
Remark: Commutation of Operators

• Since operators are matrices, they do not

necessarily commute

• We define the commutator of the operators A

and B as

• The properties of most physically important

operators (e.g. X, P, L, S,…) can generally be

deduced solely from their commutation

relations
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Lecture 5: Postulates of QM

MOTIVATION TO STUDY QM:

• Quantum mechanics underlies Nuclear,
Particle, Condensed Matter, and Atomic
physics (and is thus very important for
Astronomy and Astrophysics)

• Quantum mechanics explains the periodic
table and Chemistry

• When tested, Quantum Mechanics has always
been found to be correct

– Some predictions of QM tested to ten decimal
places of precision

• Quantum Mechanics is self-consistent, there
are no ‘paradoxes’

– So called ‘paradoxes of QM’ are merely points
where its predictions conflict with ‘classical’
intuition about the nature of reality

• The ‘meaning’ of Quantum Mechanics is not
‘understood’

– The key difficulty is the origin of the randomness
inherent in QM

– Is true randomness logically tenable?

– Very different interpretations are equally valid

• Many-worlds, Bohmian mechanics,…



Question #1

• Suppose a particle has the wavefunction:

• If the position of the particle is measured, what

will the result of the measurement be?
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Statement of the Postulates

1. At a fixed time t
0
, the state of a physical system is

defined by specifying a ket |!(t
0
)" belonging to the

state space of the system

2. Every measureable physical quantity is described
by a Hermitian operator A acting in the state space
of the system. This operator is called an
‘observable’

3. The only possible result of the measurement of the
physical property associated with the observable A
is one of the eigenvalues of A.

4. When the observable A is measured on a system in
the normalized state |!" , the probability of obtaining
eigenvalue a  is:*

5. If the measurement of the observable A on the
system in stqte |!" gives the result a the state of the
system immediately after the measurement is

6. The time evolution of the state vector is governed
by Schrödinger's equation:

where H is the operator associated with the total
energy of the system
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 Postulate #1

At a fixed time t0, the state of an isolated physical
system is defined by specifying a ket |!(t0)"
belonging to the state space of the system

Postulate #2

Every measureable physical quantity is described

by a Hermitian operator A acting in the state

space of the system. This operator is called an

‘observable’



Postulate #3

The only possible result of the measurement of

the physical property associated with the

observable A is one of the eigenvalues of A.
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Postulate #4

• When an observable is measured, the

probability of obtaining a particular eigenvalue

is given by the expectation value of the

projector onto the subspace associated with

that eigenvalue.

subspace



Postulate #4a

For the case of a discrete non-degenerate

eigenvalue:

When the observable A is measured on a system
in the normalized state |!" , the probability of

obtaining eigenvalue an  is
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Postulate #4b

For the case of a discrete eigenvalue with a

discrete degeneracy:

When the observable A is measured on a system
in the normalized state |!" , the probability of

obtaining eigenvalue an  is
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Here d
n
 is the degree of degeneracy of

the eigenvalue a
n

Projector onto

degenerate

subspace

associated

with eigenvalue
a
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Postulate #4c

For the case of a continuous non-degenerate

eigenvalue:

When the observable A is measured on a system
in the normalized state |!" , the differential

probability dP(#) of obtaining a result between #
and # + d#  is:
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Postulate #4d

For the case of a continuous eigenvalue with a

discrete degeneracy:

When the observable A is measured on a system
in the normalized state |!" , the probability  dP(#)

of obtaining a result between # and # + d#  is:
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Postulate #4e

• Additional cases:]

– A discrete eigenvalue with a continuous

degeneracy

– A continuous eigenvalue with a continuous

degeneracy

• Additional topics

– Imperfect measurements

– Strong versus weak measurements

– Single measurements of ensembles of identical

systems

• These topics will be covered in the homework

Postulate #5

• Once the measurement is complete and the

result is obtained, the state of the system after

the measurements is given by the projection of

the state before the measurement onto the

subspace associated with the resulting

eigenvalue.

– The new state should be re-normalized to unity.



Postulate #5a

The case of a discrete non-degenerate spectrum

•The spectrum of an operator is a list of its eigenvalues and

associated degeneracies

If the measurement of the observable A on the  system
in state |!" gives the result an, the state of the system

immediately after the measurement is the normalized

projection onto the subspace associated with an :
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Just a global

phase factor

Postulate #5b

The case of a discrete spectrum with a discrete

degeneracy

If the measurement of the observable A on the
system in state |!" gives a result between #1 and

#2, the state of the system immediately after he

measurement is:
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Postulate #5c

The case of a continuous non-degenerate spectrum

If the measurement of the observable A on the
system in state |!" gives a result between #1 and #2,

the state of the system immediately after he

measurement is:

– The interval (#
1, 
#

2
) would correspond to the

resolution of the detector
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Postulate #5d

• Additional cases:

– Discrete spectrum with continuous degeneracy

– Continuous spectrum with discrete degeneracy

– Continuous spectrum with continuous

degeneracy



Postulate #6

The time evolution of the state vector |!(t)" is
governed by the Schrödinger  equation:

Where H is the observable associated with the

total energy of the system

– H is called the ‘Hamiltonian’

)()( tHt
dt
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How to evolve a state in time:






