Lecture 1: Demystifying ' \hbar ' and ' i '

-We are often told that the presence of \hbar distinguishes quantum from classical theories.
-One of the striking features of Schrödinger's equation is the fact that the variable, Ψ, is complex, whereas classical theories deal with real variables

QM:

$$
i \hbar \frac{\partial}{\partial t} \psi(x, t)=\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)\right] \psi(x, t)
$$

CM:

$$
\begin{aligned}
& \frac{d}{d t} x(t)=\frac{\partial}{\partial p} H(x, p) \\
& \frac{d}{d t} p(t)=-\frac{\partial}{\partial x} H(x, p)
\end{aligned}
$$

CE\&M:

$$
\begin{aligned}
& \frac{d}{d t} \vec{E}(\vec{r}, t)=\frac{1}{c^{2}} \stackrel{\rightharpoonup}{\nabla} \times \vec{B}(\stackrel{\rightharpoonup}{r}, t) \\
& \frac{d}{d t} \stackrel{\rightharpoonup}{B}(\stackrel{\rightharpoonup}{r}, t)=-\stackrel{\rightharpoonup}{\nabla} \times \vec{E}(\stackrel{\rightharpoonup}{r}, t)
\end{aligned}
$$

-Q: Is \hbar necessary at all?
-By changing units we can of course make \hbar disappear from QM
-But if it is truly fundamental, shouldn't this same choice of units make \hbar appear then in CM?

$$
\begin{aligned}
& i \hbar \frac{\partial}{\partial t} \psi \\
\text { let } & =-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi+V(x) \approx \\
\text { let } t & =\frac{\hbar}{V_{0}} \tau \quad x=x_{0} \rho \\
i \frac{h V_{0}}{\hbar} \frac{\partial}{\partial \tau} \psi & =\frac{-\hbar^{2}}{2 m x_{0}^{2}} \frac{\partial^{2}}{\partial \rho^{2}} \psi+V_{0} u(\rho) \psi \\
i \frac{\partial}{\tau} \psi & =-\frac{\hbar^{2}}{2 m x_{0}^{2} V_{0}} \frac{\partial^{2}}{\partial \rho^{2}} \psi+\psi(\rho) \psi \\
\text { let } \underbrace{}_{0} & =\frac{\hbar^{2}}{y_{0}^{2} V_{0}} i \frac{\partial}{\partial t} \psi(\rho, t)=-\frac{1}{2}\left(\frac{m_{0}}{m}\right) \frac{\partial^{2}}{\partial \rho^{2}} \psi(\rho, t)+u(\rho) \psi(\rho, t)
\end{aligned}
$$

- If system has natural length scale and energy scale, then \hbar is needed to relate then to the natural mass scale.
-Q: Are Maxwell's Eq's 'classical' or 'quantum'?

$$
\nabla^{2} \vec{E}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \vec{E}=0
$$

-Apply De Broglie hypothesis to Einstein's equation:

$$
\begin{aligned}
& E^{2}-c^{2} p^{2}=m^{2} c^{4} \\
& E \rightarrow i \hbar \frac{\partial}{\partial t} p \rightarrow-i \hbar \frac{\partial}{\partial x} \\
& {\left[-\frac{\hbar^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}+\hbar^{2} \nabla^{2}\right]=-m^{2} c^{2}} \\
& {\left[\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right] \psi=-\frac{m^{2} c^{2}}{\hbar^{2}} \psi} \\
& \text { let } m=0
\end{aligned}
$$

-The wavefunction of a massless particle obeys the Maxwell wave equation!
-So is E just the photon wavefunction?
-Classical' E\&M would be 'quantum' if the photon had mass

My opinion:
-Maxwell's equation is just as 'quantum' as
Schrödinger's equation
-‘Classical' EM is ray-optics

- Now, let's look at the ' i ' issue:

$$
i \frac{\partial}{\partial \tau} \psi=-\frac{1}{2 \mu} \frac{\partial}{\partial \rho^{2}} \psi+u(\rho) \psi
$$

