Lecture 33:
 Quantum Mechanical Spin

Phy851 Fall 2009

Intrinsic Spin

- Empirically, we have found that most particles have an additional internal degree of freedom, called 'spin'
- The Stern-Gerlach experiment (1922):

- Each type of particle has a discrete number of internal states:
- 2 states --> spin _
- 3 states --> spin 1
- Etc....

Interpretation

- It is best to think of spin as just an additional quantum number needed to specify the state of a particle.
- Within the Dirac formalism, this is relatively simple and requires no new physical concepts
- The physical meaning of spin is not wellunderstood
- Fro Dirac eq. we find that for QM to be Lorentz invariant requires particles to have both anti-particles and spin.
- The 'spin' of a particle is a form of angular momentum

Spin Operators

- Spin is described by a vector operator:

$$
\vec{S}=S_{x} \vec{e}_{x}+S_{y} \vec{e}_{y}+S_{z} \vec{e}_{z}
$$

- The components satisfy angular momentum commutation relations:

$$
\begin{aligned}
& {\left[S_{x}, S_{y}\right]=i \hbar S_{z}} \\
& {\left[S_{y}, S_{z}\right]=i \hbar S_{x}} \\
& {\left[S_{z}, S_{x}\right]=i \hbar S_{y}}
\end{aligned}
$$

- This means simultaneous eigenstates of S^{2} and S_{z} exist:

$$
\begin{gathered}
S^{2}=S_{x}^{2}+S_{y}^{2}+S_{z}^{2} \\
S^{2}\left|s, m_{s}\right\rangle=\hbar^{2} s(s+1)\left|s, m_{s}\right\rangle \\
S_{z}\left|s, m_{s}\right\rangle=\hbar m\left|s, m_{s}\right\rangle
\end{gathered}
$$

Allowed quantum numbers

- For any set of 3 operators satisfying the angular momentum algebra, the allowed values of the quantum numbers are:

$$
\begin{gathered}
j \in\left\{0, \frac{1}{2}, 1, \frac{3}{2}, \ldots\right\} \\
m_{j} \in\{-j,-j+1, \ldots, j\}
\end{gathered}
$$

- For orbital angular momentum, the allowed values were further restricted to only integer values by the requirement that the wavefunction be single-valued
- For spin, the quantum number, s, can only take on one value
- The value depends on the type of particle
- S=0: Higgs
- s=1/2: Electrons, positrons, protons, neutrons, muons,neutrinos, quarks,...
- s=1: Photons, W, Z, Gluon
- s=2: graviton

$$
m_{s} \in\{-s,-s+1, \ldots, s\}
$$

Complete single particle basis

- A set of 5 commuting operators which describe the independent observables of a single particle are:

$$
\vec{R}, S^{2}, S_{z}
$$

- Or equivalently:

$$
R, L^{2}, L_{z}, S^{2}, S_{z}
$$

- Some possible basis choices:

$$
\begin{gathered}
\left.\left\{\vec{r}, s, m_{s}\right\rangle\right\} \\
\left.\left\{\vec{p}, s, m_{s}\right\rangle\right\} \\
\left.\left\{r, \ell, m_{\ell}, s, m_{s}\right\rangle\right\} \\
\left.\left\{n, \ell, m_{\ell}, s, m_{s}\right\rangle\right\}
\end{gathered}
$$

- When dealing with:a single-particle, it is permissible to drop the s quantum number

Intrinsic Magnetic Dipole Moment

- Due to spin, an electron has an intrinsic magnetic dipole moment:

$$
\vec{\mu}_{e}=-\frac{g_{e}|e|}{2 m_{e}} \vec{S}
$$

- g_{e} is the electron g -factor
- For an electron, we have:
$g_{e}=2.0023193043622 \pm 0.0000000000015$
- The is the most precisely measured physical quantity
- For most purposes, we can take $g_{\mathrm{e}} \approx 2$, so that

$$
\vec{\mu}_{e}=-\frac{|e|}{m_{e}} \vec{S}
$$

- For any charged particle we have:

$$
\vec{\mu}=\frac{g q}{2 M} \vec{S}
$$

Each particle has a different
g-factor

Hamiltonian for an electron in a magnetic field

- Because the electron is a point-particle, the dipole-approximation is always valid for the spin degree of freedom
- Any `kinetic' energy associated with S^{2} is absorbed into the rest mass
- To obtain the full Hamiltonian of an electron, we must add a single term:

$$
V=-\vec{\mu} \cdot \bar{B}
$$

$$
H \rightarrow H+\frac{|e|}{m_{e}} \vec{S} \cdot \vec{B}(\vec{R})
$$

$$
H=\frac{1}{2 m_{e}}[\vec{P}+|e| \vec{A}(\vec{R})]-|e| \ddot{O}(\vec{R})+\frac{|e|}{m_{e}} \vec{S} \cdot \vec{B}(\vec{R})
$$

