given two particles
masses: M_{1} and M_{2}
positions: $\quad \vec{r}_{1}$ and \vec{r}_{2}
Q1: what are the C.O.M and relative coordinates? $\vec{R}, \vec{n}=$?
Q2: What is the reduced mass? $\mu=$?
Q3: What are $\stackrel{\rightharpoonup}{p}, \vec{p}$ in terns of \vec{p} and \vec{p}_{2}
Just in terms of classical mechanics
Lecture 28:
The Quantum Two-body Problem

Phy851 Fall 2009
Common Mistake:

$$
\left.\begin{array}{l}
\vec{p}=\frac{m_{1} \vec{p}_{1}+m_{2} \vec{p}_{2}}{m_{1}+m_{2}} \\
\vec{p}=\vec{p}_{1}-\vec{p}_{2}
\end{array}\right\} \text { cong }
$$

Two interacting particles

- Consider a system of two particles with no external fields
- By symmetry, the interaction energy can only depend on the separation distance:

$$
H=\frac{P_{1}^{2}}{2 m_{1}}+\frac{P_{2}^{2}}{2 m_{2}}+V\left(\left|\vec{R}_{1}-\vec{R}_{2}\right|\right)
$$

- From our experience with Classical Mechanics, we might want to treat separately the Center-of-mass and relative motion:
- Center-of-mass coordinate:

$$
\vec{R}_{C M}=\frac{m_{1} \vec{R}_{1}+m_{2} \vec{R}_{2}}{m_{1}+m_{2}}
$$

- Relative coordinate:

$$
\vec{R}=\vec{R}_{1}-\vec{R}_{2}
$$

- This is recommended because the potential depends only on the relative coordinate:

$$
V\left(\left|\vec{R}_{1}-\vec{R}_{2}\right|\right)=V(R)
$$

Center-of-mass and relative momentum

- How do we go about finding the center-ofmass and relative-motion momentum operators:
- Can we use:

$$
\vec{P}_{C M}=\frac{m_{1} \vec{P}_{1}+m_{2} \vec{P}_{2}}{m_{1}+m_{2}}
$$

$$
\vec{P}=\vec{P}_{1}-\vec{P}_{2}
$$

$$
?
$$

- Answer: No, this is very wrong!
- Lets try instead to use what we know from classical mechanics:

$$
\begin{array}{c|c}
M=m_{1}+m_{2} & \mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \\
\vec{V}_{C M}=\frac{d}{d t} \vec{R}_{C M}=\frac{m_{1} \vec{V}_{1}+m_{2} \vec{V}_{2}}{m_{1}+m_{2}} & \vec{V}=\frac{d}{d t} \vec{R}=\vec{V}_{1}-\vec{V}_{2} \\
\vec{P}_{C M}=M \vec{V}_{C M} & \vec{P}=\mu \vec{V} \\
=m_{1} \vec{V}_{1}+m_{2} \vec{V}_{2} & =\frac{m_{1} m_{2}}{m_{1}+m_{2}}\left(\vec{V}_{1}-\vec{V}_{2}\right) \\
\vec{P}_{C M}=\vec{P}_{1}+\vec{P}_{2} & \vec{P}=\frac{m_{2} P_{1}-m_{1} P_{2}}{m_{1}+m_{2}}
\end{array}
$$

Transformation to Center-of-mass coordinates

- We have defined new coordinates:

$$
\vec{R}_{C M}=\frac{m_{1} \vec{R}_{1}+m_{2} \vec{R}_{2}}{m_{1}+m_{2}} \quad \vec{R}=\vec{R}_{1}-\vec{R}_{2}
$$

- We have guessed that the corresponding momentum operators are:

$$
\vec{P}_{C M}=\vec{P}_{1}+\vec{P}_{2} \quad \vec{P}=\frac{m_{2} P_{1}-m_{1} P_{2}}{m_{1}+m_{2}}
$$

