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Heisenberg Uncertainty Relation

• Most of us are familiar with the Heisenberg
Uncertainty relation between position and
momentum:

• How do we know this is true?

• Are the similar relations between other
operators?
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Variance

• The uncertainties are also called ‘variances’
defined as

• Note that the variance is state-dependent

• What does it tell us about our state?
– Consider a distribution P(a),
– The average of the distribution is:

– To estimate the width of the distribution we
might consider the  square of the distance from
the mean:

– The average of this quantity is
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 We then define the
Root Mean Square

distance as:
22 AAa −=ΔOr in quantum

language, we say:



Incompatible Observables

• For an observable A, the only way you can
have Δa=0 is if you are in an eigenstate of A

• Consider two incompatible observables, A and
B:

• We cannot have ΔA=0 and ΔB=0 at the same
time
– Then we would have a simultaneous eigenstate

of A and B

• So what is the best we can do?

• To derive the Heisenberg Uncertainty for X
and P relation, let us first introduce

[ ] 0, ≠=MBA

IPPP

IXXX

−=′

−=′

[ ] [ ]PXPX ,, =′′

22

22

Ä

Ä

pP

xX

=′

=′



Geometric Proof of Uncertainty
Relation

• Let:

• For any λ and |ψ〉 we must have:

( )ψλφ PiX ′+′=:

λ  is an arbitrary real number

|ψ〉 is an arbitrary state
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Parabolas

• Consider a general quadratic polynomial with
real coefficients:

• Its graph is a parabola
– If a>0 it opens up:

• The minimum is at:

• The minimum value is:

• So f(λ) ≥0 requires:
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This is always real
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Generalized Uncertainty Relations

• Note that only at the very end did we make
use of the specific form of the commutator:

• This means that our result is valid in general
for any two observables:

• Consider angular momentum operators:
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• In General, the Heisenberg Lower limit
depends on the state.

• X and P are special in that all states
have the same limit.

• The Uncertainty relation is not as useful
in the more general cases


