Lecture 6: Time Propagation

Outline:

- Ordinary functions of operators
- Powers
- Functions of diagonal operators
- Solving Schrödinger's equation
- Time-independent Hamiltonian
- The Unitary time-evolution operator
- Unitary operators and probability in QM
- Iterative solution
- Eigenvector expansion

Ordinary Functions of Operators

- Let us define an `ordinary function', $f(x)$, as a function that can be expressed as a power series in x, with scalar coefficients:

$$
f(x)=\sum_{n} f_{n} x^{n}
$$

- When given an operator, A, as an argument, we define the result to be:
- Examples:

$$
f(A):=\sum_{n} f_{n} A^{n}
$$

$$
\begin{aligned}
\sin (A) & =A-\frac{A^{3}}{3!}+\frac{A^{5}}{5!}-\frac{A^{7}}{7!}+\ldots \\
e^{A} & =I+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\ldots \\
& =\sum_{n=0}^{\infty} \frac{A^{n}}{n!}
\end{aligned}
$$

- THM: A function of an operator is defined by its power series

Powers of Operators

- An operator raised to the zeroth ${ }^{\text {th }}$ power:

$$
A^{0}:=I
$$

- Positive integer powers:

$$
\begin{aligned}
& A^{1}:=A \\
& A^{2}:=A A \\
& A^{3}:=A A A
\end{aligned}
$$

etc...

- Operator inversion:
- The operator A^{-1} is defined via:

$$
\begin{aligned}
& A^{-1} A:=I \\
& \left(A^{-1}\right)^{-1}:=A \quad \rightarrow \quad A A^{-1}=I \\
& \quad B \text { is }
\end{aligned}
$$

$$
\frac{B}{A} \text { is had in }
$$

$$
A^{-n}:=\left(A^{-1}\right)^{n} \text { is } \frac{B}{4}=A^{-1} B
$$

- Fractional powers:

$$
\begin{gathered}
A^{1 / 2} A^{1 / 2} \\
\\
\text { etc... }
\end{gathered} \quad \frac{E(A)}{A}=A^{-1} f(A) A^{-1}
$$

Eigenvalues of functions of Operators

$$
\text { let } A|a\rangle=a|a\rangle
$$

then $f(A)|a\rangle=f(a)|a\rangle$
proof:

$$
\begin{aligned}
f(A)|a\rangle & =\sum_{n} f_{n} A^{n}|a\rangle \\
& =\sum_{n} f_{n} A^{n-1} a|a\rangle \\
& =\sum_{n} f_{n} a A^{n-1}|a\rangle \\
& =\sum_{n} f_{n} a^{2} A^{n-2}|a\rangle \\
& \vdots \sum_{n} f_{n} a^{n}|a\rangle \\
& f(a)|a\rangle
\end{aligned}
$$

Functions of Diagonal Operators

- Diagonal operators have the form:

$$
D=\left(\begin{array}{ccccc}
d_{1} & 0 & 0 & \cdots & 0 \\
0 & d_{2} & 0 & \cdots & 0 \\
0 & 0 & d_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & d_{M}
\end{array}\right) \quad \text { Basis } \quad \begin{gathered}
\text { dependent } \\
\text { property }
\end{gathered}
$$

- They can be expressed in Dirac notation as:

$$
D=\sum_{n=1}^{M} d_{n}|n\rangle\langle n|
$$

- Every operator is diagonal in the basis of its own eigenvectors
- They have the property:
- let C and D be diagonal matrices

$$
\begin{aligned}
& \begin{aligned}
& C D=\sum_{n=1}^{M} \sum_{m=1}^{M} c_{n} d_{m}|n\rangle\langle n \mid m\rangle\langle m| \\
&\left.=\sum_{n=1}^{M}|n| n\right\rangle\langle n| c_{n} d_{n} \\
& \text { Diagonal } \\
& \text { which it follows that: }
\end{aligned}\left(\begin{array}{cccc}
c_{1} d_{1} & 0 & 0 & \cdots \\
0 & c_{2} & d_{2} & 0 \\
0 & 0 & \ddots & \\
\vdots & & & c_{m} d_{\mu}
\end{array}\right) \\
& \text { - From which it follows that: }
\end{aligned}
$$

$\longrightarrow f(D)=\left(\begin{array}{ccccc}f\left(d_{1}\right) & 0 & 0 & \cdots & 0 \\ 0 & f\left(d_{2}\right) & 0 & \cdots & 0 \\ 0 & 0 & f\left(d_{3}\right) & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & f\left(d_{M}\right)\end{array}\right)$