- To verify, we need to check the commutation relations:
$\left[X_{C M}, P_{C M, x}\right]=\frac{m_{1}}{m_{1}+m_{2}}\left[X_{1}, P_{1 x}\right]+\frac{m_{2}}{m_{1}+m_{2}}\left[X_{2}, P_{2 x}\right]=i \hbar$
$\left[X, P_{x}\right]=\frac{m_{2}}{m_{1}+m_{2}}\left[X_{1}, P_{1, x}\right]+\frac{m_{1}}{m_{1}+m_{2}}\left[X_{2}, P_{2, x}\right]=i \hbar$
$\left[X_{C M}, P_{x}\right]=\frac{m_{1} m_{2}}{\left(m_{1}+m_{2}\right)^{2}}\left[X_{1}, P_{1, x}\right]-\frac{m_{2} m_{1}}{\left(m_{1}+m_{2}\right)^{2}}\left[X_{2}, P_{2, x}\right]=0$
$\left[X, P_{C M, x}\right]=\left[X_{1}, P_{1, x}\right]-\left[X_{2}, P_{2, x}\right]=0$
- So our choices for the momentum operators were correct

Inverse Transformation

$$
\begin{array}{ll}
\vec{R}_{C M}=\frac{m_{1} \vec{R}_{1}+m_{2} \vec{R}_{2}}{m_{1}+m_{2}} & \vec{R}=\vec{R}_{1}-\vec{R}_{2} \\
\vec{P}_{C M}=\vec{P}_{1}+\vec{P}_{2} & \vec{P}=\frac{m_{2} P_{1}-m_{1} P_{2}}{m_{1}+m_{2}}
\end{array}
$$

- The inverse transformations work out to:

$$
\begin{aligned}
& \vec{R}_{1}=\vec{R}_{C M}+\frac{\mu}{m_{1}} \vec{R} \\
& \vec{R}_{2}=\vec{R}_{C M}-\frac{\mu}{m_{2}} \vec{R} \\
& \vec{P}_{1}=\frac{m_{1}}{M} \vec{P}_{C M}+\vec{P} \\
& \vec{P}_{2}=\frac{m_{2}}{M} \vec{P}_{C M}-\vec{P}
\end{aligned}
$$

Transforming the Kinetic Energy Operator

- Using the inverse transformations:

$$
\begin{array}{ll}
\vec{R}_{1}=\vec{R}_{C M}+\frac{\mu}{m_{1}} \vec{R} & \vec{P}_{1}=\frac{m_{1}}{M} \vec{P}_{C M}+\vec{P} \\
\vec{R}_{2}=\vec{R}_{C M}-\frac{\mu}{m_{2}} \vec{R} & \vec{P}_{2}=\frac{m_{2}}{M} \vec{P}_{C M}-\vec{P}
\end{array}
$$

- We find:

$$
\begin{aligned}
& \vec{P}_{1} \cdot \vec{P}_{1}=\frac{m_{1}^{2}}{M^{2}} P_{C M}^{2}+\frac{2 m_{1}}{M} \vec{P} \cdot \vec{P}_{C M}+P^{2} \\
& \vec{P}_{2} \cdot \vec{P}_{2}=\frac{m_{2}^{2}}{M^{2}} P_{C M}^{2}-\frac{2 m_{2}}{M} \vec{P} \cdot \vec{P}_{C M}+P^{2}
\end{aligned}
$$

- So that:

$$
\begin{gathered}
\frac{P_{1}^{2}}{2 m_{1}}+\frac{P_{2}^{2}}{2 m_{2}}=\frac{m_{1}+m_{2}}{2 M^{2}} P_{C M}^{2}+\frac{1}{2}\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right) P^{2} \\
\frac{1}{\mu}=\frac{m_{1}+m_{2}}{m_{1} m_{2}}=\frac{1}{m_{2}}+\frac{1}{m_{1}} \\
\frac{P_{1}^{2}}{2 m_{1}}+\frac{P_{2}^{2}}{2 m_{2}}=\frac{P_{C M}^{2}}{2 M}+\frac{P^{2}}{2 \mu}
\end{gathered}
$$

