Lecture 20:
 Quantum SHO: Part 2

Phy851 Fall 2009

Recap

- Introduced dimensionless variables:

$$
\begin{array}{r}
\bar{X}=\frac{X}{\lambda} \quad \bar{P}=\frac{\lambda}{\hbar} P \quad \bar{H}=\frac{H}{\hbar \omega} \\
\bar{H}=\frac{1}{2} \bar{P}^{2}+\frac{1}{2} \bar{X}^{2}
\end{array}
$$

- Introduce 'normal variables':

$$
\begin{aligned}
A=\frac{1}{\sqrt{2}}(\bar{X}+i \bar{P}) \quad A^{\dagger} & =\frac{1}{\sqrt{2}}(\bar{X}-i \bar{P}) \quad\left[A, A^{\dagger}\right]=1 \\
\bar{H} & =A^{\dagger} A+\frac{1}{2}
\end{aligned}
$$

- Energy eigenvalues:

$$
\begin{gathered}
\bar{H}|n\rangle=(n+1 / 2) n\rangle \quad n=0,1,2,3, \ldots \\
\langle n \mid n\rangle=1 \quad\left\langle n \mid n^{\prime}\right\rangle=0
\end{gathered}
$$

- Raising and lowering operators:

$$
A|n\rangle=c_{n}|n-1\rangle \quad A^{\dagger}|n\rangle=d_{n}|n+1\rangle
$$

Coefficients $c_{\underline{n}}$ and $d_{\underline{n}}$

- Using n instead of ε, we have

$$
\begin{gathered}
A|n\rangle=c_{n}|n-1\rangle \quad A^{\dagger}|n\rangle=d_{n}|n+1\rangle \\
\langle n| \bar{H}|n\rangle=n+1 / 2 \\
\langle n| A^{\dagger} A+1 / 2|n\rangle=n+1 / 2
\end{gathered}
$$

$A^{+} A(n)=n(n)$
$N=A^{\dagger} A \begin{gathered}\text { (number } \\ \text { operator) }\end{gathered}\langle n| A^{\dagger} A|n\rangle=n$

$$
\begin{array}{cc}
\langle n| A^{\dagger} A|n\rangle=n & \langle n| A A^{\dagger}-1|n\rangle=n \\
\left|c_{n}\right|^{2}\langle n-1 \mid n-1\rangle=n & \langle n| A A^{\dagger}|n\rangle=n+1 \\
c_{n}=\sqrt{n} & \left|d_{n}\right|^{2}\langle n+1 \mid n+1\rangle=n+1 \\
d_{n}=\sqrt{n+1} \\
A|n\rangle=\sqrt{n}|n-1\rangle & A^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle \\
\text { Must memorize }
\end{array}
$$

How to Find Wavefunctions?

- Let us define:

$$
\psi_{n}(x)=\langle x \mid n\rangle
$$

- Let's start simple and try to find the ground state wavefunction:

$$
\psi_{0}(x)=\langle x \mid 0\rangle
$$

- An equation involving only $|0\rangle$ is:

$$
A|0\rangle=0
$$

- We can try to use this somehow:

$$
\langle x| A|0\rangle=0
$$

- We can write A in terms of X and P :

$$
A=\frac{1}{\sqrt{2}}\left(\frac{X}{\lambda}+i \frac{\lambda}{\hbar} P\right)
$$

- Which gives:

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}\left\langle\left. x\left(\frac{X}{\lambda}+i \frac{\lambda}{\hbar} P\right) \right\rvert\, 0\right\rangle=0 \\
& \frac{x}{\lambda} \psi_{0}(x)+\lambda \frac{d}{d x} \psi_{0}(x)=0
\end{aligned}
$$

Ground State Wavefunction

$$
\frac{x}{\lambda} \psi_{0}(x)+\lambda \frac{d}{d x} \psi_{0}(x)=0
$$

- We can integrate this equation:

$$
\begin{aligned}
\frac{d}{d x} \psi_{0}(x) & =-\frac{x}{\lambda^{2}} \psi_{0}(x) \\
\frac{1}{\psi_{0}(x)} d \psi_{0}(x) & =-\frac{x}{\lambda^{2}} d x \\
\ln \psi_{0}(x) & =-\frac{x^{2}}{2 \lambda^{2}}+C
\end{aligned}
$$

$$
\psi_{0}(x)=N_{0} e^{-\frac{x^{2}}{2 \lambda^{2}}} \quad \begin{gathered}
\text { Ground state } \\
\text { is a Gaussian } \\
\text { of width } \lambda
\end{gathered}
$$

- Since we are familiar with Gaussians, we know that

$$
\begin{gathered}
N_{0}=[\sqrt{\pi} \lambda]^{1 / 2} \\
\psi_{0}(x)=[\sqrt{\pi} \lambda]^{1 / 2} e^{-\frac{x^{2}}{2 \lambda^{2}}}
\end{gathered}
$$

First excited state:

