
Operators

• In QM, an operator is an object that acts on a ket,

transforming it into another ket

– Let A represent a generic operator

– An operator is a linear map

A : H ! H

A|"#= |"’#

– Operators are linear:

A(a |"1#+b |"2#) = aA |"1#+bA|"2#

• a and b are arbitrary c-numbers

Notation:

– Generally, we will follow Cohen-Tannoudji, and

use capital letters for operators and lower-case

letters for c-numbers.

– Another common convention is to distinguish

operators by giving them a ‘^’

• I may use this occasionally
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Matrix representations

– Just as kets are vectors, operators are matrices

– Let the set{|1#, |2#, |3#,…,|M#} be a set of orthogonal
unit vectors which spans an entire M-dimensional
Hilbert space

– The c-number $j|"# is thus the jth component of the
vector |"#

– Matrix Representation of an operator:

• Start from the equation:

• Hit it from the left with the bra $j|:

• Insert `the identity’ between A and |"#:

• Use the replacements: cj % $j|"#, dj % $j|"’# and Ajk%
$j|A|k# to get:

– This is just the standard formula for matrix multiplication:
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Defining states and operators

• A state (vector) is specified by giving its

components in some physically meaningful

basis

• An operator is defined by giving its matrix

elements in some physically meaningful basis

• Operators and/or states can alternatively be

defined as the solution to a particular equation

– Gives components implicitly instead of explicitly



Projectors

• Note that

• Thus  |j#$j|  is an operator

– We call it the ‘projector’ onto the state |j#

• The sum of projectors onto a set of M

orthonormal states in an M-dimensional Hilbert

space is called the ‘identity operator’

– If the sum is incomplete, the resulting operator is

the projector onto the subspace spanned by the

included unit vectors.

• It is the identity operator inside that subspace

• The projector onto state |"# is:

• All projectors satisfy:
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Outer product

• Clearly the `outer product’ of any two state

vectors is an operator:

• An operator can be ‘expanded’ in a given basis,

and expressed in terms of its matrix elements:
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Eigenvalues and Eigenvectors

• Since operators are matrices, they have
eigenvalues and eigenvectors.

• All operators in an M-dimensional Hilbert
space have M eigenvalues, but they may not
all be distinct

• Definition:

– Let  an be the nth eigenvalue of the operator A

– Let |an# be the corresponding eigenvector

– They are related via the eigenvalue equation:

• Much of the course will be spent solving various
versions of this equation via a variety of methods
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Determining the eigenvalues and

eigenvectors of an operator

– Method 1: express the operator in matrix form,

then use standard matrix methods:

• Can use Mathematica or other numerical software

for large matrices

– There are also analytic methods that work in

some cases

•  called ‘algebraic solutions’
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Hermitian Conjugation of Operators

• Recall that ‘†’ symbolizes ‘Hermitian

conjugation’

• Note: The H.c. is sometimes called the ‘adjoint’

– † = T and *  (transpose plus complex conjugation)

– The bra $"| is the H.c. of the ket |"#

– The operator A† is the Hermitian conjugate of A.

• This means that

• Or equivalently

– The operator B†A† is the Hermitian conjugate of

the operator product AB:

• This reverse ordering is the same as for the

ordinary Transpose:

– What is the conjugate of A|"#?
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Rule of thumb for H.c.

1. Reverse order of all terms

2. Turn bras into kets and vice versa

3. Replace all operators with their Hermitian

conjugates



Hermitian Operators

• Definition: an operator is said to be Hermitian if

it satisfies:   A†=A

– Alternatively called ‘self adjoint’

– In QM we will see that all observable properties

must be represented by Hermitian operators

• Theorem: all eigenvalues of a Hermitian

operator are real

– Proof:

Eigenvectors of a Hermitian operator

– Note: all eigenvectors are defined only up to a

multiplicative c-number constant

• Thus we can choose the normalization $am|am#=1

• Theorem: all eigenvectors corresponding to

distinct eigenvalues are orthogonal

– Proof:
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Completeness of Eigenvectors of a

Hermitian operator

• Theorem: If an operator in an M-dimensional

Hilbert space has M distinct eigenvalues (i.e.

no degeneracy), then its eigenvectors form a

`complete set’ of unit vectors (i.e a complete

‘basis’)

– Proof:

M orthonormal vectors must span an

M-dimensional space.

• Thus we can use them to form a

representation of the identity operator:

Degeneracy

• Definition: If there are at least two linearly

independent eigenvectors associated with the

same eigenvalue, then the eigenvalue is

degenerate.

– The `degree of degeneracy’  of an eigenvalue is

the number of linearly independent eigenvectors

that are associated with it

• Example:   d=2

– Let’s refer to the two linearly independent
eigenvectors |&n# and |'n#

– Linear independence means $&n |'n# ( 1.

– If they are not orthogonal ($&n |'n# ( 0), we can

always use Gram-Schmidt Orthogonalization to

get an orthonormal set



Gram-Schmidt Orthogonalization

• Procedure:

– Let

– A second orthogonal vector is then

• Proof:

– but

– Therefore

– Can be continued for higher degree of degeneracy

• Result: From M linearly independent degenerate
eigenvectors we can always form M orthonormal
unit vectors which span the M-dimensional
degenerate subspace.

– If this is done, then the eigenvectors of a Hermitian
operator form a complete basis even with degeneracy
present

nn
!! "1,

nnnn

nnnn

n

!"!

!"!
#

$$

$$
$ 2,

nnnn

nnnnnn

nn

!"!

!"!
#

$$

$$$$
$$ 2,1,

1=
nn

!!

02,1, =
nn

!!


