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Recap

• Introduced dimensionless variables:

• Introduce ‘normal variables’:

• Energy eigenvalues:

• Raising and lowering operators:
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Coefficients cn and dn

• Using n instead of ε, we have
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How to Find Wavefunctions?

• Let us define:

• Let’s start simple and try to find the ground
state wavefunction:

• An equation involving only |0〉 is:

• We can try to use this somehow:

• We can write A in terms of X and P:

• Which gives:
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Ground State Wavefunction

• We can integrate this equation:

• Since we are familiar with Gaussians, we
know that
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First excited state:

• An equation relating |1〉 to |0〉 is: 01 †A=
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Already properly normalized!



Creating multiple excitations

• We can always write |n〉 in terms of |0〉 :

• Each time we act with A† we increase the
energy by hω

• We call A† the ‘creation operator’ because it
creates a ‘quanta’ of energy

• Similarly, we call A an ‘annihilation operator’
because it removes a ‘quanta’ of energy
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  Wavefunction of nth level

• Starting from:

• We can hit with 〈x| to get:

• The Hermite Polynomials are defined via:
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Recursion Relation

• In practice, it is not practical for a computer
to compute high n wavefunctions by
differentiation

• Instead, an algorithm which relies only on
multiplication is preferred

• To eliminate differentiation, we need to find
an equation which does not contain P

• We can use the defining equation for X:

• Hit with |n〉 from right to get:

• Express X in terms of A and A†:
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Recursion relation cont.

• Use the relations:

• Let n  n-1:

• Solve for  ψn(x):

• Iterate, starting from:
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Summary

• Todays main results:
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Example Problem:

• For the nth harmonic oscillator energy
eigenstate |n〉, what is the position
uncertainty ΔX ?


