Lecture I: Dirac Notation

- To describe a physical system, QM assigns a complex number ('amplitude') to each distinct available physical state.
- (Or alternately: two real numbers)
- What is a 'distinct physical state'?
- Consider a system with M distinct available states
- The $2 M$ real numbers can be viewed as a vector in an 2M-dimensional real-valued vector space
- Or alternatively as a vector in an M-dimensional complex-valued vector space
- We will refer to this abstract vector space as 'Hilbert Space' or 'state space'
- Any vector in this space corresponds to a possible quantum-mechanical state. The number of such quantum states is uncountable infinity
- Just as calculus provides the mathematical basis for Classical Mechanics, the mathematical basis for QM is linear algebra
- Vectors, matrices, eigenvalues, rotations, etc... are key concepts

Various common vector notations:

1. Vector notation: $\vec{r}(t)$

- Just a name, an abstraction that refers to something physical

2. Unit vectors: $\vec{r}(t)=r_{1}(t) \vec{e}_{1}+r_{2}(t) \vec{e}_{2}+r_{3}(t) \vec{e}_{3}$

- Unit vectors are predefined in physical terms

$$
r_{1}(t)=\vec{r} \cdot \vec{e}_{1}
$$

- Components are projections onto unit vectors $\quad \vec{e}_{1} \cdot \vec{e}_{2}=0 \quad \vec{e}_{1} \cdot \vec{e}_{1}=1$
- Unit vectors are orthonormal

3. Column vector:

- Unit vectors are implied $\vec{r}(t)=\left(\begin{array}{l}r_{1}(t) \\ r_{2}(t) \\ r_{3}(t)\end{array}\right)$

'Dirac notation':

- Just new symbols for same concepts ' ${ }^{\text {ket' }}$

$$
\vec{r}(t) \rightarrow|\psi(t)\rangle,|\varphi(t)\rangle,|\Psi(t)\rangle, \ldots \quad \text { ' bra' }
$$

$$
\vec{r}^{T}(t) \rightarrow\langle\psi(t)|,\langle\varphi(t)|,\langle\Psi(t)|, \ldots
$$

$$
\vec{e}_{j} \rightarrow|j\rangle,|n\rangle,\left|a_{n}\right\rangle,|r\rangle,|p\rangle,|n, m\rangle,\left|E_{n}\right\rangle,\left|E_{n}, m\right\rangle, \ldots
$$

$$
\vec{r} t)=r_{1}(t) \vec{e}_{1}+r_{2}(t) \vec{e}_{2}+r_{3}(t) \vec{e}_{3} \rightarrow|\psi(t)\rangle=c_{1}(t)|1\rangle+c_{2}(t)|2\rangle+c_{3}(t)|3\rangle
$$

$$
\vec{a} \cdot \vec{b}=\vec{a}^{T} \vec{b}=\langle a \mid b\rangle \quad \text { 'inner product' }
$$

$$
r_{j}(t)=\vec{e}_{j} \cdot \vec{r}(t) \rightarrow c_{j}(t)=\langle j \mid \psi(t)\rangle
$$

Added catch since $Q M$ vectors are complex

- Transpose operation replaced by 'Hermitian conjugation' or 'dagger' operation

$$
\langle b \mid a\rangle=\langle a \mid b\rangle^{*}
$$

- 't' is transpose plus complex conjugation

$$
\vec{r}^{T}=(\vec{r})^{T} \rightarrow\langle\psi|=(|\psi\rangle)^{\dagger}
$$

- Projectors and Closure relations:

$$
\begin{aligned}
\vec{r} & =r_{1} \vec{e}_{1}+r_{2} \vec{e}_{2}+\ldots+\vec{r}_{M} \vec{e}_{M} \\
& =\vec{e}_{1}\left(\vec{e}_{1} \cdot \vec{r}\right)+\vec{e}_{2}\left(\vec{e}_{2} \cdot \vec{r}\right)+\ldots+\vec{e}_{M}\left(\vec{e}_{M} \cdot \vec{r}\right) \\
|\psi\rangle & =c_{1}|1\rangle+c_{1}|1\rangle+\ldots+c_{M}|M\rangle \\
& =|1\rangle\langle 1 \mid \psi\rangle+|2\rangle\langle 2 \mid \psi\rangle+\ldots+|M\rangle\langle M \mid \psi\rangle \\
& =(|1\rangle\langle 1|+|2\rangle\langle 2|+\ldots+|M\rangle\langle M|)|\psi\rangle
\end{aligned}
$$

