## Lecture 1: Demystifying 'h' and 'i'

•We are often told that the presence of  $\hbar$  distinguishes quantum from classical theories.

•One of the striking features of Schrödinger's equation is the fact that the variable,  $\Psi$ , is complex, whereas classical theories deal with real variables

QM:  $i = \int_{\partial t} \frac{1}{\psi(x,t)} = \int_{\partial t} \frac{1}{2m} \frac{\partial^2}{\partial x^2} + V(x) \int_{\partial t} \psi(x,t)$ 

CM:

$$\frac{d}{dt}x(t) = \frac{\partial}{\partial p}H(x,p)$$
$$\frac{d}{dt}p(t) = -\frac{\partial}{\partial x}H(x,p)$$

1 0

CE&M:  

$$\frac{d}{dt}\vec{E}(\vec{r},t) = \frac{1}{c^2}\vec{\nabla}\times\vec{B}(\vec{r},t)$$

$$\frac{d}{dt}\vec{B}(\vec{r},t) = -\vec{\nabla}\times\vec{E}(\vec{r},t)$$

## •Q: Is $\hbar$ necessary at all?

•By changing units we can of course make  $\hbar$  disappear from QM

•But if it is truly fundamental, shouldn't this same choice of units make  $\hbar$  appear then in CM?

$$i\frac{1}{\lambda_{+}}\frac{1}{\psi} = -\frac{\hbar^{2}}{2m}\frac{\delta^{2}}{\delta\chi^{2}}\psi + V(\chi)\psi$$

$$let \quad V(\chi) = V_{0}u\left(\frac{\chi}{\chi_{0}}\right)$$

$$let \quad t = \frac{\pi}{V_{0}}\chi \quad \chi = \chi_{0}\rho$$

$$i\frac{1}{K}\frac{V_{0}}{\delta\gamma}\frac{1}{\psi}\psi = -\frac{\hbar^{2}}{2m\chi_{0}^{2}}\frac{\delta^{2}}{\delta\rho^{2}}\psi + V_{0}u(\rho)\psi$$

$$i\frac{1}{K}\frac{1}{\delta\gamma}\psi = -\frac{\hbar^{2}}{2m\chi_{0}^{2}}\frac{\delta^{2}}{\delta\rho^{2}}\psi + V(\rho)\psi$$

$$let \qquad M_{0} = \frac{\hbar^{2}}{\chi_{0}^{2}}V_{0} \qquad i\frac{\partial}{\partial t}\psi(\rho,t) = -\frac{1}{2}\left(\frac{m_{0}}{m}\right)\frac{\partial^{2}}{\partial\rho^{2}}\psi(\rho,t) + u(\rho)\psi(\rho,t)$$

•If system has natural length scale and energy scale, then  $\hbar$  is needed to relate then to the natural mass scale.



•What happens to CM in these units?

•Same mass scale makes CM dimensionless as well !

•Q: Are Maxwell's Eq's 'classical' or 'quantum'?

$$\nabla^2 \vec{E} - \frac{1}{c^2} \frac{J^2}{Jt^2} \vec{E} = 0$$

•Apply De Broglie hypothesis to Einstein's equation:



•The wavefunction of a massless particle obeys the Maxwell wave equation !

•So is *E* just the photon wavefunction?

•'Classical' E&M would be 'quantum' if the photon had mass

## My opinion:

•Maxwell's equation is just as 'quantum' as Schrödinger's equation

•'Classical' EM is ray-optics

•Now, let's look at the 'i' issue:

$$i \frac{\partial}{\partial \tau} \psi = -\frac{1}{2\mu} \frac{\partial}{\partial \rho^2} \psi + h(\rho) \psi$$
  
•Separate  $\psi$  into real and imaginary parts:  
let  $\psi(\rho) = u(\rho) + i \sqrt{\rho}$   
 $i \frac{1}{2\mu} u - \frac{1}{2\mu} v = -\frac{1}{2\mu} u'' - \frac{1}{2\mu} v'' + M u + i \sqrt{\mu}$   
 $\frac{d}{dt} u(\bar{r}, t) = H(u, v) v(\bar{r}, t)$   
No more 'i'  $\frac{d}{dt} v(\bar{r}, t) = -H(u, v) u(\bar{r}, t)$ 