- An equation relating $|1\rangle$ to $|0\rangle$ is: $|1\rangle=A^{\dagger}|0\rangle$

$$
\begin{aligned}
& A^{\dagger}=\frac{1}{\sqrt{2}}\left(\frac{X}{\lambda}-i \frac{\lambda}{\hbar} P\right) \\
&|1\rangle=\frac{1}{\sqrt{2}}\left(\frac{X}{\lambda}-i \frac{\lambda}{\hbar} P\right)|0\rangle \\
&\langle x \mid 1\rangle=\frac{1}{\sqrt{2}}\left\langle\left. x\left(\frac{X}{\lambda}-i \frac{\lambda}{\hbar} P\right) \right\rvert\, 0\right\rangle \\
& \psi_{1}(x)=\frac{1}{\sqrt{2}}\left(\frac{x}{\lambda}-\lambda \frac{d}{d x}\right) \psi_{0}(x) \\
& \psi_{1}(x)=\frac{1}{\sqrt{2}}\left(\frac{x}{\lambda}-\lambda \frac{d}{d x}\right)[\sqrt{\pi} \lambda]^{1 / 2} e^{-\frac{x^{2}}{2 \lambda^{2}}} \\
& \psi_{1}(x)=[2 \sqrt{\pi} \lambda]^{1 / 2}\left(\frac{x}{\lambda}+\lambda \frac{2 x}{2 \lambda^{2}}\right) e^{-\frac{x^{2}}{2 \lambda^{2}}} \\
& \psi_{1}(x)=[2 \sqrt{\pi} \lambda]^{1 / 2} 2 \frac{x}{\lambda} e^{-\frac{x^{2}}{2 \lambda^{2}}}
\end{aligned}
$$

Already properly normalized!

Creating multiple excitations

- We can always write $|n\rangle$ in terms of $|0\rangle$:

$$
\begin{gathered}
A^{\dagger}|n-1\rangle=\sqrt{n}|n\rangle \\
|n\rangle=\frac{A^{\dagger}}{\sqrt{n}}|n-1\rangle \\
|n\rangle=\frac{A^{\dagger}}{\sqrt{n}} \frac{A^{\dagger}}{\sqrt{n-1}}|n-2\rangle=\frac{\left(A^{\dagger}\right)^{2}}{\sqrt{n(n-1)}}|n-2\rangle \\
|n\rangle=\frac{A^{\dagger}}{\sqrt{n}} \frac{A^{\dagger}}{\sqrt{n-1}} \frac{A^{\dagger}}{\sqrt{n-2}}|n-3\rangle=\frac{\left(A^{\dagger}\right)^{3}}{\sqrt{n(n-1)(n-2)}}|n-3\rangle \\
\vdots \\
|n\rangle=\frac{\left(A^{\dagger}\right)^{n}}{\sqrt{n!}}|0\rangle
\end{gathered}
$$

- Each time we act with A^{\dagger} we increase the energy by $\hbar \omega$
- We call A^{\dagger} the 'creation operator' because it creates a 'quanta' of energy
- Similarly, we call A an 'annihilation operator ${ }^{\prime}$ because it removes a 'quanta' of energy

Wavefunction of nth level

- Starting from:

$$
|n\rangle=\frac{\left(A^{\dagger}\right)^{2}}{\sqrt{n!}}|0\rangle
$$

- We can hit with $\langle x|$ to get:

$$
\begin{gathered}
\langle x \mid n\rangle=\langle x| \frac{\left(A^{\dagger}\right)^{2}}{\sqrt{n!}}|0\rangle \\
\psi_{n}(x)=\frac{1}{\sqrt{n!}}\left(\frac{1}{\sqrt{2}}\left(\frac{x}{\lambda}-\lambda \frac{d}{d x}\right)\right)^{n} \psi_{0}(x) \\
\psi_{n}(x)=\left[\sqrt{\pi} 2^{n} n!\lambda\right]^{1 / 2}\left(\frac{x}{\lambda}-\lambda \frac{d}{d x}\right)^{n} e^{-\frac{x^{2}}{2 \lambda^{2}}}
\end{gathered}
$$

- The Hermite Polynomials are defined via:

$$
\begin{gathered}
H_{n}(x)=e^{\frac{x^{2}}{2}}\left(x-\frac{d}{d x}\right)^{n} e^{-\frac{x^{2}}{2}} \\
\psi_{n}(x)=\left[\sqrt{\pi} 2^{n} n!\lambda\right]^{1 / 2} H_{n}(x / \lambda) e^{-\frac{x^{2}}{2 \lambda^{2}}}
\end{gathered}
$$