Solving Schrödinger's Equation

- When the Hamiltonian is not explicitly timedependent, Schrödinger's Equation is readily integrated:

$$
\begin{gathered}
\frac{d}{d t}|\psi(t)\rangle=-\frac{i}{h} H|\psi(t)\rangle \\
|\psi(t)\rangle=e^{-i H t / \hbar}|\psi(0)\rangle
\end{gathered}
$$

- Proof:

$$
\begin{aligned}
\frac{d}{d t} e^{-i H t / \hbar}|\psi(0)\rangle & =\frac{d}{d t} \sum_{m=0}^{\infty}\left(-\frac{i}{\hbar} H\right)^{m} \frac{t^{m}}{m!}|\psi(0)\rangle \\
& =\sum_{m=1}^{\infty}\left(-\frac{i}{\hbar} H\right)^{m} \frac{m t^{m-1}}{m!}|\psi(0)\rangle \\
& =-\frac{i}{\hbar} H \sum_{m=1}^{\infty}\left(-\frac{i}{\hbar} H\right)^{m-1} \frac{t^{m-1}}{(m-1)!}|\psi(0)\rangle \\
& =-\frac{i}{\hbar} H \sum_{n=0}^{\infty}\left(-\frac{i}{\hbar} H\right)^{n} \frac{t^{n}}{n!}|\psi(0)\rangle \\
& =-\frac{i}{\hbar} H e^{-i H t / \hbar}|\psi(0)\rangle \\
& =-\frac{i}{\hbar} H|\psi(t)\rangle
\end{aligned}
$$

The Unitary Time-Evolution Operator

- In general, the time-evolution operator is defined as:

$$
|\psi(t)\rangle=U\left(t, t_{0}\right)\left|\psi\left(t_{0}\right)\right\rangle
$$

- The operator $U\left(t, t_{0}\right)$ must be Unitary ($U^{\dagger}=U^{-1}$) to preserve the norm of $|\psi(t)\rangle$
- For the case where H is not explicitly timedependent, we see from the exact solution that:

$$
U\left(t, t_{0}\right)=e^{-i H\left(t-t_{0}\right) / \hbar}
$$

note: add $c I$ to H, \rightarrow global phase e

- In the more general case where $H=H(t)$, the above is not necessarily valid
- In this case we must find an equation for $U\left(t, t_{0}\right)$.
- We start from Schrödinger's Equation:

$$
\frac{d}{d t}|\psi(t)\rangle=-\frac{i}{h} H|\psi(t)\rangle
$$

- Which we now write as:

$$
\frac{d}{d t} U\left(t, t_{0}\right)\left|\psi\left(t_{0}\right)\right\rangle=-\frac{i}{h} H U\left(t, t_{0}\right)\left|\psi\left(t_{0}\right)\right\rangle
$$

- Since this must be true for any initial state, $\left|\psi\left(t_{0}\right)\right\rangle$, it follows that:

$$
\frac{d}{d t} U\left(t, t_{0}\right)=-\frac{i}{h} H U\left(t, t_{0}\right)
$$

Unitary Operators and probability in QM

$$
\begin{aligned}
& \text { Recall } P_{n}:=\langle\psi \mid n\rangle\langle n \mid \psi\rangle \\
& \sum_{n} P_{n}=\sum_{n}(\psi|n\rangle\langle n \mid \psi\rangle=\langle\psi \mid \psi\rangle \\
& \text { so }\langle\psi \psi\rangle=1 \quad \text { since } \sum_{n} P_{n}=1 \\
& \text { for probabilities } \\
& \text { - normalization to unity } \Rightarrow \text { sum over probabilities }
\end{aligned}
$$

is one

$$
\begin{aligned}
& \text { Unitary Operators: } \\
& \text { definition: } u^{+}=u^{-1} \\
& \rightarrow \quad u^{+} u=u^{-1} u=\mathbb{I} \\
& \quad u u^{+}=u u^{-1}=I
\end{aligned}
$$

Hermitian operators "generate' unitary operators

$$
\begin{aligned}
\text { let } \begin{aligned}
u=e^{i G} \text {, when } G^{+}=G & \\
u^{+}=e^{-i G^{+}}=e^{-i G} \rightarrow u^{+} u= & e^{-i G}=I \\
& e^{i(6-6)} \\
& e^{i(6}[0,6]=0
\end{aligned}
\end{aligned}
$$

why are Unitang operators so important in QM?

