Lecture 26: Angular Momentum II

Phy851 Fall 2009

The Angular Momentum Operator

- The angular momentum operator is defined as:

$$
\vec{L}=\vec{R} \times \vec{P}
$$

- It is a vector operator:

$$
\vec{L}=L_{x} \vec{e}_{x}+L_{y} \vec{e}_{y}+L_{z} \vec{e}_{z}
$$

- According to the definition of the crossproduct, the components are given by:

$$
\begin{aligned}
& L_{x}=Y P_{z}-Z P_{y} \\
& L_{y}=Z P_{x}-X P_{z} \\
& L_{z}=X P_{y}-Y P_{x}
\end{aligned}
$$

Commutation Relations

- The commutation relations are given by:

$$
\begin{aligned}
& {\left[L_{x}, L_{y}\right]=i \hbar L_{z}} \\
& {\left[L_{y}, L_{z}\right]=i \hbar L_{x}} \\
& {\left[L_{z}, L_{x}\right]=i \hbar L_{y}}
\end{aligned}
$$

- These are not definitions, they are just a consequence of $[X, P]=i \hbar$
- Any three operators which obey these relations are considered as 'generalized angular momentum operators'
- Compact notation:
$\left[L_{j}, L_{k}\right]=i \hbar \varepsilon_{j k \ell} L_{\ell}$
'Levi Cevita tensor'

$$
\varepsilon_{j k l}\left\{\begin{array}{c}
0 \text { if any two indices } \\
\text { are the same } \\
1 \text { cyclic permutations } \\
\text { of } x, y, z \text { (or } 1,2,3 \text {) } \\
-1 \text { cyclic permutations } \\
\text { of } z, y, x \text { (or } 3,2,1 \text {) }
\end{array}\right.
$$

Simultaneous Eigenstates

- In the HW will see that:

$$
\begin{aligned}
& {\left[L^{2}, L_{x}\right]=0} \\
& {\left[L^{2}, L_{y}\right]=0} \\
& {\left[L^{2}, L_{z}\right]=0}
\end{aligned}
$$

- Where:

$$
L^{2}=L_{x}^{2}+L_{y}^{2}+L_{z}^{2}
$$

- This means that simultaneous eigenstates of L^{2} and L_{z} exist
- Let:

$$
\begin{aligned}
& L^{2}|a, b\rangle=a|a, b\rangle \\
& L_{z}|a, b\rangle=b|a, b\rangle
\end{aligned}
$$

- We want to find the allowed values of a and b.

Algebraic solution to angular momentum eigenvalue problem

- In a analogy to what we did for the Harmonic Oscillator, we now define raising and lowering operators:

$$
\begin{aligned}
& L_{+}=L_{x}+i L_{y} \\
& L_{-}=L_{x}-i L_{y}
\end{aligned}
$$

- Lets consider the action of L_{+}first: $\begin{array}{r}\text { recall our approach } \\ \text { for } \mathrm{SHO}:\end{array} A^{\dagger} A\left(A^{\dagger}|\varepsilon\rangle\right)=(\varepsilon+1)\left(A^{\dagger}|\varepsilon\rangle\right)$

$$
\begin{aligned}
& L_{z}\left(L_{+}|a, b\rangle\right)=L_{z} L_{x}|a, b\rangle+i L_{z} L_{y}|a, b\rangle \\
& {\left[L_{z}, L_{x}\right]=i \hbar L_{y} \quad \rightarrow \quad L_{z} L_{x}=i \hbar L_{y}+L_{x} L_{z}} \\
& {\left[L_{z}, L_{y}\right]=-i \hbar L_{x} \quad \rightarrow \quad L_{z} L_{y}=-i \hbar L_{x}+L_{y} L_{z}} \\
& L_{z}\left(L_{+}|a, b\rangle\right)=i \hbar L_{y}|a, b\rangle+L_{x} L_{z}|a, b\rangle+\hbar L_{x}|a, b\rangle+i L_{y} L_{z}|a, b\rangle \\
& =\left(L_{x}+i L_{y}\right) L_{z}|a, b\rangle+\hbar\left(L_{x}+i L_{y}\right)|a, b\rangle \\
& L_{z}\left(L_{+}|a, b\rangle\right)=(b+\hbar) L_{+}|a, b\rangle
\end{aligned}
$$

Ladder Argument

$$
L_{z}\left(L_{+}|a, b\rangle\right)=(b+\hbar) L_{+}|a, b\rangle
$$

- Conclusion: if $|a, b\rangle$ is an eigenstate of L_{z} with eigenvalue b, then there is also an eigenstate $|a, b+\hbar\rangle$ with eigenvalue $b+\hbar$
- Thus we can say:

$$
L_{+}|a, b\rangle=C_{+a b}|a, b+\hbar\rangle
$$

- Similarly, we can readily show that:

$$
L_{z}\left(L_{-}|a, b\rangle\right)=(b-\hbar) L_{-}|a, b\rangle
$$

- So that we must have also:

$$
L_{-}|a, b\rangle=C_{-a b}|a, b-\hbar\rangle
$$

- This allows us to say:

