Lecture 24: Tensor Product States

Phy851 Fall 2009

Basis sets for a particle in 3D

- Clearly the Hilbert space of a particle in three dimensions is not the same as the Hilbert space for a particle in one-dimension
- In one dimension, X and P are incompatible
- If you specify the wave function in coordinatespace, $\langle\mathbf{x} \mid \psi\rangle$, its momentum-space state is completely specified as well:
$\langle p \mid \psi\rangle=\int d x\langle p \mid x\rangle\langle x \mid \psi\rangle$
- You thus specify a state by assigning an amplitude to every possible position OR by assigning and amplitude to every possible momentum

$$
\psi(x)=\langle x \mid \psi\rangle \text { or } \quad \psi(p)=\langle p \mid \psi\rangle
$$

- In three dimensions, X, Y, and Z, are compatible.
- Thus, to specify a state, you must assign an amplitude to each possible position in three dimensions.
- This requires three quantum numbers

$$
\psi(x, y, z)=\langle x, y, z \mid \psi\rangle
$$

- So apparently, one basis set is:

$$
\{|x, y, z\rangle\}
$$

$$
\exists|x, y, z\rangle \forall(x, y, z) \in R^{3}
$$

Definition of Tensor product

- Suppose you have a system with 10 possible states
- Now you want to enlarge your system by adding ten more states to its Hilbert space.
- The dimensionality of the Hilbert space increases from 10 to 20
- The system can now be found in one of 20 possible states
- This is a sum of two Hilbert sub-spaces
- One quantum number is required to specify which state
- Instead, suppose you want to combine your system with a second system, which has ten states of its own
- The first system can be in 1 of its 10 states
- The second system can be in 1 of its 10 states
- The state of the second system is independent of the state of the first system
- So two independent quantum numbers are required to specify the combined state
- The dimensionality of the combined Hilbert space thus goes from 10 to $10 \times 10=100$
- This combined Hilbert space is a
(Tensor) Product of the two Hilbert sub-spaces

Formalism

- Let \mathcal{H}_{1} and \mathcal{H}_{2} be two Hilbert spaces
- We will temporarily 'tag' states with a label to specify which space the state belongs to

$$
|\psi\rangle^{(1)} \in \mathcal{H}_{1} \quad|\phi\rangle^{(2)} \in \mathcal{H}_{2}
$$

- Let the Hilbert space \mathcal{H}_{12} be the tensorproduct of spaces \mathcal{H}_{1} and \mathcal{H}_{2}.

$$
\mathcal{H}_{12}=\mathcal{H}_{1} \otimes \mathcal{H}
$$

- The Tensor product state $\left|\psi_{12}\right\rangle=\left|\psi_{1}\right\rangle^{(1)} \otimes\left|\psi_{2}\right\rangle^{(2)}$ belongs to \mathcal{H}_{12}.

- The KEY POINT TO 'GET' IS:

- Bras and kets in the same Hilbert space 'attach'.

$$
\left\langle\left.\psi_{1}\right|^{(1)} \rightarrow \leftarrow \mid \psi_{2}\right\rangle^{(1)} \Rightarrow\left\langle\psi_{1} \mid \psi_{2}\right\rangle
$$

- BUT, Bras and kets in different Hilbert spaces do not 'attach'

$$
\left\langle\left.\psi_{1}\right|^{(1)} \rightarrow \leftarrow \mid \varphi_{1}\right\rangle^{(2)} \Rightarrow\left|\varphi_{1}\right\rangle^{(2)}\left\langle\left.\psi_{1}\right|^{(1)}\right.
$$

Schmidt Basis

- The easiest way to find a good basis for a tensor product space is to use tensor products of basis states from each sub-space

If: $\left.\left\{\left|n_{1}\right\rangle\right\rangle^{(1)}\right\} ; n_{1}=1,2, \ldots, N_{1}$ is a basis in \mathcal{H}_{1}

$$
\left\{\left|n_{2}\right\rangle^{(2)}\right\} ; n_{2}=1,2, \ldots, N_{2} \text { is a basis in } \mathcal{H}_{2}
$$

