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Heisenberg Uncertainty Relation

Most of us are familiar with the Heisenberg
Uncertainty relation between position and
momentum:

h
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How do we know this is true?

Are the similar relations between other
operators?




Variance

The uncertainties are also called ‘variances’

defined as CAS SCUA S
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Note that the variance is state-dependent

What does it tell us about our state?
— Consider a distribution P(a),
— The average of the distribution is:

a = EP(a)a

— To estimate the width of the distribution we
might consider the square of the distance from

the mean: _
d’(a)=(a-ay
— The average of this quantity is
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Incompatible Observables

For an observable A, the only way you can
have Aa=0 is if you are in an eigenstate of A

Consider two incompatible observables, 4 and
B:
|4,B]=M =0

We cannot have A4=0 and AB=0 at the same
time
— Then we would have a simultaneous eigenstate
of 4 and B

So what is the best we can do?

To derive the Heisenberg Uncertainty for X
and P relation, let us first introduce

X'=X—-(X)I
P'=P-(P)I
X", P |- [x,P]
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Geometric Proof of Uncertainty
Relation

* Lett |g) = (X' +idP Jy)

A is an arbitrary real number

p) is an arbitrary state

e For any 2 and |y) we must have: <¢‘qb> = ()
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Parabolas
Ap° X + <i[X,P]>A +Ax* =0

Consider a general quadratic poly'/nomial with
real coefficients:

f(A)=ar? +bA +c

Its graph is a parabola Q
- If a>0 it opens up: A
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So f(2) =0 requires:  f(A.. )=0 —acz—-
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Generalized Uncertainty Relations

e Note that only at the very end did we make
use of the specific form of the commutator:

lx,Pl=in

e This means that our result is valid in general
for any two observables:

[A.B])
4

, 2
Aa’*Ab* = <Z[AQLB]> = AaAb = K

e (Consider angular momentum operators:

[L.,L,]=ihL,

L
Al AL = 5‘<LZ>‘

e In General, the Heisenberg Lower limit
depends on the state.

e X and P are special in that all states
have the same limit.

e The Uncertainty relation is not as useful
in the more general cases




