Operators

- In QM, an operator is an object that acts on a ket, transforming it into another ket
- Let A represent a generic operator
- An operator is a linear map

$$
\begin{aligned}
& A: \mathcal{H} \rightarrow \mathcal{H} \\
& A|\psi\rangle=\left|\psi^{\prime}\right\rangle
\end{aligned}
$$

- Operators are linear:

$$
A\left(a\left|\psi_{1}\right\rangle+\mathrm{b}\left|\psi_{2}\right\rangle\right)=a A\left|\psi_{1}\right\rangle+b A\left|\psi_{2}\right\rangle
$$

- a and b are arbitrary c-numbers

Notation:

- Generally, we will follow Cohen-Tannoudji, and use capital letters for operators and lower-case letters for c-numbers.
- Another common convention is to distinguish operators by giving them a ' \wedge '

$$
\hat{a} \quad \hat{A} \quad \hat{\psi}
$$

- I may use this occasionally

Matrix representations

- Just as kets are vectors, operators are matrices
- Let the set $\{|1\rangle,|2\rangle,|3\rangle, \ldots,|M\rangle\}$ be a set of orthogonal unit vectors which spans an entire M-dimensional Hilbert space
- The c-number $\langle j \mid \psi\rangle$ is thus the $j^{\text {th }}$ component of the vector $|\psi\rangle$
- Matrix Representation of an operator:
- Start from the equation:

$$
\left|\psi^{\prime}\right\rangle=A|\psi\rangle
$$

- Hit it from the left with the bra $\langle j|: \quad\left\langle j \mid \psi^{\prime}\right\rangle=\langle j| A|\psi\rangle$
- Insert 'the identity’ between A and $|\psi\rangle$:
$\left\langle j \mid \psi^{\prime}\right\rangle=\sum_{k=1}^{M}\langle j| A|k\rangle\langle k \mid \psi\rangle$
- Use the replacements: $c_{j} \equiv\langle j \mid \psi\rangle, d_{j} \equiv\left\langle j \mid \psi^{\prime}\right\rangle$ and $A_{j k} \equiv$ $\langle j| A|k\rangle$ to get:

$$
d_{j}=\sum_{k=1}^{M} A_{j k} c_{k}
$$

- This is just the standard formula for matrix multiplication:

$$
\vec{d}=A \vec{c}
$$

Defining states and operators

- A state (vector) is specified by giving its components in some physically meaningful basis
- An operator is defined by giving its matrix elements in some physically meaningful basis
- Operators and/or states can alternatively be defined as the solution to a particular equation
- Gives components implicitly instead of explicitly

Projectors

- Note that

$$
|j\rangle\langle j \mid \psi\rangle=c_{j}|j\rangle
$$

- Thus $|j\rangle\langle j|$ is an operator
- We call it the 'projector' onto the state $\langle j\rangle$

$$
I_{j}=|j\rangle\langle j|
$$

- The sum of projectors onto a set of M orthonormal states in an M-dimensional Hilbert space is called the 'identity operator'

$$
I=\sum_{j=1}^{M}|j\rangle\langle j|
$$

- If the sum is incomplete, the resulting operator is the projector onto the subspace spanned by the included unit vectors.
- It is the identity operator inside that subspace

$$
I_{s}=\sum_{j=3}^{5}|j\rangle\langle j|
$$

- The projector onto state $|\psi\rangle$ is:

$$
I_{\psi}=|\psi\rangle\langle\psi|
$$

- All projectors satisfy:

$$
I_{s}^{2}=I_{s}
$$

Outer product

- Clearly the `outer product' of any two state vectors is an operator:

$$
|\psi\rangle\langle\phi|
$$

- An operator can be 'expanded' in a given basis, and expressed in terms of its matrix elements:

Eigenvalues and Eigenvectors

- Since operators are matrices, they have eigenvalues and eigenvectors.
- All operators in an M-dimensional Hilbert space have M eigenvalues, but they may not all be distinct
- Definition:
- Let a_{n} be the $\mathrm{n}^{\text {th }}$ eigenvalue of the operator A
- Let $\left|a_{n}\right\rangle$ be the corresponding eigenvector
- They are related via the eigenvalue equation:

$$
A\left|a_{n}\right\rangle=a_{n}\left|a_{n}\right\rangle
$$

- Much of the course will be spent solving various versions of this equation via a variety of methods

Determining the eigenvalues and eigenvectors of an operator

- Method 1: express the operator in matrix form, then use standard matrix methods:

$$
\operatorname{Det}|A-a I|=0
$$

- Can use Mathematica or other numerical software for large matrices
- There are also analytic methods that work in some cases
- called 'algebraic solutions'