1. If $|a, b\rangle$ exists, then $|a, b+\hbar\rangle$ exists or $C_{+\mathrm{ab}}=0$
2. If $|a, b\rangle$ exists, then $|a, b-\hbar\rangle$ exists or $C_{-a b}=0$

Establishing Some Lower Bounds

- Starting from:

$$
L_{x}=Y P_{z}-Z P_{y}
$$

- It follows that

$$
\begin{aligned}
L_{x}^{\dagger} & =P_{z}^{\dagger} Y^{\dagger}-Z^{\dagger} P_{y}^{\dagger} \\
& =P_{z} Y-Z P_{y} \\
& =Y P_{z}-P_{y} Z \\
& =L_{x}
\end{aligned}
$$

- Which makes sense because L_{x} is an observable
- Therefore, we have:

$$
\begin{aligned}
\langle a, b| L_{x}^{2}|a, b\rangle & =\langle a, b| L_{x}^{\dagger} L_{x}|a, b\rangle \\
& \left.=\left|L_{x}\right| a, b\right\rangle\left.\right|^{2}
\end{aligned}
$$

- Result:

$$
\begin{aligned}
& \langle a, b| L_{x}^{2}|a, b\rangle \geq 0 \\
& \langle a, b| L_{y}^{2}|a, b\rangle \geq 0
\end{aligned}
$$

The Trick

- We note that:

$$
L^{2}-L_{z}^{2}=L_{x}^{2}+L_{y}^{2}
$$

$\left\langle a, b \mid\left(L^{2}-L_{z}^{2}\right) a, b\right\rangle=\langle a, b| L_{x}^{2}|a, b\rangle+\langle a, b| L_{y}^{2}|a, b\rangle$

- This means that:

$$
\left\langle a, b \mid\left(L^{2}-L_{z}^{2}\right) a, b\right\rangle \geq 0
$$

- By definition, we have:

$$
\left.\left.\left(L^{2}-L_{z}^{2}\right) a, b\right\rangle=\left(a-b^{2}\right) a, b\right\rangle
$$

- Combining the two gives us:

$$
\begin{gathered}
a-b^{2} \geq 0 \\
a \geq b^{2} \\
a \geq 0 \quad-\sqrt{a} \leq b \leq \sqrt{a}
\end{gathered}
$$

The conclusion

$$
a \geq 0 \quad-\sqrt{a} \leq b \leq \sqrt{a}
$$

- Conclusion:

1. There is a $b_{\text {min }}$ for every allowed a
2. There is a $b_{\text {max }}$ for every allowed a

$$
-\sqrt{a} \leq b_{\min }(a) \quad b_{\max }(a) \leq \sqrt{a}
$$

- Thus we must have:

$$
L_{+}\left|a, b_{\max }(a)\right\rangle=0
$$

- So that no states with higher b can exist
- Which requires:

$$
C_{+a b_{\max }(a)}=0
$$

- Similarly,

$$
C_{-a b_{\min }(a)}=0
$$

Just a Little Further to Go...

$$
C_{+a b_{\max }(a)}=0 \quad C_{-a b_{\min }(a)}=0
$$

- If we have:

$$
L_{+}\left|a, b_{\max }(a)\right\rangle=0
$$

- Then we must have:

$$
L_{-} L_{+}\left|a, b_{\max }(a)\right\rangle=0
$$

- But:

$$
\begin{aligned}
L_{-} L_{+} & =\left(L_{x}-i L_{y}\right)\left(L_{x}+i L_{y}\right) \\
& =L_{x}^{2}+i L_{x} L_{y}-i L_{y} L_{x}+L_{y}^{2} \\
& =L^{2}-L_{z}^{2}-\hbar L_{z} \\
& =L_{x}^{2}+L_{y}^{2}+i\left[L_{x}, L_{y}\right]
\end{aligned}
$$

Starting to see the light at the end of the tunnel...

$$
\begin{gathered}
L_{-} L_{+}=L^{2}-L_{z}^{2}-\hbar L_{z} \\
L_{-} L_{+}\left|a, b_{\max }(a)\right\rangle=0
\end{gathered}
$$

- This means:

$$
\begin{gathered}
\left(L^{2}-L_{z}^{2}-\hbar L_{z}\right)\left|a, b_{\max }\right\rangle=0 \\
\left(a-b_{\max }^{2}-\hbar b_{\max }\right)\left|a, b_{\max }\right\rangle=0 \\
a-b_{\max }^{2}-\hbar b_{\max }=0 \\
a=b_{\max }^{2}(a)-\hbar b_{\max }(a)
\end{gathered}
$$

Not quite done yet...

$$
L_{-} L_{+}\left|a, b_{\max }(a)\right\rangle=0 \Rightarrow a=b_{\max }^{2}(a)-\hbar b_{\max }(a)
$$