It follows that:
$\left\{\left|n_{1}, n_{2}\right\rangle^{(12)}\right\} ;\left|n_{1}, n_{2}\right\rangle^{(12)}=\left|n_{1}\right\rangle^{(1)} \otimes\left|n_{2}\right\rangle^{(2)}$ is a basis in \mathcal{H}_{12}.
If System 1 is in state: $\quad\left|\psi_{1}\right\rangle^{(1)}=\sum_{m_{1}=1}^{N_{1}} a_{n_{1}}\left|n_{1}\right\rangle^{(1)}$
and System 2 is in state: $\left|\psi_{2}\right\rangle^{(2)}=\sum_{n_{2}=1}^{N_{2}} b_{n_{2}}\left|n_{2}\right\rangle^{(2)}$
Then the combined system is in state:

$$
\left|\psi_{1}, \psi_{2}\right\rangle^{(12)}=\left|\psi_{1}\right\rangle^{(1)} \otimes\left|\psi_{2}\right\rangle^{(2)}=\sum_{n_{1}=1 n_{2}=1}^{N_{1}} a_{n_{1}}^{N_{2}} b_{n_{2}}\left|n_{1} n_{2}\right\rangle^{(12)}
$$

- Schmidt Decomposition Theorem:

All states in a tensor-product space can be expressed as a linear combination of tensor product states

$$
\left|\psi_{12}\right\rangle^{(12)}=\sum_{n_{1}=1}^{N_{1}} \sum_{n_{2}=1}^{N_{2}} c_{n_{1} n_{2}}\left|n_{1}, n_{2}\right\rangle^{(12)}
$$

Entangled States

- The essence of quantum 'weirdness' lies in the fact that there exist states in the tensorproduct space of physically distinct systems that are not tensor product states
- A tensor-product state is of the form

$$
|\psi\rangle^{(12)}=\left|\psi_{1}\right\rangle^{(1)} \otimes\left|\psi_{2}\right\rangle^{(2)}
$$

- Tensor-product states are called 'factorizable'
- The most general state is

$$
\left|\psi_{12}\right\rangle^{(12)}=\sum_{n_{1}=1}^{N_{1}} \sum_{n_{2}=1}^{N_{2}} c_{n_{1} n_{2}}\left|n_{1,} n_{2}\right\rangle^{(12)}
$$

- This may or may-not be 'factorizable'
- Non-factorizable states are called 'entangled'
- For an `entangled state', each subsystem has no independent objective reality

Configuration Space

- The state of a quantum system of N particles in 3 dimensions lives in 'configuration space'
- There are three quantum numbers associated with each particle
- It takes 3 N quantum numbers to specify a state of the full system
- Coordinate Basis:

$$
\left\{\left|x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}, \ldots, x_{N}, y_{N}, z_{N}\right\rangle\right\}
$$

or we could just write

$$
\left\{\left|\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}\right\rangle\right\}
$$

This form is the
coordinate system independent

- Wavefunction:
representation

$$
\psi\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}\right)=\left\langle\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N} \mid \psi\right\rangle
$$

- To specify a state of N particles in d dimensions requires $d \cdot N$ quantum numbers

Tensor Products of Operators

- THEOREM:

Let $A^{(1)}$ act in \mathcal{H}_{1}, and $B^{(2)}$ act in \mathcal{H}_{2},
Then the tensor product operator $C^{(12)}=A^{(1)} \otimes B^{(2)}$ acts in \mathcal{H}_{12}.

- PROOF:

$$
\begin{aligned}
& A^{(1)}=\sum_{m} a_{m}\left|a_{m}\right\rangle^{(1)}\left\langle\left. a_{m}\right|^{(1)}\right. \\
& B^{(2)}=\sum_{m} b_{m}\left|b_{m}\right\rangle^{(2)}\left\langle\left. b_{m}\right|^{(2)}\right.
\end{aligned}
$$

$$
A^{(1)} \otimes B^{(2)}=\sum_{m, n} a_{m} b_{n}\left|a_{m}\right\rangle^{(1)}\left\langle\left. a_{m}\right|^{(1)} \otimes \mid b_{n}\right\rangle^{(2)}\left\langle\left. b_{n}\right|^{(2)}\right.
$$

$$
=\sum_{m, n} a_{m} b_{n}\left(\left|a_{m}\right\rangle^{(1)} \otimes\left|b_{n}\right\rangle^{(2)}\right)\left(\left\langle\left.a_{m}\right|^{(1)} \otimes\left\langle\left. b_{n}\right|^{(2)}\right)\right.\right.
$$

$$
C^{(12)}=\sum_{m, n} a_{m} b_{n}\left|a_{m}, b_{n}\right\rangle^{(12)}\left\langle a_{m},\left.b_{n}\right|^{(12)}\right.
$$

