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Goals

1. Understand how to use different coordinate
systems in QM (cartesian, spherical,…)

2. Derive the quantum mechanical properties
of Angular Momentum
• Use an algebraic approach similar to what we

did for the Harmonic Oscillator

3. Use the resulting theory to treat spherically
symmetric problems in three dimensions
• Calculating the Hydrogen atom energy levels

will be our target goal



Motion In 3Dimensions

• For a particle moving in three dimensions,
there is a distinct quantum state for every
point in space.
– Thus each position state is now labeled by a

vector

– Vector operators are really three operators

• Coordinate system not unique:
– For example, we could use spherical

coordinates
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You can never go wrong with Cartesian
Coordinates

• In all other coordinate systems, the unit
vectors are also operators
– so must be treated carefully

• Eigenstates:

• For each point in space there is a position
eigenstate

• How we want to label these points is up to
us:
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Orthogonality

• In three dimensions, the orthogonality
condition becomes:

– Cartesian coordinates:

– Spherical coordinates:

– Mixing coordinates:
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Wavefunctions

• Wavefunctions are defined in the usual way
as:
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Momentum

• The three-dimensional momentum vector
operator is:

• The three-dimensional Hamiltonian is

• In Cartesian components, this becomes:
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Angular Momentum

• We can decompose the momentum operator
onto spherical components as:

• The unit-vector operators are:

• From the above decomposition, we are led to
define the Angular momentum as:

• This is not the usual definition (L=RxP) but is
equivalent.
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