Recursion Relation

- In practice, it is not practical for a computer to compute high n wavefunctions by differentiation
- Instead, an algorithm which relies only on multiplication is preferred
- To eliminate differentiation, we need to find an equation which does not contain P
- We can use the defining equation for X :

$$
\langle x| X=x\langle x|
$$

- Hit with $|n\rangle$ from right to get:

$$
\langle x| X|n\rangle=x \psi_{n}(x)
$$

- Express X in terms of A and A^{\prime} :

$$
\begin{gathered}
X=\frac{\lambda}{\sqrt{2}}\left(A+A^{\dagger}\right) \\
\frac{\lambda}{\sqrt{2}}\langle x| A+A^{\dagger}|n\rangle=x \psi_{n}(x)
\end{gathered}
$$

Recursion relation cont.

$$
\frac{\lambda}{\sqrt{2}}\langle x| A+A^{\dagger}|n\rangle=x \psi_{n}(x)
$$

- Use the relations:

$$
\begin{aligned}
A|n\rangle & =\sqrt{n}|n-1\rangle \\
A^{\dagger}|n\rangle & =\sqrt{n+1}|n+1\rangle
\end{aligned}
$$

$$
\frac{\lambda}{\sqrt{2}}\left(\sqrt{n} \psi_{n-1}(x)+\sqrt{n+1} \psi_{n+1}(x)\right)=x \psi_{n}(x)
$$

- Let $n \rightarrow n-1$:

$$
\frac{\lambda}{\sqrt{2}}\left(\sqrt{n-1} \psi_{n-2}(x)+\sqrt{n} \psi_{n}(x)\right)=x \psi_{n-1}(x)
$$

- Solve for $\psi_{n}(x)$:

$$
\psi_{n}(x)=\sqrt{\frac{2}{n}} \frac{x}{\lambda} \psi_{n-1}(x)-\sqrt{\frac{n-1}{n}} \psi_{n-2}(x)
$$

- Iterate, starting from:

$$
\psi_{0}(x)=[\sqrt{\pi} \lambda]^{1 / 2} e^{-\frac{x^{2}}{2 \lambda^{2}}} \quad \psi_{1}(x)=[2 \sqrt{\pi} \lambda]^{1 / 2} 2 \frac{x}{\lambda} e_{\|}^{-\frac{x^{2}}{2 \lambda^{2}}}
$$

Summary

- Todays main results:

$$
\begin{gathered}
A|n\rangle=\sqrt{n}|n-1\rangle \\
A^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle \\
|n\rangle=\frac{\left(A^{\dagger}\right)^{n}}{\sqrt{n!}}|0\rangle \\
\psi_{n}(x)=\left[\sqrt{\pi} 2^{n} n!\lambda\right]^{-1 / 2} H_{n}(x / \lambda) e^{-\frac{x^{2}}{2 \lambda^{2}}} \\
A|0\rangle=0 \longrightarrow \psi_{0}(x)=[\sqrt{\pi} \lambda]^{-1 / 2} e^{-\frac{x^{2}}{2 \lambda^{2}}} \\
A^{\dagger}|0\rangle=|1\rangle \longrightarrow \psi_{1}(x)=[2 \sqrt{\pi} \lambda]^{-1 / 2} 2 \frac{x}{\lambda} e^{-\frac{x^{2}}{2 \lambda^{2}}}
\end{gathered}
$$

$$
\langle x| X|n-1\rangle=x \psi_{n-1}(x)
$$

$$
\psi_{n}(x)=\sqrt{\frac{2}{n}} \frac{x}{\lambda} \psi_{n-1}(x)-\sqrt{\frac{n-1}{n}} \psi_{n-2}(x)
$$

Example Problem:

- For the $n^{\text {th }}$ harmonic oscillator energy eigenstate $|n\rangle$, what is the position uncertainty ΔX ?

$$
\begin{aligned}
& \Delta x^{2}=\left\langle X^{2}\right\rangle-\langle X\rangle^{2} \\
&\langle X\rangle=\langle n| X|n\rangle \quad X=\frac{\lambda}{\sqrt{2}}\left(A+A^{+}\right) \\
&\left.=\frac{\lambda}{\sqrt{2}}(\ln |A| n\rangle+\langle n| A^{\dagger}|n\rangle\right) \\
&=\frac{\lambda}{\sqrt{2}}(\sqrt{n}\langle n \mid n-1\rangle+\sqrt{n+i}\langle n \mid n+1\rangle) \\
&=0 \\
&\left\langle X^{2}\right\rangle=\langle n| X^{2}|n\rangle \\
&=\frac{\lambda^{2}}{2}\left(\langle n| A A|n\rangle+\langle n| A A^{-1}|n\rangle+C n\left|A^{\dagger} A\right| n\right\rangle \\
&\left.+\langle n| A^{\dagger} A^{+}|n\rangle\right) \quad A A^{\dagger}=A^{\dagger} A+1 \\
&=\frac{\lambda^{2}}{2}\left(2\langle n| A^{\dagger} A|n\rangle+1\right) \\
&=\frac{\lambda^{2}}{2}(2 n+1)=\lambda^{2}\left(n+\frac{1}{2}\right) \\
& \frac{\Delta x}{}=\lambda \sqrt{n+1 / 2}
\end{aligned}
$$

