
Lecture I:  Dirac Notation

• To describe a physical system, QM assigns a
complex number (`amplitude’) to each distinct
available physical state.
– (Or alternately: two real numbers)

– What is a `distinct physical state’?

• Consider a system with M distinct available
states
– The 2M real numbers can be viewed as a vector in

an 2M-dimensional real-valued vector space

– Or alternatively as a vector in an M-dimensional
complex-valued vector space

– We will refer to this abstract vector space as
`Hilbert Space’ or `state space’

– Any vector in this space corresponds to a possible
quantum-mechanical state. The number of such
quantum states is uncountable infinity

• Just as calculus provides the mathematical basis
for Classical Mechanics, the mathematical basis
for QM is linear algebra
– Vectors, matrices, eigenvalues, rotations, etc… are

key concepts

Various common vector notations:

1. Vector notation:

– Just a name, an abstraction that refers to
something physical

2. Unit vectors:

– Unit vectors are predefined in physical
terms

– Components are projections onto unit
vectors

– Unit vectors are orthonormal

3. Column vector:

– Unit vectors are implied

`Dirac notation’:

– Just new symbols for same concepts
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`ket’

`inner product’



Added catch since QM vectors are complex

– Transpose operation replaced by ‘Hermitian
conjugation’ or ‘dagger’ operation

– ‘†’ is transpose plus complex conjugation

• Projectors and Closure relations:

– This proves the `closure relation’:
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The summation is over a complete set of unit vectors that
spans any Hilbert sub-space is equal to the identity
operator in that sub-space

•The entire Hilbert space is a trivial sub-space

• Norm of a vector:

– a.k.a.  magnitude, length

• To compute the norm in terms of the

components along a set of orthogonal unit
vectors:

– Insert the identity
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Old notation:



• To avoid confusion, keep in mind that ‘|  !’
indicates a Hilbert-space vector, the ‘"’  in |" !’
is just a label

– We could call it anything
•  |" ! , |# ! , |$ ! , |3 ! , |Alice !

– We just need to clearly define our labels

• “let |"(t) ! be the state of our system at time t.”

• “let |x ! be the state in which the particle lies at
position x.”

– Here x is a placeholder which could take on any
numerical value. I.e. defining the state |x ! as above
actually defines an infinite set of vectors, one for
each point on the real axis.

– This is exactly how the symbol ‘x ’ is used when you
say `f(x) = cos(x)’

• ‘let |j ! be the state in which our system is in the jth

quantized energy level.
– Here j is a placeholder for an arbitrary integer

Avoid being confused by implied
meanings of various symbols

Summary

• There are ‘ket’s and ‘bra’s:

– ket: |" !

• A ket is a vector in an M dimensional Hilbert
space, where M is the number of distinct
physical states of a system

– bra: %"|

• A bra is a transposed, conjugated ket

• Put a bra and a ket together to get a c-
number

– %"|#! := a c-number

• c-number := complex number

• Unit vectors:

– An M dimensional Hilbert space is spanned by
M orthonormal unit vectors

– {|j!}={|1!, |2!, |3!, …, |M! }   ( { } = ‘the set of’ )

– %j|k! = &jk              ( &jk  is ‘Kronecker delta function’)

» 1 if j=k

» 0 else

– Closure relation:
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