- This proves the 'closure relation': $\sum_{j=1}^{M}|j\rangle\langle j|=1$

The summation is over a complete set of unit vectors that spans any Hilbert sub-space is equal to the identity operator in that sub-space
-The entire Hilbert space is a trivial sub-space

- Norm of a vector:
- a.k.a. magnitude, length

$$
\begin{aligned}
\|r\| & =\sqrt{\vec{r} \cdot \vec{r}} \\
& =\sqrt{\vec{r}^{T} \vec{r}} \longrightarrow\|\psi\|=\sqrt{\langle\psi \mid \psi\rangle}
\end{aligned}
$$

- To compute the norm in terms of the components along a set of orthogonal unit vectors:
- Insert the identity

$$
\begin{aligned}
\langle\psi \mid \psi\rangle & =\langle\psi| 1|\psi\rangle \\
& =\langle\psi\rangle\left(\sum_{j=1}^{M}|j\rangle\langle j|\right)|\psi\rangle \\
& =\sum_{j=1}^{M}\langle\psi \mid j\rangle\langle j \mid \psi\rangle \\
& =\sum_{j=1}^{M} c_{j}^{*} c_{j}=\sum_{j=1}^{M}\left|c_{j}\right|^{2}
\end{aligned}
$$

Old notation:

$$
\begin{aligned}
\vec{r} \cdot \vec{r} & =r_{1}^{2}+r_{2}^{2}+\ldots \\
& =\sum_{j} r_{j}^{2}
\end{aligned}
$$

Avoid being confused by implied
 meanings of various symbols

- To avoid confusion, keep in mind that ' $\mid>$ ' indicates a Hilbert-space vector, the ' ψ ' in $|\psi\rangle$ ' is just a label
- We could call it anything
- $|\psi\rangle,|\varphi\rangle,|\phi\rangle,|3\rangle, \mid$ Alice \rangle
- We just need to clearly define our labels
- "let $|\psi(t)\rangle$ be the state of our system at time $t . "$
- "let $|x\rangle$ be the state in which the particle lies at position x."
- Here x is a placeholder which could take on any numerical value. I.e. defining the state $|x\rangle$ as above actually defines an infinite set of vectors, one for each point on the real axis.
- This is exactly how the symbol ' x ' is used when you say ${ }^{`} f(x)=\cos (x)$
- 'let $|j\rangle$ be the state in which our system is in the $j^{\text {th }}$ quantized energy level.
- Here j is a placeholder for an arbitrary integer

Summary

- There are 'ket's and 'bra's:
- ket: $|\psi\rangle$
- A ket is a vector in an M dimensional Hilbert space, where M is the number of distinct physical states of a system
- bra: $\langle\psi|$
- A bra is a transposed, conjugated ket
- Put a bra and a ket together to get a cnumber
- $\langle\psi \mid \varphi\rangle:=$ a c-number
- c-number := complex number
- Unit vectors:
- An M dimensional Hilbert space is spanned by M orthonormal unit vectors
- $\{|j\rangle\}=\{11\rangle,|2\rangle,|3\rangle, \ldots,|M\rangle\} \quad(\}=$ 'the set of')
- $\langle\mathrm{j} k\rangle=\delta_{\mathrm{jk}} \quad$ (δ_{jk} is 'Kronecker delta function')
» 1 if $\mathrm{j}=\mathrm{k}$
» 0 else
- Closure relation:

$$
\sum_{j=1}^{M}|j\rangle\langle j|=1
$$

