
Lecture 28:
The Quantum Two-body Problem

Phy851 Fall 2009



Two interacting particles
• Consider a system of two particles with no

external fields

• By symmetry, the interaction energy can only
depend on the separation distance:

• From our experience with Classical Mechanics,
we might want to treat separately the
Center-of-mass and relative motion:
– Center-of-mass coordinate:

– Relative coordinate:

– This is recommended because the potential
depends only on the relative coordinate:
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Center-of-mass and relative momentum

• How do we go about finding the center-of-
mass and relative-motion momentum
operators:
– Can we use:

• Answer: No, this is very wrong!

• Lets try instead to use what we know from
classical mechanics:
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Transformation to Center-of-mass
coordinates

• We have defined new coordinates:

• We have guessed that the corresponding
momentum operators are:

• To verify, we need to check the commutation
relations:

• So our choices for the momentum operators
were correct
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Inverse Transformation

• The inverse transformations work out to:
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Transforming the Kinetic Energy Operator

• Using the inverse transformations:

• We find:

• So that:

R
m

RR CM

rrr

1
1

µ
+=

R
m

RR CM

rrr

2
2

µ
−=

PP
M

m
P CM

rrr
+= 1

1

PP
M

m
P CM

rrr
−= 2

2

212
2

2
1

11

2
PPP

M

m
P

M

m
PP CMCM +⋅+=⋅

rrrr

222
2

2
2

22

2
PPP

M

m
P

M

m
PP CMCM +⋅−=⋅

rrrr

2

21

2
2
21

2

2
2

1

2
1 11

2

1

222
P

mm
P

M

mm

m

P

m

P
CM 








++

+
=+

µ2222

22

2

2
2

1

2
1 P

M

P

m

P

m

P CM +=+

1221

21 111

mmmm

mm
+=

+
=

µ



The New Hamiltonian

• Becomes:

• Note that:

• We call this ‘separability’
– System is ‘separable’ in COM and relative

coordinates

• When a system is separable, it means we can
solve each problem separately, and use the
tensor product to construct the full
eigenstates of the complete system
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Eigenstates of the Separated
Systems

• The eigenstates of this Hamiltonian are free-
particle eigenstates

• Bound states:

• Continuum states:
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Full Eigenstates

• We can form tensor product states:
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Tensor Product States are
Eigenstates of the Full Hamiltonian
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Example: Hydrogen Atom

• For the hydrogen system (e + p) we have:

• Switch to relative and COM coordinates
gives:

• The eigenstates of HCM  in  H(C)  are free-
particle eigenstates:

• The non-trivial task is to find the eigenstates
of Hrel in H(R):
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