Uniform Weak Magnetic Field as a perturbation

- For a weak uniform field, we find

$$
H=\frac{P^{2}}{2 m_{e}}+\frac{|e| B_{0}}{2 m_{e}}\left(L_{z}+2 S_{z}\right)
$$

- With the addition of a spherically symmetric potential, this gives:

$$
H=\frac{P^{2}}{2 m_{e}}+V(R)+\frac{|e| B_{0}}{2 m_{e}}\left(L_{z}+2 S_{z}\right)
$$

- If the zero-field eigenstates are known

$$
H_{0}\left|n, \ell, m_{\ell}\right\rangle=E_{0, n}\left|n, \ell, m_{\ell}\right\rangle
$$

- The weak-uniform-field eigenstates are:

$$
\left.\left\{n, \ell, m_{\ell}, m_{s}\right\rangle\right\}
$$

$H\left|n, \ell, m_{\ell}, m_{s}\right\rangle=E_{n, m_{\ell}, m_{s}}\left|n, \ell, m_{\ell}, m_{s}\right\rangle$
$E_{n, m_{\ell}, m_{s}}=E_{0, n}+\mu_{B} B_{0}\left(m_{\ell}+2 m_{s}\right)$

$$
\mu_{B}=\frac{|e| \hbar}{2 m_{e}} \quad \text { 'Bohr Magneton' }
$$

Wavefunctions

- In Dirac notation, all spin does is add two extra quantum numbers
- The separate concept of a 'spinor' is unnecessary
- Coordinate basis: $\left.\left\{\vec{r}, s, m_{s}\right\rangle\right\}$
- Eigenstate of \vec{R}, S^{2}, S_{z}
- Projector:

$$
I=\sum_{m_{s}=-s}^{s} \int_{V} d^{3} r\left|\vec{r}, s, m_{s}\right\rangle\left\langle\vec{r}, s, m_{s}\right|
$$

- Wavefunction:

$$
\psi_{m_{s}}(\vec{r}):=\left\langle\vec{r}, s, m_{s} \mid \psi\right\rangle
$$

Spinor Notation:

$$
\psi_{m_{s}}(\vec{r}):=\left\langle\vec{r}, s, m_{s} \mid \psi\right\rangle
$$

- We think of them as components of a length $2 s+1$ vector, where each component is a wavefunction
- Example: $s=1 / 2$

$$
\begin{gathered}
\psi_{\uparrow}(\vec{r}):=\left\langle\vec{r}, s, \left.\frac{1}{2} \right\rvert\, \psi\right\rangle \\
\psi_{\downarrow}(\vec{r}):=\left\langle\vec{r}, s, \left.-\frac{1}{2} \right\rvert\, \psi\right\rangle
\end{gathered}
$$

- Spinor wavefunction definition:

$$
[\psi](\vec{r}):=\binom{\psi_{\uparrow}(\vec{r})}{\psi_{\downarrow}(\vec{r})}=\binom{\psi_{\frac{1}{2}}(\vec{r})}{\psi_{-\frac{1}{2}}(\vec{r})}
$$

- If external and internal motions are not entangled, we can factorize the spinor wavefunction:

$$
[\psi](\vec{r}):=\binom{c_{\uparrow}}{c_{\downarrow}} \psi(\vec{r}) \quad\binom{c_{\uparrow}}{c_{\downarrow}} \begin{aligned}
& \text { Is then a } \\
& \text { pure spinor }
\end{aligned}
$$

Schrödinger's Equation

- We start from:

$$
i \hbar \frac{d}{d t}|\psi\rangle=H|\psi\rangle
$$

- Hit from left with with $\left\langle\vec{r}, m_{s}\right|$

$$
i \hbar \frac{d}{d t}\left\langle\vec{r}, m_{s} \mid \psi\right\rangle=\left\langle\vec{r}, m_{s}\right| H|\psi\rangle
$$