- The action of $C^{(12)}$ on a tensor-product state:

$$
\begin{gathered}
\left|\psi_{1}, \psi_{2}\right\rangle^{(12)}:=\left|\psi_{1}\right\rangle^{(1)} \otimes\left|\psi_{2}\right\rangle^{(2)} \\
C^{(12)}\left|\psi_{1}, \psi_{2}\right\rangle^{(12)}=\sum_{m, n} a_{m} b_{n}\left|a_{m}, b_{n}\right\rangle^{(12)}\left\langle a_{m} \mid \psi_{1}\right\rangle^{(1)}\left\langle b_{n} \mid \psi_{2}\right\rangle^{(2)}
\end{gathered}
$$

General form of Operators in Tensor-product spaces

- The most general form of an operator in \mathcal{H}_{12} is:

$$
\begin{aligned}
& C^{(12)}=\sum_{m, n} c_{m, n ; m^{\prime}, n^{\prime}}|m, n\rangle^{(12)}\left\langle m^{\prime},\left.n^{\prime}\right|^{(12)}\right. \\
& c_{m, n ; m^{\prime}, n^{\prime}}:=\left\langle m,\left.n\right|^{(12)} C^{(12)} \mid m^{\prime}, n^{\prime}\right\rangle^{(12)}
\end{aligned}
$$

- Here $|m, n\rangle$ may or may not be a tensor product state. The important thing is that it takes two quantum numbers to specify a basis state in \mathscr{H}_{12}
- A basis that is not formed from tensorproduct states is an 'entangled-state' basis
- In the beginning, you should always start with a tensor-product basis as your 'physical basis'
- Then all operators are well-defined
- Just expand states and operators onto tensorproduct states
- Then match up the bras and kets with their proper partners when taking inner products

Upgrading Subspace Operators

- Any operator in H_{1} can be upgraded to an operator in H_{12} by taking the tensor product with the identity operator in H_{2} :

$$
A^{(12)}=A^{(1)} \otimes I^{(2)}
$$

- If A_{1} is an observable in H_{1}, then it is also an observable in H_{12} (since it remains Hermitian when upgraded).
- The spectrum of A_{1} remains the same after upgrading Proof:

Let

$$
A^{(1)}\left|a_{m}\right\rangle^{(1)}=a_{m}\left|a_{m}\right\rangle^{(1)}
$$

Then:

$$
\begin{aligned}
A^{(1)} \otimes I^{(2)}\left(\left|a_{m}\right\rangle^{(1)} \otimes|\psi\rangle^{(2)}\right) & =\left(A^{(1)}\left|a_{m}\right\rangle^{(1)}\right) \otimes\left(I^{(2)}|\psi\rangle^{(2)}\right) \\
& =a_{m}\left|a_{m}\right\rangle^{(1)} \otimes|\psi\rangle^{(2)} \\
& =a_{m}\left(\left|a_{m}\right\rangle^{(1)} \otimes|\psi\rangle^{(2)}\right)
\end{aligned}
$$

Note that $\left|\psi_{2}\right\rangle$ is completely arbitrary, but $\left|a_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle$ is an eigenstate of $A^{(12)}$

Product of two Upgraded Operators

- Let $A^{(1)}$ and $B^{(2)}$ be observables in their respective Hilbert spaces
- Let $A^{(12)}=A^{(1) \otimes} I^{(2)}$ and $B^{(12)=} I^{(1) \otimes} B^{(2)}$.
- The product $A^{(12)} B^{(12)}$ is given by $A^{(1)} \otimes B^{(2)}$
- Proof:

$$
\begin{aligned}
\left(A_{1} \otimes I_{2}\right)\left(I_{1} \otimes B_{2}\right) & =A_{1} I_{1} \otimes I_{2} B_{2} \\
& =A_{1} \otimes B_{2}
\end{aligned}
$$