- Similarly, we can show that:

$$
L_{+} L_{-}\left|a, b_{\min }(a)\right\rangle=0
$$

- Which together with:

$$
\begin{aligned}
L_{+} L_{-} & =\left(L_{x}+i L_{y}\right)\left(L_{x}-i L_{y}\right) \\
& =L_{x}^{2}-i L_{x} L_{y}+i L_{y} L_{x}+L_{y}^{2} \\
& =L_{x}^{2}+L_{y}^{2}-i\left[L_{x}, L_{y}\right] \\
& =L^{2}-L_{z}^{2}+\hbar L_{z}
\end{aligned}
$$

- Gives us:

$$
a=b_{\min }^{2}(a)+\hbar b_{\min }(a)
$$

Keep moving forward...

$$
\begin{aligned}
& a=b_{\text {max }}(a)\left(b_{\text {max }}(a)+\hbar\right) \\
& a=b_{\text {min }}(a)\left(b_{\min }(a)-\hbar\right)
\end{aligned}
$$

- From $\mathrm{a}=\mathrm{a}$ we get:

$$
\begin{gathered}
b_{\max }^{2}(a)+\hbar b_{\max }(a)=b_{\min }^{2}(a)-\hbar b_{\min }(a) \\
b_{\min }^{2}(a)-\hbar b_{\min }(a)-b_{\max }^{2}(a)-\hbar b_{\max }(a)=0
\end{gathered}
$$

- The solution is:

$$
b_{\min }=\frac{1}{2}\left(\hbar \pm \sqrt{\hbar^{2}+4 b_{\max }^{2}+4 \hbar b_{\max }}\right)
$$

$$
b_{\min }=\frac{1}{2}\left(\hbar \pm\left(\hbar+2 b_{\max }\right)\right)
$$

$$
b_{\min }=-b_{\max }
$$

$$
b_{\min }<b_{\max }
$$

Ladder Termination Requirement

- MAIN POINT SO FAR:
- For a given $a, b_{\min }(a)$ and $b_{\text {max }}(a)$ are the only b values from which the lowering/raising operators do not create new states.
- So we can build a ladder by starting at $b_{\text {min }}$ and acting with L_{+}to create a new state at $b_{\text {min }}+\hbar$, etc...

$b_{\text {min }} \quad b_{\text {min }}+\hbar$
$b_{\text {min }}+m \hbar$
- The only way the ladder will terminate is if we have $\quad b_{\max }=b_{\min }+N \hbar$
- For some integer N
- With $\mathrm{b}_{\min }=-\mathrm{b}_{\max }$, this leads to: $2 b_{\max }=N \hbar$

$$
b_{\max }=\frac{N}{2} \hbar
$$

- This means that the maximum z-component of angular momentum must always be a halfinteger or whole integer times \hbar

Quantization of angular momentum

- Lets replace $\mathrm{b}_{\text {max }}$ with the symbol $\ell \rightarrow \ell=N / 2$.
- The allowed eigenvalues of L_{z} are then:

$$
b=m \hbar ; \quad m=-\ell,-\ell+1,-\ell+2, \ldots,+\ell
$$

- From the condition:

$$
a=b_{\max }(a)\left(b_{\max }(a)+\hbar\right)
$$

- We see that the corresponding eigenvalue of L^{2} is:

$$
\begin{gathered}
a=\hbar \ell(\hbar \ell+\hbar) \\
a=\hbar^{2} \ell(\ell+1)
\end{gathered}
$$

- Conclusion:
- We can relabel the states as: $|a, b\rangle \rightarrow|\ell, m\rangle$
- Then we have:

$$
\begin{gathered}
L^{2}|\ell, m\rangle=\hbar^{2} \ell(\ell+1)|\ell, m\rangle \\
L_{z}|\ell, m\rangle=\hbar m|\ell, m\rangle
\end{gathered}
$$

The FINAL SLIDE

- Now we have:

$$
\begin{aligned}
\left(L_{+}\right)^{\dagger} & =L_{-} \\
\left.\left|L_{+}\right| a, b\right\rangle\left.\right|^{2} & =\left|C_{+a b}\right|^{2} \\
\left.\left|L_{+}\right| a, b\right\rangle\left.\right|^{2} & =\langle a, b| L_{-} L_{+}|a, b\rangle \\
& =a-b^{2}-\hbar b \\
C_{+a b} & =\sqrt{a-b^{2}-\hbar b}
\end{aligned}
$$

- Likewise:

$$
\begin{aligned}
C_{-a b} & =\sqrt{a-b^{2}+\hbar b} \\
a & =\hbar^{2} \ell(\ell+1) \\
b & =\hbar m
\end{aligned}
$$

$$
L_{ \pm}|\ell, m\rangle=\hbar \sqrt{\ell(\ell+1)-m(m \pm 1)}|\ell, m \pm 1\rangle
$$