- Insert the projector

$$
\begin{aligned}
i \hbar \frac{d}{d t}\left\langle\vec{r}, m_{s} \mid \psi\right\rangle & =\sum_{m_{s}=-s}^{s} \int_{V} d^{3} r^{\prime}\left\langle\vec{r}, m_{s}\right| H\left|\vec{r}^{\prime}, m_{s}^{\prime}\right\rangle\left\langle\vec{r}^{\prime}, m^{\prime} \mid \psi\right\rangle \\
\text { - Let: } \quad H & \left.=\frac{P^{2}}{2 M} \llbracket I \rrbracket+\llbracket V \rrbracket \vec{R}\right)
\end{aligned}
$$

$$
\begin{aligned}
& - \text { For } s=1 / 2: \\
& \left.\llbracket I \rrbracket=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \llbracket V \rrbracket \vec{r}\right)=\left(\begin{array}{ll}
V_{\uparrow \uparrow}(\vec{r}) & V_{\uparrow \downarrow}(\vec{r}) \\
V_{\downarrow \uparrow}(\vec{r}) & V_{\downarrow \downarrow}(\vec{r})
\end{array}\right)
\end{aligned}
$$

$$
\left.i \hbar \frac{d}{d t}[\psi](\vec{r})=-\frac{\hbar^{2}}{2 M} \nabla^{2}[\psi](\vec{r})+\llbracket V\right](\vec{r}) \underset{\|}{\lfloor\psi}(\vec{r})
$$

Example: Electron in a Uniform
 Field

$\left.i \hbar \frac{d}{d t}[\psi](\vec{r})=-\frac{\hbar^{2}}{2 M} \nabla^{2}[\psi](\vec{r})+\llbracket V \rrbracket(\vec{r})[\psi]\right](\vec{r})$
$i \hbar \frac{d}{d t}\binom{\psi_{\uparrow}(\vec{r})}{\psi_{\downarrow}(\vec{r})}=\left[-\frac{\hbar^{2}}{2 m_{e}} \nabla^{2}-i \mu_{B} B_{0} \frac{\partial}{\partial \phi}\right]\binom{\psi_{\uparrow}(\vec{r})}{\psi_{\downarrow}(\vec{r})}+\mu_{B} B_{0}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\binom{\psi_{\uparrow}(\vec{r})}{\psi_{\downarrow}(\vec{r})}$

- This is just a representation of two separate equations:

$$
\begin{aligned}
& i \hbar \frac{d}{d t} \psi_{\uparrow}(\vec{r})=\left[-\frac{\hbar^{2}}{2 m_{e}} \nabla^{2}-i \mu_{B} B_{0} \frac{\partial}{\partial \phi}\right] \psi_{\uparrow}(\vec{r})+\mu_{B} B_{0} \psi_{\uparrow}(\vec{r}) \\
& i \hbar \frac{d}{d t} \psi_{\downarrow}(\vec{r})=\left[-\frac{\hbar^{2}}{2 m_{e}} \nabla^{2}-i \mu_{B} B_{0} \frac{\partial}{\partial \phi}\right] \psi_{\downarrow}(\vec{r})-\mu_{B} B_{0} \psi_{\downarrow}(\vec{r})
\end{aligned}
$$

- We would have arrived at these same equations using Dirac notation, without ever mentioning 'Spinors'

Pauli Matrices

$i \hbar \frac{d}{d t}\binom{\psi_{\uparrow}(\vec{r})}{\psi_{\downarrow}(\vec{r})}=\left[-\frac{\hbar^{2}}{2 m_{e}} \nabla^{2}-i \mu_{B} B_{0} \frac{\partial}{\partial \phi}\right]\binom{\psi_{\uparrow}(\vec{r})}{\psi_{\downarrow}(\vec{r})}+\mu_{B} B_{0}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\binom{\psi_{\uparrow}(\vec{r})}{\psi_{\downarrow}(\vec{r})}$

- Here we see that we have recovered one of the Pauli Matrices:

$$
\sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- The other Pauli matrices are:

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

- Then in the basis of eigenstates of S_{z} we have:

$$
\vec{S}=\frac{\hbar}{2} \vec{\sigma}
$$

$$
\left.i \hbar \frac{d}{d t}[\psi](\vec{r})=\left(-\frac{\hbar^{2}}{2 M} \nabla^{2}+\mu_{B} B_{0}\left(-i \frac{\partial}{\partial \phi}+\sigma_{z}\right)\right)[\psi]\right](\vec{r})
$$

- If we only rare ahnuit an in dynamics:

$$
i \frac{d}{d t}[c]=\frac{|e|}{2 m_{e}} \vec{\sigma} \cdot \vec{B}[c] \begin{array}{r}
\left.\begin{array}{r}
\sigma_{x} \sigma_{x} \\
+B_{y} \sigma_{y} \\
\\
\\
B_{1}
\end{array}\right)
\end{array}
$$

Two particles with spin

- How do we treat a system of two particles with masses M_{1} and M_{2}, charges q_{1} and q_{2}, and spins s_{1} and s_{2} ?
- Basis:

$$
\left|\vec{r}_{1}, s_{1}, m_{s 1} ; \vec{r}_{2}, s_{2}, m_{s 2}\right\rangle
$$