Compatible observables

- Let $A^{(1)}$ and $B^{(2)}$ be observables in their respective Hilbert spaces
- Let $A=A^{(1)} \otimes I^{(2)}$ and $B=I^{(1)} \otimes B^{(2)}$.
- Theorem: $[A, B]=0$

Proof: $\quad[A, B]=A B-B A$ $=\left(A_{1} \otimes I_{2}\right)\left(I_{1} \otimes B_{2}\right)-\left(I_{1} \otimes B_{2}\right)\left(A_{1} \otimes I_{2}\right)$
$=\left(A_{1} I_{1}\right) \otimes\left(I_{2} B_{2}\right)-\left(I_{1} A_{1}\right) \otimes\left(B_{2} I_{2}\right)$
$=A_{1} \otimes B_{2}-A_{1} \otimes B_{2}=0$

- Conclusion: any operator in \mathcal{H}_{1}, is 'compatible' with any operator in \mathcal{H}_{2},
- I.e. simultaneous eigenstates exist.
- Let $A_{1}\left|a_{1}\right\rangle=a_{1}\left|a_{1}\right\rangle$ and $B_{2}\left|b_{2}\right\rangle=b_{2}\left|b_{2}\right\rangle$.
- Let $a=a_{1}$ and $b=b_{2}$
- Let $|a b\rangle=\left|a_{1}\right\rangle \otimes\left|b_{2}\right\rangle$.
- Then $A B|a b\rangle=a b|a b\rangle$.

'And' versus 'Or'

- The tensor product correlates with a system having property A and property B
- Dimension of combined Hilbert space is product of dimensions of subspaces associated with A and B
- Example: start with a system having 4 energy levels. Let it interact with a 2 level system. The Hilbert space of the combined system has 8 possible states.
- Hilbert spaces are added when a system can have either property A or property B
- Dimension of combined Hilbert space is sum of dimensions of subspaces associated with A and B
- Example: start with a system having 4 energy levels. Add 2 more energy levels to your model, and the dimension goes from 4 to 6

Example \#1 : Particle in Three Dimensions

- Let \mathcal{H}_{1} be the Hilbert space of functions in one dimension
- The projector is: $I_{1}=\int d x|x\rangle\langle x|$
- So a basis is: $\{|x\rangle\}$
- Then $\mathcal{H}_{3}=\left(\mathcal{H}_{1}\right)^{3}$ would then be the Hilbert space of square integrable functions in three dimensions.
- Proof: $I_{3}=I_{1} \otimes I_{1} \otimes I_{1}$

$$
=\int d x|x\rangle\langle x| \otimes \int d y|y\rangle\langle y| \otimes \int d z|z\rangle\langle z|
$$

$$
=\int d x d y d z|x\rangle\langle x| \otimes|y\rangle\langle y| \otimes|z\rangle\langle z|
$$

$$
=\int d x d y d z(|x\rangle \otimes|y\rangle \otimes|z\rangle)(\langle x| \otimes\langle y| \otimes\langle z|)
$$

$$
=\int d x d y d z|x, y, z\rangle\langle x, y, z|
$$

$$
\begin{gathered}
|x, y, z\rangle \equiv|x\rangle \otimes|y\rangle \otimes|z\rangle \quad \psi(x, y, z)=\langle x, y, z \mid \psi\rangle \\
|\psi\rangle=\int d x d y d z|x, y, z\rangle \psi(x, y, z)
\end{gathered}
$$

- Note: \mathcal{H}_{3} is also the Hilbert space of three particles in one-dimensional space

Three-dimensional Operators

- We can define the vector operators:

$$
\begin{gathered}
\vec{R}=X \hat{x}+Y \hat{y}+Z \hat{z} \\
\vec{P}=P_{x} \hat{x}+P_{y} \hat{y}+P_{z} \hat{z} \\
\vec{R}|x, y, z\rangle=(x \hat{x}+y \hat{y}+z \hat{z})|x, y, z\rangle \\
\text { or } \vec{R}|\vec{r}\rangle=\vec{r}|\vec{r}\rangle
\end{gathered}
$$

