Notation:

Operators
_ _ — Generally, we will follow Cohen-Tannoudji, and
* In QM, an operator is an object that acts on a ket, use capital letters for operators and lower-case
transforming it into another ket letters for c-numbers.
— Let 4 represent a generic operator
— An operator is a linear map — Another common convention is to distinguish
operators by giving them a ‘¥
AHH g y gving
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Ap)=[y’)
— Operators are linear: | may use this occasionally

A(a [ )+b ) = ad [, )+bAR,)

* aand b are arbitrary c-numbers



Matrix representations

Just as kets are vectors, operators are matrices

Let the set{|7), |2), |3),....|M)} be a set of orthogonal
unit vectors which spans an entire M-dimensional
Hilbert space

The c-number (jly) is thus the j*" component of the
vector |y)

Matrix Representation of an operator:
+ Start from the equation: ') = Ajw)

+ Hit it from the left with the bra (ji: (j

w)=(ilw)

* Insert "the identity’ between 4 and |y):
M
()= X (AR k)

+ Use the replacements: ¢; = (j|y), d; = (jly’) and 4=
(jlA|k) to get: ‘ ‘
M
d; = Z Ajc,
=1

— This is just the standard formula for matrix multiplication:

Defining states and operators
A state (vector) is specified by giving its

components in some physically meaningful
basis

An operator is defined by giving its matrix
elements in some physically meaningful basis

Operators and/or states can alternatively be
defined as the solution to a particular equation

— Gives components implicitly instead of explicitly



Projectors
Note that
[iXihw)=el i)
Thus |j)(j| is an operator
— We call it the ‘projector’ onto the state |})

1, =[ )|

The sum of projectors onto a set of M
orthonormal states in an M-dimensional Hilbert
space is called the ‘identity operator’

1=;|f><f|

— If the sum is incomplete, the resulting operator is
the projector onto the subspace spanned by the
included unit vectors.

+ ltis the identity operator inside that subspace

5
1= 3101
J=
The projector onto state |) is:
1, =|7P><U’|
All projectors satisfy:

I12=1

N N

Outer product

Clearly the "outer product’ of any two state
vectors is an operator:

)@

An operator can be ‘expanded’ in a given basis,
and expressed in terms of its matrix elements:



Determining the eigenvalues and

Eigenvalues and Eigenvectors eigenvectors of an operator

Since operators are matrices, they have

eigenvalues and eigenvectors. — Method 1: express the operator in matrix form,
then use standard matrix methods:
All operators in an M-dimensional Hilbert
spac% have M eigenvalues, but they may not Det | A-al |= 0
all be distinct « Can use Mathematica or other numerical software
for large matrices
Definition:
— Let a, be the n" eigenvalue of the operator 4
— Let|a,) be the corresponding eigenvector — There are also analytic methods that work in

some cases

— They are related via the eigenvalue equation:
» called ‘algebraic solutions’

A‘an> =a, an>

* Much of the course will be spent solving various
versions of this equation via a variety of methods




Hermitian Conjugation of Operators

Recall that ‘" symbolizes ‘Hermitian
conjugation’
* Note: The H.c. is sometimes called the ‘adjoint’

— t=Tand * (transpose plus complex conjugation)

— The bra (y| is the H.c. of the ket |y)

— The operator A' is the Hermitian conjugate of 4.
« This means that (A+)j~k =(4,)

» Orequivalently (;|4"|k)=(k|4|;)

— The operator BTAT is the Hermitian conjugate of
the operator product 4B: (AB )T B A"

» This reverse ordering is the same as for the
ordinary Transpose:

— What is the conjugate of 4|y)?
()] = |4

Rule of thumb for H.c.

. Reverse order of all terms

. Turn bras into kets and vice versa

. Replace all operators with their Hermitian

conjugates



Hermitian Operators

Definition: an operator is said to be Hermitian if
it satisfies: A7=4
— Alternatively called ‘self adjoint’

— In QM we will see that all observable properties
must be represented by Hermitian operators

Theorem: all eigenvalues of a Hermitian
operator are real
— Proof:

Eigenvectors of a Hermitian operator

— Note: all eigenvectors are defined only up to a
multiplicative c-number constant

da,)=a,la,) —4a,))=a,(a,))

+ Thus we can choose the normalization (a,,|a,,)=1

Theorem: all eigenvectors corresponding to
distinct eigenvalues are orthogonal

— Proof:



Completeness of Eigenvectors of a
Hermitian operator

Theorem: If an operator in an M-dimensional
Hilbert space has M distinct eigenvalues (i.e.
no degeneracy), then its eigenvectors form a
‘complete set’ of unit vectors (i.e a complete
‘basis’)

— Proof:

M orthonormal vectors must span an
M-dimensional space.

Thus we can use them to form a
representation of the identity operator:

Degeneracy

Definition: If there are at least two linearly
independent eigenvectors associated with the
same eigenvalue, then the eigenvalue is
degenerate.

— The "degree of degeneracy’ of an eigenvalue is
the number of linearly independent eigenvectors
that are associated with it

Example: d=2
— Let’s refer to the two linearly independent
eigenvectors o, ) and |Q,)

— Linear independence means (v, |Q,) = 1.

— If they are not orthogonal ((w,|Q,) = 0), we can
always use Gram-Schmidt Orthogonalization to
get an orthonormal set



Gram-Schmidt Orthogonalization

Procedure:
— Let

,)

— A second orthogonal vector is then

w, ,1> =

o 2o 120) =@ ), |2,)
A=) o, Yo |2
TR CA LA S CACHICALN)
fondlon2) = o o )

-t (w,|o,)=1

®,,2)=0

— Can be continued for higher degree of degeneracy

— Therefore <a)n ’1

Result: From M linearly independent degenerate
eigenvectors we can always form M orthonormal
unit vectors which span the M-dimensional
degenerate subspace.

— If this is done, then the eigenvectors of a Hermitian
operator form a complete basis even with degeneracy
present



