Building Virtual Galaxies, JINA GCE Workshop, MSU, April 29, 2010

Stellar Evolution Models

Alexander Heger

Overview

Stellar evolution review

Uncertainties

Maybe some examples

Cosmic Dark Age

time

Once formed, the evolution of a star is governed by gravity: continuing contraction to higher central densities and temperatures

(a miracle occurs)

Supernova Explosion

Explosive Nucleosynthesis

in supernovae from massive stars

Fuel	Main Product	Secondary Product	Т (10 ⁹ К)	Time (s)	Main Reaction
Innermost ejecta	<i>r</i> -process	-	>10 Iow Y _e	1	(n, γ), β [–]
Si, O	⁵⁶ Ni	iron group	>4	0.1	(α,γ)
Ο	Si, S	CI, Ar, K, Ca	3 - 4	1	¹⁶ O + ¹⁶ O
O, Ne	O, Mg, Ne	Na, AI, P	2 - 3	5	(γ,α) , (α,γ)
		p-process ¹¹ B, ¹⁹ F, ¹³⁸ La, ¹⁸⁰ Ta	2 - 3	5	(γ ,n)
		v -process		5	(v, v'), (v, e⁻)

Things that blow up

- CO white dwarf \rightarrow Type Ia SN, E \approx 1Bethe
- MgNeO WD, accretion \rightarrow AIC, faint SN
- "SAGB" star (AGB, then SN) \rightarrow EC SN
- "normal" SN (Fe core collapse) → Type II SN
- WR star (Fe CC) → Type lb/c
- "Collapsar", GRB → broad line lb/a SN, "hypernova"
- Pulsational pair SN \rightarrow multiple, nested Type I/II SN
- Very massive stars \rightarrow pair SN, \leq 100B (1B=10⁵¹ erg)
- Very massive collapsar \rightarrow IMBH, SN, hard transient
- GR He instability \rightarrow >100 B SN+SMBH, or 10,000 B
- Supermassive stars $\rightarrow \geq 100000$ B SN or SMBH

MAS

metals 1 Elected

Three Types of Uncertainty

- With what do we start initial conditions composition, rotation rate, ... changing solar pattern, GCE: X_i(Z, *)?
- Simulations codes?
 Input physics: nuclear data & rates "mixing" physics – convection, semiconvection, overshooting, "wave"

mixing, rotation, magnetic fields, mass loss, ...

What do we compare to?
 Observational data uncertainty

Sun 2.0

Sun 3.0

Initial Rotation of Massive Stars

Initial Rotation of Massive Stars

Black Holes and GRBs from Rotating Stars

A small fraction of single stars is born rotating rapidly

The fastest rotators evolve chemically homogeneously, become WR stars on the MS, and may lose less angular momentum.

(Yoon & Langer 2006)

Input

- Rotation rate distributions as a function of mass and metallicity
- Initial composition distribution as a function of metallicity time (z), environment, ...?
- Isotopic initial compositions
- Binary star parameters (see later talk)
- Possibly accretion rates if significant part of Main Sequence evolution time.

Modeling

Mass Loss by Giant eruptions?

Mass Loss due to critical rotation?

Eikstroem, 2007, First Stars III

Mass Loss in Very Massive Primordial Stars

- Negligible line-driven winds (mass loss ~ metallicity^{>1/2} – Kudritzki 2002)
- No opacity-driven pulsations (no metals Baraffe, Heger & Woosley 2001)
- Continuum-driven winds and erruptions @ L~L_{Edd} have to be explored (Smith, Owocki, Shaviv, et al. 2005++)
- Epsilon mechanism inefficient in metal-free stars below ~1000 M_[] (Baraffe *et al.* 2001) from pulsational analysis we estimate:
 - 120 solar masses: < 0.2 %
 - -120 Solar masses. < 0.2%
 - 300 solar masses: < 3.0 %
 - 500 solar masses: < 5.0 %
 - 1000 solar masses: <12. %

during central hydrogen burning

- Red Super Giant pulsations could lead to significant mass loss during helium burning for stars above ${\sim}500~\text{M}_{\text{I}}$
- Rotationally induced *mixing* and mass loss, giant eruptions, etc.?