A: let $\left|\psi^{\prime}\right\rangle=u|\psi\rangle^{e}$ trans.
where $u^{+}=u^{-1}$
then $\left\langle\psi^{\prime} \mid \psi^{\prime}\right\rangle=\langle\psi| u^{+} u|\psi\rangle$

$$
=\langle\psi \mid x\rangle
$$

-(Unitary Transformations' preserve. the norm \rightarrow conserve probability

Solving the Time-Evolution Operator Equation

- Since $\left|\psi\left(t_{0}\right)\right\rangle=U\left(t_{0}, t_{0}\right)\left|\psi\left(t_{0}\right)\right\rangle$, it is clear that:

$$
U\left(t_{0}, t_{0}\right)=1 \quad \leftarrow \text { initial and. }
$$

- The equation of motion: on $u\left(t, t_{0}\right)$

$$
\frac{d}{d t} U\left(t, t_{0}\right)=-\frac{i}{h} H(t) U\left(t, t_{0}\right)
$$

- Can be formally integrated:

$$
U\left(t, t_{0}\right)=1-\frac{i}{h} \int_{t_{0}}^{t} d t^{\prime} H\left(t^{\prime}\right) U\left(t^{\prime}, t_{0}\right)
$$

- Or re-expressed via the definition of the derivative as:

$$
\begin{aligned}
& \frac{U\left(t+d t, t_{0}\right)-U\left(t, t_{0}\right)}{d t}=-\frac{i}{h} H(t) U\left(t, t_{0}\right) \\
& U\left(t+d t, t_{0}\right)=\left[1-\frac{i}{h} H(t) d t\right] U\left(t, t_{0}\right)
\end{aligned}
$$

- With $t_{0}=t$, this gives infinitesimal time evolution operator:

$$
U(t+d t, t)=1-\frac{i}{h} H(t) d t
$$

- So that (for numerical purposes):

$$
\begin{aligned}
U\left(t, t_{0}\right) & =\lim _{N \rightarrow \infty} U\left(t_{N}+d t, t_{N}\right) \ldots U\left(t_{1}+d t, t_{1}\right) U\left(t_{0}+d t, t_{0}\right) \\
& =\lim _{N \rightarrow \infty}\left[1-\frac{i}{\hbar} H\left(t_{N}\right) d t\right] \ldots\left[1-\frac{i}{\hbar} H\left(t_{1}\right) d t\right]\left[1-\frac{i}{\hbar} H\left(t_{0}\right) d t\right]
\end{aligned}
$$

- Where $t_{m}=t_{0}+m d t$ and $d t=\left(t-t_{0}\right) / N$

Can this be simplified further?

- We have found the most general result is

$$
\begin{aligned}
U\left(t, t_{0}\right) & =\lim _{N \rightarrow \infty} U\left(t_{N}+d t, t_{N}\right) \ldots U\left(t_{1}+d t, t_{1}\right) U\left(t_{0}+d t, t_{0}\right) \\
& =\lim _{N \rightarrow \infty}\left[1-\frac{i}{\hbar} H\left(t_{N}\right) d t\right] \ldots\left[1-\frac{i}{\hbar} H\left(t_{1}\right) d t\right]\left[1-\frac{i}{\hbar} H\left(t_{0}\right) d t\right]
\end{aligned}
$$

- This can be re-written as:

$$
U\left(t, t_{0}\right)=\lim _{N \rightarrow \infty} e^{-\frac{i}{\hbar} H\left(t_{N}\right) d t} \ldots e^{-\frac{i}{\hbar} H\left(t_{2}\right) d t} e^{-\frac{i}{\hbar} H\left(t_{1}\right) d t}
$$

- Note that:

$$
e^{A} e^{B}=e^{A+B}
$$

- Only in the case $[A, B]=0$
- Thus can we write:

$$
U\left(t, t_{0}\right)=e^{-\frac{i}{\hbar} \int_{t_{0}}^{t} d t^{\prime} H\left(t^{\prime}\right)}
$$

- ONLY if the Hamiltonian satisfies:

$$
\left[H(t), H\left(t^{\prime}\right)\right]=0 \forall t, t^{\prime}
$$

Iterative solution:

- We have:

$$
\frac{d}{d t} U\left(t, t_{0}\right)=-\frac{i}{h} H(t) U\left(t, t_{0}\right)
$$