Hermitian Conjugation of Operators

- Recall that ' \uparrow ' symbolizes 'Hermitian conjugation'
- Note: The H.c. is sometimes called the 'adjoint'
$-\dagger={ }^{\top}$ and * (transpose plus complex conjugation)
- The bra $\langle\psi|$ is the H.c. of the ket $|\psi\rangle$
- The operator A^{\dagger} is the Hermitian conjugate of A.
- This means that $\left(A^{\dagger}\right)_{j k}=\left(A_{k j}\right)^{*}$
- Or equivalently $\langle j| A^{\dagger}|k\rangle=\langle k| A|j\rangle^{*}$
- The operator $B^{\dagger} A^{\dagger}$ is the Hermitian conjugate of the operator product $A B: \quad(A B)^{\dagger}=B^{\dagger} A^{\dagger}$
- This reverse ordering is the same as for the ordinary Transpose:
- What is the conjugate of $A|\psi\rangle$?

$$
(A|\psi\rangle)^{\dagger}=\langle\psi| A^{\dagger}
$$

Rule of thumb for H.c.

1. Reverse order of all terms
2. Turn bras into kets and vice versa
3. Replace all operators with their Hermitian conjugates

Hermitian Operators

- Definition: an operator is said to be Hermitian if it satisfies: $A^{+}=A$
- Alternatively called 'self adjoint'
- In QM we will see that all observable properties must be represented by Hermitian operators
- Theorem: all eigenvalues of a Hermitian operator are real
- Proof:

Eigenvectors of a Hermitian operator

- Note: all eigenvectors are defined only up to a multiplicative c-number constant

$$
A\left|a_{m}\right\rangle=a_{m}\left|a_{m}\right\rangle \quad \rightarrow A\left(c\left|a_{m}\right\rangle\right)=a_{m}\left(c\left|a_{m}\right\rangle\right)
$$

- Thus we can choose the normalization $\left\langle a_{m} \mid a_{m}\right\rangle=1$
- Theorem: all eigenvectors corresponding to distinct eigenvalues are orthogonal
- Proof:

Completeness of Eigenvectors of a Hermitian operator

- Theorem: If an operator in an M-dimensional Hilbert space has M distinct eigenvalues (i.e. no degeneracy), then its eigenvectors form a 'complete set' of unit vectors (i.e a complete 'basis')
- Proof:

M orthonormal vectors must span an M -dimensional space.

- Thus we can use them to form a representation of the identity operator:

Degeneracy

- Definition: If there are at least two linearly independent eigenvectors associated with the same eigenvalue, then the eigenvalue is degenerate.
- The 'degree of degeneracy' of an eigenvalue is the number of linearly independent eigenvectors that are associated with it
- Example: $d=2$
- Let's refer to the two linearly independent eigenvectors $\left|\omega_{n}\right\rangle$ and $\left|\Omega_{n}\right\rangle$
- Linear independence means $\left\langle\omega_{n} \mid \Omega_{n}\right\rangle \neq 1$.
- If they are not orthogonal $\left(\left\langle\omega_{n} \mid \Omega_{n}\right\rangle \neq 0\right)$, we can always use Gram-Schmidt Orthogonalization to get an orthonormal set

Gram-Schmidt Orthogonalization

- Procedure:
- Let

$$
\left|\omega_{n}, 1\right\rangle \equiv\left|\omega_{n}\right\rangle
$$

- A second orthogonal vector is then

$$
\left|\omega_{n}, 2\right\rangle \equiv \frac{\left|\Omega_{n}\right\rangle-\left|\omega_{n}\right\rangle\left\langle\omega_{n} \mid \Omega_{n}\right\rangle}{\|\left|\Omega_{n}\right\rangle-\left|\omega_{n}\right\rangle\left\langle\omega_{n} \mid \Omega_{n}\right\rangle \|}
$$

- Proof:

$$
\begin{gathered}
\left\langle\omega_{n}, 1 \mid \omega_{n}, 2\right\rangle \equiv \frac{\left\langle\omega_{n} \mid \Omega_{n}\right\rangle-\left\langle\omega_{n} \mid \omega_{n}\right\rangle\left\langle\omega_{n} \mid \Omega_{n}\right\rangle}{\left.\| \Omega_{n}\right\rangle-\left|\omega_{n}\right\rangle\left\langle\omega_{n} \mid \Omega_{n}\right\rangle \|} \\
\text { - but } \quad\left\langle\omega_{n} \mid \omega_{n}\right\rangle=1 \\
\text { - Therefore } \quad\left\langle\omega_{n}, 1 \mid \omega_{n}, 2\right\rangle=0
\end{gathered}
$$

- Can be continued for higher degree of degeneracy
- Result: From M linearly independent degenerate eigenvectors we can always form M orthonormal unit vectors which span the M-dimensional degenerate subspace.
- If this is done, then the eigenvectors of a Hermitian operator form a complete basis even with degeneracy present