The New Hamiltonian

$$
H=\frac{P_{1}^{2}}{2 m_{1}}+\frac{P_{2}^{2}}{2 m_{2}}+V\left(\vec{R}_{1}-\vec{R}_{2}\right)
$$

- Becomes:

$$
H=\frac{P_{C M}^{2}}{2 M}+\frac{P^{2}}{2 \mu}+V(R)
$$

- Note that:

$$
\begin{gathered}
H=H_{C M}+H_{r e l} \\
H_{C M}=\frac{P_{C M}^{2}}{2 M} \quad H_{r e l}=\frac{P^{2}}{2 \mu}+V(R)
\end{gathered}
$$

- We call this 'separability'
- System is 'separable' in COM and relative coordinates
- When a system is separable, it means we can solve each problem separately, and use the tensor product to construct the full eigenstates of the complete system

Eigenstates of the Separated Systems
 $$
H_{C M}=\frac{P_{C M}^{2}}{2 M} \in \mathcal{H}^{(c)}
$$

- The eigenstates of this Hamiltonian are freeparticle eigenstates

$$
\begin{aligned}
\left|\vec{p}_{C M}\right\rangle^{(C)} \left\lvert\, \begin{array}{c}
\vec{P}_{C M}\left|\vec{p}_{C M}\right\rangle^{(C)}=\vec{p}_{C M}\left|\vec{p}_{C M}\right\rangle^{(C)} \\
H_{C M}\left|\vec{p}_{C M}\right\rangle^{(C)}=\frac{p_{C M}^{2}}{2 M}\left|\vec{p}_{C M}\right\rangle^{(C)} \\
I^{(C)}=\int_{-\infty}^{+\infty} d^{3} p_{C M}\left|\vec{p}_{C M}\right\rangle\left\langle\left.\vec{p}_{C M}\right|^{(C)}\right. \\
H_{\text {rel }}
\end{array}=\frac{P^{2}}{2 \mu}+V(R) \in \mathcal{H}^{(R)}\right.
\end{aligned}
$$

- Bound states:

$$
H_{r e l}|n, m\rangle^{(R)}=E_{n}|n, m\rangle^{(R)}
$$

n is the 'principle quantum number' \rightarrow labels energy levels

- Continuum states: $\quad H_{r e l}|\vec{k}\rangle^{(R)}=E(\vec{k})|\vec{k}\rangle^{(R)}$

$$
I^{(R)}=\sum_{n=1}^{n_{\text {max }}} \sum_{m=1}^{d(n)}|n, m\rangle\left\langle n,\left.m\right|^{(R)}+\int_{-\infty}^{+\infty} d^{3} k \mid \vec{k}\right\rangle\left\langle\left.\vec{k}\right|^{(R)}\right.
$$

Full Eigenstates

$$
\begin{aligned}
H_{C M}\left|\vec{p}_{C M}\right\rangle^{(C)} & =\frac{p_{C M}^{2}}{2 M}\left|\vec{p}_{C M}\right\rangle^{(C)} \\
H_{\text {rel }}|n, m\rangle^{(R)} & =E_{n}|n, m\rangle^{(R)} \\
H_{\text {rel }}|\vec{k}\rangle^{(R)} & =E(\vec{k})|\vec{k}\rangle^{(R)}
\end{aligned}
$$

