
Lecture 19:
Quantization of the simple harmonic

oscillator

Phy851 Fall 2009



Systems near equilibrium

• The harmonic oscillator Hamiltonian is:

• Or alternatively, using

• Why is the SHO so important?
– Answer: any system near a stable equilibrium

is equivalent to an SHO
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A Random Potential

Stable equilibrium points

Definition of stable
equilibrium point:
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Analysis of energy and length scales

• The parameters available in the SHO
Hamiltonian are:

• The frequency defines a quantum energy [J]
scale via:

• The frequency also defines a quantum   length
scale via:

• This length scale then defines a quantum
momentum scale:
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The SHO introduces a
single new parameter,
which must govern all

of the physics



Dimensionless Variables

• To solve the QM SHO it is very useful to
introduce the natural units:
– Let
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Dimensionless Commutation Relations

• Let’s compute the commutator for the new
variables:
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Switch to`Normal’ Variables

• We can make a change of variables:

– It’s more common to use: a, a†

– We use A, A† to stick with our convention
to use capital letters for operators
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Inverse Transformation

• Inverting the transformation gives:
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Transforming the Hamiltonian
• The Harmonic Oscillator Hamiltonian was:
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Energy Eigenvalues

• In original units we have:

• Let’s define the energy eigenstates via
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We expect a discrete spectrum as the
classical motion is bounded



Proof that there is a ground state

• For any energy eigenstate we have:

• The norm of a vector is always a real positive
number

• Thus we see that:

• So the energy eigenvalues are bounded from
below by _.
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Setting up for The Big Trick

• Lets look at the commutator:
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The Big Trick  Begins

• Combine these relations with the eigenvalue
equation:

• This means that A|ε〉 is proportional to the
eigenstate |ε-1〉:
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Raising and lowering operators

THEOREM:
• If state |ε〉 exists then either state |ε-1〉 exists

or cε=0
• If state |ε〉 exists then either state |ε+1〉 exists

or dε=0

• Now consider:

• So clearly we must have:

• So cε is only zero for ε=1/2 and dε is only zero
for ε=-1/2

1−= εε εcA 1† += εε εdA

εεε =H

2

1

2

1 2† +=+ εεε cAA

2

12
+= εε c

2

1
≥ε

εε
εc

A
=−1 εε

εd

A†
1 =+

2

12
−= εεc

2

1

2

1 2† −=− εεε dAA

2

12
−= εε d

2

12
+= εεd

This means that actually de is never zero



Ground State energy

• Let the ground state |ε0〉 have energy:

• Remember our statement:
– If state |ε〉 exists then either state |ε-1〉 exists or

cε=0

– Conclusion: either δ = 0, or there is a state
lower than the ground state

– For |ε0〉 to be the ground state requires δ = 0
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The second option is obviously a contradiction



Excited states

• If the ground state |ε0〉 exists, then the state
|ε0+1〉 exists

• Following this chain of reasoning, we can
establish the existence of states at energies:
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This is just a result
we proved on slide 13

The point is just
that we aren’t

dividing by zero



Are there more states?

• So far we see that a ladder of states must
exist:

• Are there any states in between?
– Assume a state exists with

– We have

– So either x=0 or there is a state below the
ground state! Conclusion: x=0

• If there is a state between 5/2 and 3/2, then
a state must exist between 3/2 and 1/2 and
then a state must exist below 1/2, etc…

• So no states between the half integers!
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Spectrum of the SHO

• We now see that the energy eigenstates can
be labeled by the integers so that:

• We can always go back to our original units
by putting in the energy scale factor:
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