
Lecture 6: Time Propagation

Outline:

• Ordinary functions of operators

– Powers

– Functions of diagonal operators

• Solving Schrödinger's equation

– Time-independent Hamiltonian

– The Unitary time-evolution operator

– Unitary operators and probability in QM

– Iterative solution

– Eigenvector expansion

Ordinary Functions of Operators

• Let us define an `ordinary function’, f(x), as a

function that can be expressed as a power

series in x, with scalar coefficients:

• When given an operator, A, as an argument,

we define the result to be:

• Examples:

• THM: A functions of an operator is defined by

its power series
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Powers of Operators

• An operator raised to the zeroth power:

• Positive integer powers:

• Operator inversion:

– The operator A-1 is defined via:

• Negative powers:

• Fractional powers:
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Functions of Diagonal Operators

• Diagonal operators have the form:

• They can be expressed in Dirac notation as:

• Every operator is diagonal in the basis of

its own eigenvectors

• They have the property:

– let C and D be diagonal matrices

• From which it follows that:
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Solving Schrödinger’s Equation

• When the Hamiltonian is not explicitly time-

dependent, Schrödinger's Equation is readily

integrated:

– Proof:
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The Unitary Time-Evolution Operator

• In general, the time-evolution operator is

defined as:

– The operator U(t,t0) must be Unitary ( U†=U-1 ) to
preserve the norm of |!(t)"

• For the case where H is not explicitly time-

dependent, we see from the exact solution

that:

• In the more general case where H=H(t), the

above is not necessarily valid

– In this case we must find an equation for U(t,t0).

– We start from Schrödinger's Equation:

– Which we now write as:

– Since this must be true for any initial state,
|!(t0)", it follows that:
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Unitary Operators and probability in QM



Solving the Time-Evolution Operator

Equation

• Since |!(t0)"=U(t0,t0)|!(t0)", it is clear that:

• The equation of motion:

• Can be formally integrated:

• Or re-expressed via the definition of the
derivative as:

• With t0=t, this gives infinitesimal time evolution
operator:

• So that (for numerical purposes):

– Where and
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Can this be simplified further?

• We have found the most general result is

• This can be re-written as:

• Note that:

– Only in the case [A,B]=0

• Thus can we write:

– ONLY if the Hamiltonian satisfies:
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Iterative solution:

• We have:

• Start with:

• The iterative form of the equation is:

• Which gives

– Note: the “I” is an integration constant fitted to the

initial conditions

• The final solution is:
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Eigenvector expansion

• For the case where H is not explicitly

time-dependent, it is most common to

use the eigenvector basis to express

the evolution operator.

– The eigenvectors of H are defined by the

eigenvalue equation:

– Note the following:
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Eigenvector Expansion cont.

• Start from:

• Apply the bra #$n|!:

• Integration then gives:

• We can express the state vector as:
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Summary

• Two approaches to solving
Schrödinger's Equation:
– Time-Evolution Operator:

• Case I:  H(t)=H(0)=H:

• Case II: H(t)%H(0), but [H(t),H(t_)]=0:

• Case II: H(t)%H(0), but [H(t),H(t_)]=0:

– Eigenvalue expansion:
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