- We can form tensor product states:

$$
\begin{gathered}
\mathcal{H}=\mathcal{H}_{r e l} \otimes \mathcal{H}_{C M} \\
\left|\vec{p}_{C M}, n, m\right\rangle:=\left|\vec{p}_{C M}\right\rangle^{(C)} \otimes|n, m\rangle^{(R)} \\
\left|\vec{p}_{C M}, \vec{k}\right\rangle:=\left|\vec{p}_{C M}\right\rangle^{(C)} \otimes|\vec{k}\rangle^{(R)}
\end{gathered}
$$

$$
\begin{aligned}
I & =I^{(C)} \otimes I^{(R)} & & \text { 'and' } \\
I^{(R)} & =I_{\text {bound }}^{(R)}+I_{\text {continuum }}^{(R)} & & \text { 'or' }
\end{aligned}
$$

$$
I=I^{(C)} \otimes I_{\text {bound }}^{(R)}+I^{(C)} \otimes I_{\text {cont }}^{(R)}
$$

Tensor Product States are Eigenstates of the Full Hamiltonian

$$
H\left|\vec{p}_{C M}, n, m\right\rangle=\left(\frac{p_{C M}^{2}}{2 M}+E_{n}\right)\left|\vec{p}_{C M}, n, m\right\rangle
$$

- Proof:

$$
\begin{gathered}
H\left|\vec{p}_{C M}, n, m\right\rangle \\
=\left(H_{C M}^{(C)}+H_{r e l}^{(R)}\right)\left|\vec{p}_{C M}\right\rangle^{(C)} \otimes|n, m\rangle^{(R)} \\
=H_{C M}^{(C)}\left|\vec{p}_{C M}\right\rangle^{(C)} \otimes|n, m\rangle^{(R)}+H_{r e l}^{(R)}\left|\vec{p}_{C M}\right\rangle^{(C)} \otimes|n, m\rangle^{(R)} \\
=\left(H_{C M}^{(C)}\left|\vec{p}_{C M}\right\rangle^{(C)}\right) \otimes|n, m\rangle^{(R)}+\left|\vec{p}_{C M}\right\rangle^{(C)} \otimes\left(H_{r e l}^{(R)}|n, m\rangle^{(R)}\right) \\
=\frac{p_{C M}^{2}}{2 M}\left|\vec{p}_{C M}\right\rangle^{(C)} \otimes|n, m\rangle^{(R)}+\left|\vec{p}_{C M}\right\rangle^{(C)} \otimes E_{n}|n, m\rangle^{(R)} \\
=\left(\frac{p_{C M}^{2}}{2 M}+E_{n}\right)\left|\vec{p}_{C M}\right\rangle^{(R)} \otimes|n, m\rangle^{(C)} \\
H\left|\vec{p}_{C M}, n, m\right\rangle=\left(\frac{p_{C M}^{2}}{2 M}+E_{n}\right)\left|\vec{p}_{C M}, n, m\right\rangle
\end{gathered}
$$

Example: Hydrogen Atom

- For the hydrogen system $(e+p)$ we have:

$$
H=\frac{P_{e}^{2}}{2 m_{e}}+\frac{P_{p}^{2}}{2 m_{p}}-\frac{e^{2}}{4 \pi \varepsilon_{0}\left|\vec{R}_{e}-\vec{R}_{p}\right|}
$$

- Switch to relative and COM coordinates gives:

$$
H=\frac{P_{C M}^{2}}{2 M}+\frac{P^{2}}{2 \mu}-\frac{e^{2}}{4 \pi \varepsilon_{0} R}=H_{C M}+H_{r e l}
$$

- The eigenstates of $H_{C M}$ in $\mathcal{H}^{(C)}$ are freeparticle eigenstates:

$$
\left\{\left|\vec{p}_{C M}\right\rangle^{(C)}\right\}: H_{C M}\left|\vec{p}_{C M}\right\rangle^{(C)}=\frac{p_{C M}^{2}}{2 M}\left|\vec{p}_{C M}\right\rangle^{(C)}
$$

- The non-trivial task is to find the eigenstates of $H_{\text {rel }}$ in $\mathcal{H}^{(R)}$:

$$
H_{r e l}=\frac{P^{2}}{2 \mu}-\frac{e^{2}}{4 \pi \varepsilon_{0} R}
$$

