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Basis sets for a particle in 3D

• Clearly the Hilbert space of a particle in three
dimensions is not the same as the Hilbert
space for a particle in one-dimension

• In one dimension, X and P are incompatible

– If you specify the wave function in coordinate-
space,  〈x|ψ〉, its momentum-space state is
completely specified as well:
〈p|ψ〉 =∫dx〈p|x〉〈x|ψ〉

– You thus specify a state by assigning an
amplitude to every possible position OR  by
assigning and amplitude to every possible
momentum

• In three dimensions, X, Y, and Z, are
compatible.

– Thus, to specify a state, you must assign an
amplitude to each possible position in three
dimensions.

– This requires three quantum numbers

– So apparently, one basis set is:
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Definition of Tensor product

• Suppose you have a system with 10 possible
states

• Now you want to enlarge your system by
adding ten more states to its Hilbert space.
– The dimensionality of the Hilbert space increases

from 10 to 20
– The system can now be found in one of 20

possible states
– This is a sum of two Hilbert sub-spaces
– One quantum number is required to specify

which state

• Instead, suppose you want to combine your
system with a second system, which has ten
states of its own
– The first system can be in 1 of its 10 states
– The second system can be in 1 of its 10 states

• The state of the second system is independent of
the state of the first system

– So two independent quantum numbers are
required to specify the combined state

• The dimensionality of the combined Hilbert
space thus goes from 10 to 10x10=100
– This combined Hilbert space is a

(Tensor) Product of the two Hilbert sub-spaces



Formalism

• Let H1  and H2 be two Hilbert spaces

– We will temporarily ‘tag’ states with a label to
specify which space the state belongs to

• Let the Hilbert space H12  be the tensor-

product of spaces H1  and H2 .

• The Tensor product state |ψ12〉=|ψ1〉(1) ⊗|ψ2〉(2)

belongs to H12.

• The KEY POINT TO ‘GET’ IS:

– Bras and kets in the same Hilbert space
‘attach’.

– BUT, Bras and kets in different Hilbert
spaces do not ‘attach’
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Schmidt Basis

• The easiest way to find a good basis for a
tensor product space is to use tensor products
of basis states from each sub-space

If:  {|n1〉(1) } ; n1=1,2,…,N1 is a basis in H1

{|n2〉(2) } ; n2=1,2,…,N2 is a basis in H2

It follows that:

{|n1, n2〉(12) }; |n1, n2〉(12)=|n1〉(1)⊗|n2〉(2) is a basis in H12.

If System 1 is in state:

and System 2 is in state:

Then the combined system is in state:

• Schmidt Decomposition Theorem:

All states in a tensor-product space can be
expressed as a linear combination of tensor
product states
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Entangled States

• The essence of quantum `weirdness’ lies in
the fact that there exist states in the tensor-
product space of physically distinct systems
that are not tensor product states

• A tensor-product state is of the form

– Tensor-product states are called ‘factorizable’

• The most general state is

– This may or may-not be ‘factorizable’

• Non-factorizable states are called ‘entangled’

– For an `entangled state’, each sub-
system has no independent objective
reality
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Configuration Space

• The state of a quantum system of N
particles in 3 dimensions lives in
‘configuration space’
– There are three quantum numbers

associated with each particle
• It takes 3N quantum numbers to specify a

state of the full system

– Coordinate Basis:

– Wavefunction:

– To specify a state of N particles in d
dimensions requires d·N  quantum
numbers
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(We don’t know about spin yet)
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So counting quantum numbers might be a good
way to check if you are using a valid basis

This form is the
coordinate system

independent
representation



Tensor Products of Operators

• THEOREM:
Let A 

(1) act in H1 , and B(2) act in H2 ,

Then the tensor product operator C(12)
 =A(1)⊗ B(2)

acts in H12 .