- Note that: $X=X^{(1)} \otimes I^{(2)} \otimes I^{(3)}$ and $P_{y}=I^{(1) \otimes P^{(2)} \otimes I^{(3)}}$ so that $\left[X, P_{y}\right]=0$.
- With

$$
\begin{array}{ll}
R_{1}=X & P_{1}=P_{x} \\
R_{2}=Y & P_{2}=P_{y} \\
R_{3}=Z & P_{3}=P_{z}
\end{array}
$$

- We can use: $\left[R_{j}, R_{k}\right]=\left[P_{j}, P_{k}\right]=0$

$$
\left[R_{j}, P_{k}\right]=i \hbar \delta_{j k}
$$

Example \#2: Two particles in One Dimension

- For two particles in one-dimensional space, the Hilbert space is $\left(\mathcal{H}_{1}\right)^{2}$.

$$
\begin{gathered}
\left|x_{1}, x_{2}\right\rangle=\left|x_{1}\right\rangle^{(1)} \otimes\left|x_{2}\right\rangle^{(2)} \\
\psi\left(x_{1}, x_{2}\right)=\left\langle x_{1}, x_{2} \mid \psi\right\rangle \\
I=\int d x_{1} d x_{2}\left|x_{1}, x_{2}\right\rangle\left\langle x_{1}, x_{2}\right|=1 \\
X_{1}=X_{1} \otimes I_{2} \\
P_{2}=I_{1} \otimes P_{2} \\
e t c \ldots \\
{\left[X_{j}, X_{k}\right]=\left[P_{j}, P_{k}\right]=0} \\
{\left[X_{j}, P_{k}\right]=i \hbar \delta_{j k}}
\end{gathered}
$$

Hamiltonians

- One particle in three dimensions:
- Each component of momentum contributes additively to the Kinetic Energy

$$
\begin{aligned}
H & =\frac{1}{2 m}\left(P_{x}^{2}+P_{y}^{2}+P_{z}^{2}\right)+V(X, Y, Z) \\
& =\frac{1}{2 m} \vec{P} \cdot \vec{P}+V(\vec{R})
\end{aligned}
$$

- Two particles in one dimension:

$$
H=\frac{P_{1}^{2}}{2 m_{1}}+\frac{P_{2}^{2}}{2 m_{2}}+V\left(X_{1}, X_{2}\right)
$$

Conclusions

- The 'take home' messages are:
- The combined Hilbert space of two systems, dimensions d_{1} and d_{2}, has dimension $d_{1 \otimes 2}=d_{1} \cdot d_{2}$
- A physical basis set for the combined Hilbert space, $\mathcal{H}_{1 \otimes 2}$ can be formed by taking all possible products of one basis state from space \mathscr{H}_{1} with one basis state from \mathscr{H}_{2}.

$$
\begin{aligned}
& \left\{\left|n_{1}\right\rangle^{(1)}\right\} \supseteq \mathcal{H}_{1}, \quad\left\{\left|n_{2}\right\rangle^{(2)}\right\} \supseteq \mathscr{H}_{2} \\
& \left|n_{1}, n_{2}\right\rangle:=\left|n_{1}\right\rangle^{(1)} \otimes\left|n_{2}\right\rangle^{(2)} \\
& \therefore\left\{\left|n_{1}, n_{2}\right\rangle\right\} \supseteq \mathscr{H}_{12}:=\mathcal{H}_{1} \otimes \mathcal{H}_{2}
\end{aligned}
$$

- In a tensor product space, a bra from one subspace can only attach to a ket from the same subspace:

$$
\begin{aligned}
& \left\langle\left.\psi_{1}\right|^{(1)} \rightarrow \leftarrow \mid \psi_{2}\right\rangle^{(1)} \Rightarrow\left\langle\psi_{1} \mid \psi_{2}\right\rangle \\
& \left\langle\left.\psi_{1}\right|^{(1)} \rightarrow \leftarrow \mid \varphi_{1}\right\rangle^{(2)} \Rightarrow\left|\varphi_{1}\right\rangle^{(2)}\left\langle\left.\psi_{1}\right|^{(1)}\right.
\end{aligned}
$$

- For N particles ($\operatorname{spin} 0$) in d dimensions, $d \cdot N$ quantum numbers are required to

$$
\left|n_{1 x}, n_{1 y}, n_{1 z}, n_{2 x}, n_{2 y}, n_{2 z}, \ldots, n_{N x}, n_{N y}, n_{N_{z}}\right\rangle
$$