-Separate ψ into real and imaginary parts:
let $\psi(\rho)=u(\rho)+i v(\rho)$

$$
i \frac{\partial}{\partial t} u-\frac{\partial}{\partial t} v=-\frac{1}{2 \mu} u^{\prime \prime}-\frac{1}{2 \mu} v^{\prime \prime}+d u u+i V_{u}
$$

$$
\begin{aligned}
& \frac{d}{d t} u(\stackrel{\rightharpoonup}{r}, t)=H(u, v) v(\stackrel{\rightharpoonup}{r}, t) \\
& \frac{d}{d t} v(\stackrel{\rightharpoonup}{r}, t)=-H(u, v) u(\stackrel{\rightharpoonup}{r}, t)
\end{aligned}
$$

-Structure looks familiar:
-Two conjugate variables

- Symmetric equations

CM:

$$
\begin{aligned}
& \frac{d}{d t} x(t)=\frac{\partial}{\partial p} H(x, p) \\
& \frac{d}{d t} p(t)=-\frac{\partial}{\partial x} H(x, p)
\end{aligned}
$$

$\mathrm{CE} \& \mathrm{M}: \quad \frac{d}{d t} \stackrel{\rightharpoonup}{E}(\stackrel{\rightharpoonup}{r}, t)=\frac{1}{c^{2}} \stackrel{\nabla}{\nabla} \times \stackrel{\rightharpoonup}{B}(\stackrel{\rightharpoonup}{r}, t)$

$$
\frac{d}{d t} \stackrel{\rightharpoonup}{B}(\stackrel{\rightharpoonup}{r}, t)=-\stackrel{\rightharpoonup}{\nabla} \times \stackrel{\rightharpoonup}{E}(\stackrel{\rightharpoonup}{r}, t)
$$

${ }^{\bullet}$ Can we put an ' i ' in CM and make it look more like QM?

$$
\begin{aligned}
& z=\frac{1}{\sqrt{2}}(x+i p) \quad x=z+z^{*} \\
& z^{*}=\frac{1}{\sqrt{2}}(x-i \rho) \quad p=z-z^{*} \\
& \frac{\partial}{\partial x}=\frac{\partial z}{\partial x} \frac{\partial}{\partial z}+\frac{\partial z^{*}}{\partial x} \frac{\alpha}{\partial z^{*}}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial z^{*}}+\frac{\partial}{\partial z^{*}}\right) \\
& \frac{\partial}{\partial p}=\frac{\partial z}{\partial p} \frac{\partial}{\partial z}+\frac{\partial z^{*}}{\partial p} \frac{\partial}{\partial z^{*}}=-\frac{i}{\sqrt{2}}\left(\frac{\partial}{\partial z}-\frac{\partial}{\partial z^{*}}\right) \\
& \frac{\partial x}{\partial t}=\frac{\partial}{\partial p} H(x, \rho) \quad \underset{i}{\partial t} z(t)=\frac{\partial}{\partial z^{*}} H\left(z, z^{*}\right) \\
& \frac{\partial p}{\partial t}=-\frac{\partial}{\partial, x} H(x, p) \quad \text { Newtons second Law } \\
& \text { in Q.M. } \\
& f^{\prime}=\Psi^{*}(x)\left[-\frac{\hbar^{2}}{2 m} \frac{\delta^{2}}{2 x^{2}}+U(x)\right] t(x) \in \text { Envery } \\
& i \frac{d}{d t} \psi(\stackrel{\rightharpoonup}{r}, t)=\frac{\partial}{\partial \psi^{*}(\stackrel{\rightharpoonup}{r}, t)} H\left(\psi, \psi^{*}\right)
\end{aligned}
$$

-So what is going on?
-The point is that QM is the correct theory
-CM and CE\&M are just approximations derived
from QM
-Thus they get their structures from QM