• PROOF:

• The action of C(12) on a tensor-product state:
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General form of Operators in
Tensor-product spaces

• The most general form of an operator in H12

is:

– Here |m,n〉 may or may not be a tensor
product state. The important thing is that
it takes two quantum numbers to specify
a basis state in H12

• A basis that is not formed from tensor-
product states is an ‘entangled-state’ basis

• In the beginning, you should always start
with a tensor-product basis as your ‘physical
basis’

– Then all operators are well-defined

– Just expand states and operators onto tensor-
product states

– Then match up the bras and kets with their
proper partners when taking inner products
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Upgrading Subspace Operators

• Any operator in H1  can be upgraded to an

operator in H12  by taking the tensor product

with the identity operator in H2 :

– If A1 is an observable in H1, then it is also an
observable in H12 (since it remains Hermitian
when upgraded).

– The spectrum of A1 remains the same after
upgrading

Proof:
Let

Then:
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Product of two Upgraded Operators

• Let A(1) and B(2) be observables in their
respective Hilbert spaces

• Let A(12)= A(1)⊗ I(2) and B(12)= I(1)⊗ B(2) .

• The product A(12)B(12) is given by A(1)
 ⊗ B(2)

– Proof:
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A1 ⊗ I2( ) I1 ⊗ B2( ) = A1I1 ⊗ I2B2
= A1 ⊗ B2



Compatible observables

• Let A(1) and B(2) be observables in their
respective Hilbert spaces

• Let A= A(1)⊗ I(2) and B= I(1)⊗ B(2) .

• Theorem: [A,B]=0
Proof:

• Conclusion: any operator in H1 , is ‘compatible’

with any operator in H2 ,.

• I.e. simultaneous eigenstates exist.

– Let A1 |a1〉= a1 |a1〉 and  B2 |b2〉= b2 |b2〉.

– Let a= a1 and  b= b2

– Let |ab〉= |a1〉 ⊗ |b2〉.

– Then AB|ab〉=ab|ab〉.
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‘And’ versus ‘Or’

• The tensor product correlates with a system
having property A and property B
– Dimension of combined Hilbert space is product

of dimensions of subspaces associated with A
and B

– Example: start with a system having 4 energy
levels. Let it interact with a 2 level system. The
Hilbert space of the combined system has 8
possible states.

• Hilbert spaces are added when a system can
have either property A or property B
– Dimension of combined Hilbert space is sum of

dimensions of subspaces associated with A and
B

– Example: start with a system having 4 energy
levels. Add 2 more energy levels to your model,
and the dimension goes from 4 to 6



Example #1 : Particle in Three Dimensions

• Let H1 be the Hilbert space of functions
in one dimension
– The projector is:

– So a basis is:

• Then H3= (H1)
3 would then be the

Hilbert space of square integrable
functions in three dimensions.
– Proof:

• Note: H3  is also the Hilbert space of
three particles in one-dimensional space
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Three-dimensional Operators

• We can define the vector operators:

• Note that: X = X(1)⊗I(2)
 ⊗I(3) and Py = I(1)⊗P 

(2)
 ⊗I(3)

so that [X, Py]=0.

• With

• We can use:
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Example #2: Two particles in One
Dimension

• For two particles in one-dimensional space,
the Hilbert space is (H1 )2.
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Hamiltonians

• One particle in three dimensions:
– Each component of momentum contributes

additively to the Kinetic Energy

• Two particles in one dimension:
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Conclusions

• The ‘take home’ messages are:
– The combined Hilbert space of two

systems, dimensions d1 and d2, has
dimension d1⊗2=d1·d2

– A physical basis set for the combined
Hilbert space, H1⊗2 can be formed by
taking all possible products of one basis
state from space H1 with one basis state
from H2.

– In a tensor product space, a bra from one
subspace can only attach to a ket from
the same subspace:

– For N particles (spin 0) in d dimensions,
d·N quantum numbers are required to
specify a unit-vector in any basis
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