: \bar{H}|\varepsilon-1\rangle=(\varepsilon-1)|\varepsilon-1\rangle$
by comparison we see $\xrightarrow{\longrightarrow} A|\varepsilon\rangle=c_{\varepsilon}|\varepsilon-1\rangle$ c_{ε} is an unknown coefficient

$$
\begin{aligned}
\bar{H} A^{\dagger}|\varepsilon\rangle & \left.=A^{\dagger}(\bar{H}+1) \varepsilon\right\rangle \\
\bar{H} A^{\dagger}|\varepsilon\rangle & \left.=A^{\dagger}(\varepsilon+1) \varepsilon\right\rangle \\
A^{\dagger}|\varepsilon\rangle & =d_{\varepsilon}|\varepsilon+1\rangle
\end{aligned}
$$

d_{ε} is an unknown coefficient

Raising and lowering operators

$$
\begin{array}{ll}
A|\varepsilon\rangle=c_{\varepsilon}|\varepsilon-1\rangle & A^{\dagger}|\varepsilon\rangle=d_{\varepsilon}|\varepsilon+1\rangle \\
|\varepsilon-1\rangle=\frac{A}{c_{\varepsilon}}|\varepsilon\rangle & |\varepsilon+1\rangle=\frac{A^{\dagger}}{d_{\varepsilon}}|\varepsilon\rangle
\end{array}
$$

THEOREM:

- If state $|\varepsilon\rangle$ exists then either state $|\varepsilon-1\rangle$ exists or $c_{\varepsilon}=0$
- If state $|\varepsilon\rangle$ exists then either state $|\varepsilon+1\rangle$ exists
or $d_{\varepsilon}=0 \quad A A^{+}-A^{\dagger} A=1 \quad A^{\dagger} A+\frac{1}{2}=A A^{+}-1+\frac{1}{2}$
- Now consider: $\langle\varepsilon| \bar{A}|\bar{H}| \varepsilon\rangle^{A} A^{+}=\varepsilon=\quad=A A A^{+}-\frac{1}{2}$

$$
\underset{\text { 饣 }_{\mathcal{H}}^{2}}{\langle\varepsilon| A^{\dagger} A+\frac{1}{2}|\varepsilon\rangle=\left|c_{\varepsilon}\right|^{2}+\frac{1}{2}} \underset{\imath_{\frac{H}{H}}^{2}}{\langle\varepsilon| A A^{\dagger}-\frac{1}{2}|\varepsilon\rangle=\left|d_{\varepsilon}\right|^{2}-\frac{1}{2}}
$$

- So clearly we must have:

$$
\varepsilon=\left|c_{\varepsilon}\right|^{2}+\frac{1}{2} \quad \varepsilon=\left|d_{\varepsilon}\right|^{2}-\frac{1}{2}
$$

- So c_{ε} is only zero for $\varepsilon=1 / 2$ and d_{ε} is only zero for $\varepsilon=-1 / 2$

This means that actually d_{e} is never zero

$$
\varepsilon \geq \frac{1}{2} \quad\left|c_{\varepsilon}\right|^{2}=\varepsilon-\frac{1}{2} \quad\left|d_{\varepsilon}\right|^{2}=\varepsilon+\frac{1}{2}
$$

Ground State energy

- Let the ground state $\left|\varepsilon_{0}\right\rangle$ have energy:

$$
\begin{gathered}
\varepsilon_{0}=\frac{1}{2}+\delta \quad \delta<1 \\
\varepsilon_{0}=\left|c_{\varepsilon_{0}}\right|^{2}+\frac{1}{2} \\
\left|c_{\varepsilon_{0}}\right|^{2}=\delta
\end{gathered}
$$

- Remember our statement:
- If state $|\varepsilon\rangle$ exists then either state $|\varepsilon-1\rangle$ exists or $c_{\varepsilon}=0$
- Conclusion: either $\delta=0$, or there is a state lower than the ground state

The second option is obviously a contradiction

- For $\left|\varepsilon_{0}\right\rangle$ to be the ground state requires $\delta=0$

$$
\varepsilon_{0}=\frac{1}{2}
$$

Excited states

- If the ground state $\left|\varepsilon_{0}\right\rangle$ exists, then the state $\left|\varepsilon_{0}+1\right\rangle$ exists

$$
\begin{aligned}
|\varepsilon+1\rangle & =\frac{A^{\dagger}}{d_{\varepsilon}}|\varepsilon\rangle \\
\left|d_{\varepsilon}\right|^{2} & =\varepsilon+\frac{1}{2}
\end{aligned}
$$

This is just a result
we proved on slide 13
The point is just
that we aren't
dividing by zero

- Following this chain of reasoning, we can establish the existence of states at energies:

$$
\varepsilon=\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}, \ldots
$$

Are there more states?

- So far we see that a ladder of states must exist:

$$
\begin{aligned}
& |\varepsilon=1 / 2\rangle \\
& |\varepsilon=3 / 2\rangle=A^{\dagger}|\varepsilon=1 / 2\rangle \\
& |\varepsilon=5 / 2\rangle=\frac{A^{\dagger}}{\sqrt{2}}|\varepsilon=3 / 2\rangle \\
& \vdots
\end{aligned}
$$

$$
\text { _ } \varepsilon=3 / 2
$$

$$
\text { Tharestexes If }{ }^{\varepsilon=1 / 2}
$$

$$
\left.\begin{array}{rl}
\varepsilon & =1 / 2+x \quad \begin{array}{rl}
\text { This state lies between } \\
0<x<1
\end{array} \\
\text { - We have }\left|c_{\varepsilon}\right|^{2}=\varepsilon-\frac{1}{2}=x & \text { and } \varepsilon=3 / 2
\end{array}\right] \quad \begin{aligned}
& \frac{A}{\sqrt{x}}|1 / 2+x\rangle=|x-1 / 2\rangle \quad x-1 / 2<1 / 2
\end{aligned}
$$

- Are there any states in between?
- Assume a state exists with
- So either $x=0$ or there is a state below the ground state! Conclusion: $x=0$
- If there is a state between $5 / 2$ and $3 / 2$, then a state must exist between $3 / 2$ and $1 / 2$ and then a state must exist below $1 / 2$, etc...
- So no states between the half integers!

Spectrum of the SHO

- We now see that the energy eigenstates can be labeled by the integers so that:

$$
\bar{H}|n\rangle=\left(n+\frac{1}{2}\right)|n\rangle ; \quad n=0,1,2,3, \ldots
$$

- We can always go back to our original units by putting in the energy scale factor:

$$
H|n\rangle=\hbar \omega\left(n+\frac{1}{2}\right)|n\rangle ; \quad n=0,1,2,3, \ldots
$$

$$
\begin{aligned}
& \left|\varepsilon=\frac{1}{2}\right\rangle=|n=0\rangle \\
& \left(\varepsilon=\frac{3}{2}\right\rangle=|n=1\rangle
\end{aligned}
$$