Modeling

- Nuclear reaction rates
- Opacities molecular, dust, ...
- Mass loss rates very uncertain for many domains in composition, luminosity, radius.
- Stellar stability pulsational mass loss, erruptions s-Dorados, LBV.
- Mixing physics convection, semi-convection, convective overshooting, rotation, magnetic fields, time-dependent mixing and burning, ...

– 3D modeling (Arnett, Meakin, Young, Dearborn, Woodward, ...)?

Codes

- Differences in numerical methods

 discretization, level of approximation (e.g., operator split, choice of time step, networks)
- Disagreement on "input" physics

 nuclear reaction rates, opacities, mass loss rates, mixing physics

Output

- Realistic error bars for abundances
- Scatter as a function of metallicity (Frank Timmes's comment)
- Isotopic data not just for ¹³C
- Observed evolution output, ...

physics

Mixing in 25 M_o Stars

Growth of Rayleigh-Taylor instabilities

Interaction of instabilities (mixing) and fallback determines nucleosynthesis yields

➔ Pop III stars show much less mixing than modern Pop I stars due to their compact hydrogen envelope

Simulations: Candace Church (UCSC/LANL T-2)

Fallback and Remnants

Mixing in a 15 M_{\odot} Stars

Growth of Rayleigh-Taylor instabilities

Interaction of instabilities (mixing) and fallback determines nucleosynthesis

→ Z=0 stars have more mixing than the [Z]=-4 stars with same rotation rate

Simulations: Candace Church (UCSC/LANL T-2)

Mixing in a 25 M_☉ Stars

Growth of Rayleigh-Taylor instabilities

Interaction of instabilities (mixing) and fallback determines nucleosynthesis yields

→ Z=0 stars have N more mixing than the [Z]=-4 stars with same rotation rate; less mixing than in 15 M_□ star

Mixing in a 40 M_o Stars

Growth of Rayleigh-Taylor instabilities

Interaction of instabilities (mixing) and fallback determines nucleosynthesis yields

èZ=0 stars have more mixing than the [Z]=-4 stars with same rotation rate; even less mixing

Simulations: Candace Church (UCSC/LANL T-2)

Supernovae, Nucleosynthesis, & Mixing

Some

Results

Nucleosynthesis from Stars $10-100 M_{\odot}$

Pop III Nucleosynthesis

Mg yield (ejecta mass fraction)

Heger & Woosley, in prep., (2009)

Pop III Nucleosynthesis Grid

Library of yields as a function of explosion energy

10 explosion energies from 0.3 to 10 B

1200 supernova explosions with full stellar/explosive nucleosynthesis

2 different models for piston location

Heger & Woosley (2009)

Comparison to Observational Data

Heger & Woosley (2009)

Reconstruction of the IMF

nucleosynthesis library

Multi-Star Fit Tool

sample multi-star fit: $\sigma^2 = 0.5293$

mass	energy	mixing
10.6	0.3	0.00251
10.6	5.0	0.00631
10.7	1.8	0.03981
11.6	0.9	0.00100
17.7	0.6	0.00398
21.5	0.9	0.01585
27.0	0.9	0.00631
30.5	0.9	0.00158
32.0	0.9	0.00398
	mass 10.6 10.7 11.6 17.7 21.5 27.0 30.5 32.0	massenergy10.60.310.65.010.71.811.60.917.70.621.50.927.00.930.50.932.00.9

best single star fit: $\sigma^2 = 4.3974$

Yield Data

- Data base format for yield data (stardb) isotopes, radioactivities, elemental molar, ... as function on input parameters
- Single star zonal outputs "user" can combine as needed (e.g., presolar grains)
- Fit (and plot) tools **starfit** (starfit.org)
- Observers: please provide data in log ε, better: mol fractions (mol/g)

Summary

- Model grid yields need isotopic initial abundance distributions(!) as function of metallicity and rotation rate distributions
- Author's choices for uncertain stellar physics (including nuclear physics) likely determine main differences
- Some differences in codes/numerical implementation
- Provide output data in several usable standardized forms?