- Wavefunction:

$$
\psi_{s_{1}, m_{s}, s_{2}, m_{s 2}}\left(\vec{r}_{1}, \vec{r}_{2}\right):=\left\langle\vec{r}_{1}, s_{1}, m_{s 1} ; \vec{r}_{2}, s_{2}, m_{s 2} \mid \psi\right\rangle
$$

- Hamiltonian w/out motional degrees of freedom:

$$
H=-\frac{q_{1}}{M_{1}} \vec{S}_{1} \cdot \vec{B}\left(\vec{R}_{1}\right)-\frac{q_{2}}{M_{2}} \vec{S}_{2} \cdot \vec{B}\left(\vec{R}_{2}\right)
$$

- Hamiltonian w/ motional degrees of freedom:

$$
\begin{aligned}
H= & \frac{1}{2 M_{1}}\left(\vec{P}_{1}-q_{1} \vec{A}\left(\vec{R}_{1}\right)\right)+q_{1} \Phi\left(\vec{R}_{1}\right)-\frac{q_{1}}{M_{1}} \vec{S}_{1} \cdot \vec{B}\left(\vec{R}_{1}\right) \\
& \frac{1}{2 M_{2}}\left(\vec{P}_{2}-q_{2} \vec{A}\left(\vec{R}_{2}\right)\right)+q_{2} \Phi\left(\vec{R}_{2}\right)-\frac{q_{2}}{M_{2}} \vec{S}_{2} \cdot \vec{B}\left(\vec{R}_{2}\right)
\end{aligned}
$$

Example \#1

- A spin _ particle is in the \uparrow state with respect to the z-axis. What is the probability of finding it in the \downarrow-state with respect to the x-axis?
- Let: $|\psi\rangle=\left|\uparrow_{z}\right\rangle$
- In the basis, $\left\{\left\langle\uparrow_{z}\right\rangle,\left|\downarrow_{z}\right\rangle\right\}$ the operator for the x-component of spin is:

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

- By symmetry, σ_{x} must have eigenvalues +1 and -1
- The eigenvector corresponding to -1 is defined by:

$$
\sigma_{x}\left|\downarrow_{x}\right\rangle=-\left|\downarrow_{x}\right\rangle
$$

Example \#1 continued:

$$
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{x}\left|\downarrow_{x}\right\rangle=-\left|\downarrow_{x}\right\rangle
$$

$$
\begin{aligned}
\left|\downarrow_{x}\right\rangle & =-\sigma_{x}\left|\downarrow_{x}\right\rangle \\
\left\langle\uparrow_{z} \mid \downarrow_{x}\right\rangle & =-\left\langle\uparrow_{z}\right| \sigma_{x}\left|\downarrow_{x}\right\rangle \\
& =-\left\langle\downarrow_{z} \mid \downarrow_{x}\right\rangle
\end{aligned}
$$

- This implies that:

$$
\begin{gathered}
\left.\left|\downarrow_{x}\right\rangle=\frac{1}{\sqrt{2}}\left(\uparrow_{z}\right\rangle-\left|\downarrow_{z}\right\rangle\right) \\
P=\left|\left\langle\downarrow_{x} \mid \uparrow_{z}\right\rangle\right|^{2}=\frac{1}{2}
\end{gathered}
$$

Example \#2

- Two identical spin-1/2 particles are placed in a uniform magnetic field. Ignoring motional degrees of freedom, what are the energy-levels and degeneracies of the system?
- States: $\quad\{\uparrow \uparrow\rangle,|\uparrow \downarrow\rangle,|\downarrow \uparrow\rangle,|\downarrow \downarrow\rangle\rfloor$
- Z-axis chosen along B-field
- Hamiltonian: $H=-\frac{g q B_{0}}{2 M}\left(S_{1 z}+S_{2 z}\right)$
- Basis states are already eigenstates:

$$
\begin{gathered}
H|\uparrow \uparrow\rangle=-\frac{\hbar g q B_{0}}{2 M}|\uparrow \uparrow\rangle \quad E_{1}=-\frac{\hbar g q B_{0}}{2 M} ; \quad d_{1}=1 \\
H|\uparrow \downarrow\rangle=H|\downarrow \uparrow\rangle=0 \quad E_{2}=0 ; \quad d_{2}=2 \\
H|\downarrow \downarrow\rangle=\frac{\hbar g q B_{0}}{2 M}|\downarrow \downarrow\rangle \quad E_{3}=\frac{\hbar g q B_{0}}{2 M} ; \quad d_{3}=1
\end{gathered}
$$

