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Intrinsic Spin

e Empirically, we have found that most
particles have an additional internal
degree of freedom, called *spin’

e The Stern-Gerlach experiment (1922):
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e Each type of particle has a discrete
number of internal states:
— 2 states --> spin _
- 3 states --> spin 1
- Etc....




Interpretation

It is best to think of spin as just an
additional quantum number needed to
specify the state of a particle.

— Within the Dirac formalism, this is

relatively simple and requires no new
physical concepts

The physical meaning of spin is not well-
understood

Fro Dirac eq. we find that for QM to be
Lorentz invariant requires particles to
have both anti-particles and spin.

The ‘spin’ of a particle is a form of
angular momentum




Spin Operators

Spin is described by a vector operator:

—

S=5e +5e +5. e

The components satisfy angular
momentum commutation relations:

S.,S,]=ihS.
S,,S.]=ihS,
S.,S,]=ihS,

This means simultaneous eigenstates of
S2 and S, exist:

S* =8, +8+8S

S’ S,ms>

S,ms> =h’s(s +1)

SZ

S,ms>

S,ms>=hm
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Allowed quantum numbers

e For any set of 3 operators satisfying the
angular momentum algebra, the allowed
values of the quantum numbers are:

JEV L3,
m €L jmj+1yj}

e For orbital angular momentum, the
allowed values were further restricted to
only integer values by the requirement
that the wavefunction be single-valued

e For spin, the quantum number, s, can
only take on one value
— The value depends on the type of particle
- $=0: Higgs
- s=1/2: Electrons, positrons, protons,
neutrons, muons,neutrinos, quarks,...
- s=1: Photons, W, Z, Gluon
- s§=2:! graviton

mSE{—S,—S+1,...,S} "‘




Complete single particle basis

e A set of 5 commuting operators which
describe the independent observables of
a single particle are:

5 o2
R,S*,S.
— Or equivalently:
2 2
R,L*,L S*S,
e Some possible basis choices:

Vo5m,)

1P-5.m,)
{r,é, m,,s, mS>}

{n,Z,mg,S,mJ}

e When dealing with'a single-particle, it is
permissible to drop the s quantum
number



Intrinsic Magnetic Dipole

Moment

e Due to spin, an electron has an intrinsic
magnetic dipole moment:

. 8
U, =—

‘

S

2m,

- g, is the electron g-factor
— For an electron, we have:

g, =2.0023193043622 + 0.0000000000015

— The is the most precisely measured
physical quantity

e For most purposes, we can take g.~ 2,
so that

e For any charged particle we have:

-~ 8q g Each particle
w= 'M has a different

g-factor ' '




Hamiltonian for an electron in
a magnetic field

e Because the electron is a point-particle,
the dipole-approximation is always valid
for the spin degree of freedom

e Any kinetic’ energy associated with S2
is absorbed into the rest mass

e To obtain the full Hamiltonian of an
electron, we must add a single term: |

= ,FMB

d s 57

H — H+1L5-B(R)

me

H = LEB +]e[A(R) | -[e|O(R) + Ll S-B(R)
2m, m

e
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Uniform Weak Magnetic Field

as a perturbation
e For a weak uniform field, we find

2
H = F + MBO (LZ + 2SZ)
2m, 2m

e e

e With the addition of a spherically

symmetric potential, this gives:
P’ e|B
H=—+V(R)+‘ 5
2m, 2m

(LZ + 2SZ)

e

— If the zero-field eigenstates are known

Ho‘n,é,m€>=EO,n

n,Z,m€>

- The weak-uniform-field eigenstates are:

‘{n,é,mf,ms>}
H‘n,f,mg,ms> = En,mbms‘n,é,mf,mJ
En,mg,ms = EO,n + luBBO (mf + 2ms)
7
Up =E ‘Bohr Magneton’ ||‘




