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Intrinsic Spin
• Empirically, we have found that most

particles have an additional internal
degree of freedom, called ‘spin’

• The Stern-Gerlach experiment (1922):

• Each type of particle has a discrete
number of internal states:
– 2 states --> spin _
– 3 states --> spin 1
– Etc….



Interpretation
• It is best to think of spin as just an

additional quantum number needed to
specify the state of a particle.
– Within the Dirac formalism, this is

relatively simple and requires no new
physical concepts

• The physical meaning of spin is not well-
understood

• Fro Dirac eq. we find that for QM to be
Lorentz invariant requires particles to
have both anti-particles and spin.

• The ‘spin’ of a particle is a form of
angular momentum



Spin Operators
• Spin is described by a vector operator:

• The components satisfy angular
momentum commutation relations:

• This means simultaneous eigenstates of
S2 and Sz exist:
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Allowed quantum numbers

• For any set of 3 operators satisfying the
angular momentum algebra, the allowed
values of the quantum numbers are:

• For orbital angular momentum, the
allowed values were further restricted to
only integer values by the requirement
that the wavefunction be single-valued

• For spin, the quantum number, s, can
only take on one value
– The value depends on the type of particle
– S=0: Higgs
– s=1/2: Electrons, positrons, protons,

neutrons, muons,neutrinos, quarks,…
– s=1: Photons, W, Z, Gluon
– s=2: graviton
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Complete single particle basis

• A set of 5 commuting operators which
describe the independent observables of
a single particle are:

– Or equivalently:

• Some possible basis choices:

• When dealing with a single-particle, it is
permissible to drop the s quantum
number
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Intrinsic Magnetic Dipole
Moment

• Due to spin, an electron has an intrinsic
magnetic dipole moment:

– ge is the electron g-factor
– For an electron, we have:

– The is the most precisely measured
physical quantity

• For most purposes, we can take ge≈ 2,
so that

• For any charged particle we have:
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Hamiltonian for an electron in
a magnetic field

• Because the electron is a point-particle,
the dipole-approximation is always valid
for the spin degree of freedom

• Any `kinetic’ energy associated with S2

is absorbed into the rest mass

• To obtain the full Hamiltonian of an
electron, we must add a single term:
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Uniform Weak Magnetic Field
as a perturbation

• For a weak uniform field, we find

• With the addition of a spherically
symmetric potential, this gives:

– If the zero-field eigenstates are known

– The weak-uniform-field eigenstates are:
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Wavefunctions

• In Dirac notation, all spin does is add
two extra quantum numbers

• The separate concept of a ‘spinor’ is
unnecessary

• Coordinate basis:

– Eigenstate of

• Projector:

• Wavefunction:
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Spinor Notation:

• We think of them as components of a
length 2s+1 vector, where each
component is a wavefunction

• Example: s=1/2

• Spinor wavefunction definition:

• If external and internal motions are not
entangled, we can factorize the spinor
wavefunction:
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Schrödinger's Equation

• We start from:

• Hit from left with with

• Insert the projector

• Let:

– For s=1/2:
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Example: Electron in a Uniform
Field
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• This is just a representation of two
separate equations:

• We would have arrived at these same
equations using Dirac notation, without
ever mentioning ‘Spinors’



Pauli Matrices

• Here we see that we have recovered one
of the Pauli Matrices:

• The other Pauli matrices are:

• Then in the basis of eigenstates of
we have:

• If we only care about spin dynamics:
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Two particles with spin

• How do we treat a system of two
particles with masses M1 and M2, charges
q1 and q2, and spins s1 and s2?

– Basis:

– Wavefunction:

– Hamiltonian w/out motional degrees of
freedom:

– Hamiltonian w/ motional degrees of
freedom:
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Example #1

• A spin _ particle is in the ↑ state with
respect to the z-axis. What is the
probability of finding it in the ↓-state
with respect to the x-axis?

• Let:

• In the basis,                   the operator
for the x-component of spin is:

• By symmetry, σx must have eigenvalues
+1 and -1

• The eigenvector corresponding to -1 is
defined by:
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Example #1 continued:

• This implies that:
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Example #2

• Two identical spin-1/2 particles are placed
in a uniform magnetic field. Ignoring
motional degrees of freedom, what are the
energy-levels and degeneracies of the
system?

• States:

– Z-axis chosen along B-field

• Hamiltonian:

• Basis states are already eigenstates:
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