•N

•Structure looks familiar:

•Two conjugate variables

-

•Symmetric equations

CM:

$$\frac{d}{dt}x(t) = \frac{\partial}{\partial p}H(x,p)$$
$$\frac{d}{dt}p(t) = -\frac{\partial}{\partial x}H(x,p)$$

CE&M:

$$\frac{d}{dt}\vec{E}(\vec{r},t) = \frac{1}{c^2}\vec{\nabla}\times\vec{B}(\vec{r},t)$$
$$\frac{d}{dt}\vec{B}(\vec{r},t) = -\vec{\nabla}\times\vec{E}(\vec{r},t)$$

•Can we put an 'i' in CM and make it look more like QM?

$$\begin{aligned} \det & \mathcal{Z} = \frac{1}{|\mathcal{Z}|} \left( \chi + i\rho \right) & \chi = \mathcal{Z} + \mathcal{Z}^{\mathcal{X}} \\ & \mathcal{Z}^{\mathcal{X}} = \frac{1}{|\mathcal{Z}|} \left( \chi - i\rho \right) & \rho = \mathcal{Z} - \mathcal{Z}^{\mathcal{X}} \\ & \frac{\partial}{\partial \chi} = \frac{\partial \mathcal{Z}}{\partial \chi} \frac{\partial}{\partial \mathcal{Z}} + \frac{\partial \mathcal{Z}^{\mathcal{X}}}{\partial \chi} \frac{\partial}{\partial \mathcal{Z}^{\mathcal{X}}} = \frac{1}{|\mathcal{I}|} \left( \frac{\partial}{\partial \mathcal{Z}} + \frac{\partial}{\partial \mathcal{I}^{\mathcal{X}}} \right) \\ & \frac{\partial}{\partial \chi} = \frac{\partial^{\mathcal{Z}}}{\partial \rho} \frac{\partial}{\partial \mathcal{L}} + \frac{\partial \mathcal{Z}^{\mathcal{X}}}{\partial \rho} \frac{\partial}{\partial \mathcal{Z}^{\mathcal{X}}} = -\frac{i}{|\mathcal{I}|} \left( \frac{\partial}{\partial \mathcal{Z}} - \frac{\partial}{\partial \mathcal{I}^{\mathcal{X}}} \right) \\ & \frac{\partial}{\partial \rho} = \frac{\partial}{\partial \rho} \frac{\partial}{\partial \mathcal{L}} + \frac{\partial \mathcal{Z}^{\mathcal{X}}}{\partial \rho} \frac{\partial}{\partial \mathcal{Z}^{\mathcal{X}}} = -\frac{i}{|\mathcal{I}|} \left( \frac{\partial}{\partial \mathcal{Z}} - \frac{\partial}{\partial \mathcal{I}^{\mathcal{X}}} \right) \\ & \frac{\partial}{\partial \mu} = -\frac{\partial}{\partial \rho} H(\mathcal{X}_{1}\rho) \implies i\frac{d}{dt}z(t) = \frac{\partial}{\partial \mathcal{I}^{\mathcal{X}}} H(z,z^{*}) \\ & \frac{\partial}{\partial t} = -\frac{\partial}{\partial \gamma^{\mathcal{X}}} H(\mathcal{X}_{1}\rho) \qquad \text{Nextors second Law} \\ & in Q.A, \\ & H = N^{\mathcal{X}}_{\mathcal{I}}(z_{\mathcal{X}}) \left[ -\frac{1}{2m} \frac{\partial}{\partial \chi^{\mathcal{X}}} + U(x_{\mathcal{X}}) \right] + (x) \qquad \in \frac{\mathcal{E}ursy}{\partial u_{\mathcal{X}}} \\ & i\frac{d}{dt}\psi(\bar{r},t) = \frac{\partial}{\partial\psi^{*}(\bar{r},t)} H(\psi,\psi^{*}) \end{aligned}$$

•So what is going on?

•The point is that QM is the correct theory

•CM and CE&M are just approximations derived from QM

•Thus they get their structures from QM