Wavefunctions

In Dirac notation, all spin does is add
two extra quantum numbers

The separate concept of a ‘spinor’ is
unnecessary

Coordinate basis: {7_;, S, ms>}

- Eigenstate of R, Sz | SZ

Projector:
S
3 — —
I = E fd r‘r,s,ms><r,s,ms
mg=-sp

Wavefunction:

Y, (77):= <77,S,ms w)




Spinor Notation:

Y, (77):= <77,S,mS >

e We think of them as components of a
length 2s+1 vector, where each
component is a wavefunction

e Example: s=1/2

y, (7 )=(F,s,%

(7 )=(F,s,~Ly)

Spinor wavefunction definition:
v, G (v, F)
- )" (w_(r)
e If external and internal motions are not

entangled, we can factorize the spinor
wavefunction:

ID=( W) (] B

I



Schrodinger's Equation

e We start from:

d
7y =H

e Hit from left with with (7>,

d

ihE@,ms W) =(F,m |Hyp)
e Insert the projector
. d e - !/ — ndi !/ —/ !
lh5<r,ms ‘1/)> = mszbsld3r <r,ms ‘H‘r ,ms><r ,m t/)>

Clet:  H =%|[1]]+ AR

— Fors=1/2: - -
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Example: Electron in a Uniform

Field
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e This is just a representation of two

separate equations:

Y, (F)"' ;“BBOUJT (’7)

—1/J¢(’7)—MBB(>1/J¢(’7)

e We would have arrived at these same
equations using Dirac notation, without
ever mentioning ‘Spinors’
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mi(
dt

ih

o)

b1

Pauli Matrices
o)l e

Here we see that we have recovered one
of the Pauli Matrices:

1 0
O =
-0 -1

The other Pauli matrices are:

0 1 0 —i
o = O, =
i1 00 i 0

Then in the basis of eigenstates of S,
we have: LA

S==5
2

V?-iu,B,—
2m, s " 0¢

B( i o ))Mr

e If we onlv care ahniit anin d\/namic%
6 «Q <

A AR N



Two particles with spin

e How do we treat a system of two
particles with masses M, and M,, charges
g, and g,, and spins s; and s,?

— Basis:

His 81, M ‘Fz,Sz,mS2>

s1?

- Wavefunction:

"y

Yy omsym, (7,1,) = <If1,S1,mS1;r2,S2,mS2

- Hamiltonian w/out motional degrees of
freedom:

9 3 .5/p 4> & . n(p
H=_V11S1°B(R1)_V22S2°B(Rz)

- Hamiltonian w/ motional degrees of
freedom:

1 (~ =, = 5N DS B
- —qA(R))+qICI)(R1)——lSl’B(R1)
2M, o M,

1 (= - = — qg, = =, =
2—%032_92A(R2))+%(I)(R2)_V22S2'B(Rz)

H



Example #1

A spin _ particle is in the 1 state with

respect to the z-axis. What is the
probability of finding it in the |-state

with respect to the x-axis?

Let: ‘TJJ> ="|‘Z>

l
In the basis, MZ>’ ‘I’Z>J the operator
for the x-component of spin is:

0 1
O, =
1 0
By symmetry, o, must have eigenvalues
+1 and -1

The eigenvector corresponding to -1 is

defined by:
b)y=-4.)

Gx

I



Example #1 continued:

0x=(0 1) at)=-1.)

1 0

.)=-0]l.)

(1[4 =~(1.]o[V,) @

=—(}.[4,)

e This implies that:

1= (1)-[1)




Example #2

e Two identical spin-1/2 particles are placed
in @ uniform magnetic field. Ignoring
motional degrees of freedom, what are the
energy-levels and degeneracies of the

system?
o States: {'M\>, >, >J

— Z-axis chosen along B-field

Hamiltonian: f7 — _ quO (S + Szz
2M

Basis states are already eigenstates:

H|t1)= -T2 pp) p =T8T g
H\H>=H\H>= E,=0; d,=2
HV ) =T ) g TR g
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