- Start with:

$$
U_{0}\left(t, t_{0}\right)=I
$$

- The iterative form of the equation is:
$\frac{d}{d t} U_{n+1}\left(t, t_{0}\right)=-\frac{i}{h} H(t) U_{n}\left(t, t_{0}\right) \quad U\left(t, t_{0}\right)=U_{\infty}\left(t, t_{0}\right)$
- Which gives
- Note: the " Γ " is an integration constant fitted to the initial conditions

$$
U_{1}\left(t, t_{0}\right)=I-\frac{i}{\hbar} \int_{t_{0}}^{t} d t_{1} H\left(t_{1}\right)
$$

- The final solution is:

$$
\begin{aligned}
U\left(t, t_{0}\right) & =I+\left(\frac{-i}{\hbar}\right) \int_{t_{0}}^{t} d t_{1} H\left(t_{1}\right) \\
& +\left(\frac{-i}{\hbar}\right)^{2} \int_{t_{0}}^{t} d t_{2} \int_{t_{0}}^{t_{2}} d t_{1} H\left(t_{2}\right) H\left(t_{1}\right) \\
& +\left(\frac{-i}{\hbar}\right)^{3} \int_{t_{0}}^{1} d t_{3} \int_{t_{0}}^{t_{3}} d t_{2} \int_{t_{0}}^{t_{2}} d t_{1} H\left(t_{3}\right) H\left(t_{2}\right) H\left(t_{1}\right) \\
& +\ldots
\end{aligned}
$$

Eigenvector expansion

- For the case where H is not explicitly time-dependent, it is most common to use the eigenvector basis to express the evolution operator.
- The eigenvectors of H are defined by the eigenvalue equation:

$$
H\left|\omega_{n}\right\rangle=\hbar \omega_{n}\left|\omega_{n}\right\rangle
$$

- Note the following:

$$
\begin{gathered}
\sum_{n}\left|\omega_{n}\right\rangle\left\langle\omega_{n}\right|=1 \\
\left\langle\omega_{m} \mid \omega_{n}\right\rangle=\delta_{m n} \\
e^{-i H t / \hbar}\left|\omega_{n}\right\rangle=e^{-i \omega_{n} t}\left|\omega_{n}\right\rangle
\end{gathered}
$$

Eigenvector Expansion cont.

- Start from: $\quad i \hbar \frac{d}{d t}|\psi\rangle=H|\psi\rangle$
- Apply the bra $\left\langle\omega_{n}\right| \rightarrow$:

$$
\begin{aligned}
i \hbar \frac{d}{d t}\left\langle\omega_{n} \mid \psi(t)\right\rangle & =\left\langle\omega_{n}\right| H|\psi(t)\rangle \\
& =\hbar \omega_{n}\left\langle\omega_{n} \mid \psi(t)\right\rangle
\end{aligned}
$$

- Integration then gives:

$$
\left\langle\omega_{n} \mid \psi(t)\right\rangle=e^{-i \omega_{n} t}\left\langle\omega_{n} \mid \psi(0)\right\rangle
$$

- We can express the state vector as:

$$
\begin{aligned}
|\psi(t)\rangle & =\sum_{n}\left|\omega_{n}\right\rangle\left\langle\omega_{n} \mid \psi(t)\right\rangle \\
& =\sum_{n}\left|\omega_{n}\right\rangle e^{-i \omega_{n} t}\left\langle\omega_{n} \mid \psi(0)\right\rangle
\end{aligned}
$$

Summary

- Two approaches to solving Schrödinger's Equation:
- Time-Evolution Operator:
- Case I: $H(t)=H(0)=H$:

$$
|\psi(t)\rangle=e^{-i H t / \hbar}|\psi(0)\rangle
$$

- Case II: $H(t) \neq H(0)$, but $\left[H(t), H\left(t_{-}\right)\right]=0$:

$$
|\psi(t)\rangle=e^{-\frac{i}{\hbar} \int_{t_{0}}^{t} d t^{\prime} H\left(t^{\prime}\right)}\left|\psi\left(t_{0}\right)\right\rangle
$$

- Case II: $H(t) \neq H(0)$, but $\left[H(t), H\left(t_{-}\right)\right]=0$:
$|\psi(t)\rangle=\lim _{N \rightarrow \infty} U\left(t_{N}+d t, t_{N}\right) \ldots U\left(t_{1}+d t, t_{1}\right) U\left(t_{0}+d t, t_{0}\right)|\psi(0)\rangle$
- Eigenvalue expansion:

$$
|\psi(t)\rangle=\sum_{n}\left|\omega_{n}\right\rangle e^{-i \omega_{n} t}\left\langle\omega_{n} \mid \psi(0)\right\rangle
$$

