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PHY 851 1 STATES AND OPERATORS

1 States and Operators

1.1 States

Quantum mechanics consists of states and operators. For any finite system, states are discrete
and can be assigned labels. For some systems the number of such discrete states is finite, e.g.
a particle in either spin-up or spin-down state, whereas in other systems the number of states
are infinite, e.g. levels of a harmonic oscillator. In this chapter we concentrate on those systems
where the number of states are finite, then proceed to the latter case in the next chapter.

Any physical state can be assigned a label, in this case ψ. This state can always be expressed as
a linear combination of basis states, |i〉, in an orthonormal basis. These states can be expressed
as vectors in a vector space of size n,

|1〉 = 1̂ =


1
0
0
...
0

 , |2〉 = 2̂ =


0
1
0
...
0

 , · · · |n〉 = n̂ =


0
0
0
...
1

 . (1.1)

By inspection, the basis is orthonormal,

〈i|j〉 ≡ î∗ · ĵ = δij. (1.2)

In quantum mechanics the vector algebra is complex, and the adjoint vector 〈ψ| is represented
by the complex transpose. Any orthonormal set of vectors can be expressed in this basis. The
notational choice of using 〈ψ| to refer to the adjoint vector and |ψ〉 to denote the vector is
known as bras and kets respectively (a take on the word “bracket”), and is known as Dirac no-
tation, though it derives from Hermann Grassmann’s work, https://en.wikipedia.org/wiki/
Hermann_Grassmann, one hundred years earlier.

Whenever the notation has a bra followed by a ket, it implies the dot product between the two
vectors, i.e

〈v|u〉 =
∑
i

v∗iui, (1.3)

and is sometimes referred to as an inner product. A sum over vector indices is not implied if the
ket precedes the bra, and

|u〉〈v| (1.4)

is known as an outer product. However, if one sees the notation,

|α〉〈α|, (1.5)

a sum over the vectorsα is implied, even though the vector indices are not summed. Ultimately,
for any physical observable, all bras and kets will be closed with a bra being the first to the left

1
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PHY 851 1 STATES AND OPERATORS

and a ket being the last to the right, with all vector indices being summed over within each
bra-ket factor.

One can form new states by taking linear combinations of basis states |i〉. For example,

|ψ〉 =
∑
i

aψ,i|i〉

〈ψ| =
∑
i

a∗ψ,i〈i|,

where ai,ψ is a complex number. By taking the overlap of |ψ〉with 〈i|, one sees that

ai,ψ = 〈i|Ψ〉. (1.6)

Furthermore, by taking the overlap of ψ with itself (the norm),

〈ψ|ψ〉 =
∑
i

〈ψ|i〉〈i|ψ〉 (1.7)

=
∑
i

|〈ψ|i〉|2.

If the state |ψ〉 is normalized, i.e. 〈ψ|ψ〉 = 1, |〈ψ|i〉|2 can be interpreted as the probability
that if one prepares a state |ψ〉 the chance one finds that one is in a state |i〉 is |〈ψ|i〉|2. This
follows because the squared elements are positive and sum to unity. Up to this last sentence, the
discussion has been one of standard linear algebra and notation. Of course, once finds that one
is in the state i, the state ψ no longer exists.

Associating the squared overlap as a probability is the profound intellectual jump that makes
quantum mechanics physics. Most everything in this course derives, almost inexorably, from
this conceptual leap combined with arguments about symmetry and the need to reproduce clas-
sical mechanics in some limit.

Equation (1.7) also shows the completeness relation,∑
i

|i〉〈i| = I. (1.8)

This is easy to see with the simple basis states in Eq. (1.1). In that case

|1〉〈1| =


1 0 · · · 0
0 0 · · · 0

...
0 · · · , 0

 , |2〉〈2| =


0 0 · · · 0
0 1 · · · 0

...
0 · · · , 0

 , · · · (1.9)

The completeness relation will also work for any set of basis states, because the basis can always
be transformed to the simple basis, and because

∑
i |i〉〈i| = I, the unit matrix is the same in any

basis.

As mentioned previously, all states can be expressed as vectors. For instance, if a basis has two
states, the two states might be defined in terms of vectors as,

| ↑〉 =

(
1
0

)
, | ↓〉 =

(
0
1

)
(1.10)

2
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The choice of these two vectors is arbitrary. As long as the two vectors are orthonormal, the
system may be fully described.

Example 1.1: – Probabilities and Overlaps
Consider the state

|ψ〉 =
1

Z1/2

(
1
i

)
.

a) Find Z so that the state is normalized.

b) What is the probability that |ψ〉would be measured in the | ↓〉 state?

Solution:
a) Squaring |ψ〉,

〈ψ|ψ〉 =
1

Z

(
1 −i

) ( 1
i

)
=

2

Z
,

Z = 2.

b) The probability is

P (↓) = |〈↓ |ψ〉|2

=
1

2

∣∣∣∣( 0 1
) ( 1

i

)∣∣∣∣2
=

1

2
(−i)(i) =

1

2
.

1.2 Operators

Operators operate on vectors and return another vector. All operators may be described in terms
of bras and kets,

A =
∑
ij

aij|i〉〈j|. (1.11)

Just as any state can be equivalently expressed as a vector, any operator can be defined by a
matrix, in this case aij . Just as a state’s expression in terms of a vector depends on the basis, so
does the expression of an operator in terms of a matrix. Knowing the coeficients aij is sufficient
to define the matrix. If the basis is defined by

|1〉 =

 1
0
...

 , |2〉 =

 0
1
...

 , · · · , (1.12)

3
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the matix and the coefficients are synonymous Aij = aij . Otherwise, one can express the states
|i〉 and |j〉 as vectors, v(i)m and v(j)n. In that case

Amn =
∑
ij

aijv(i)mv
∗(j)n, (1.13)

where v(i)m is themth component of the state vector i.

1.3 Hermitian Conjugate:

Consider a matrix element, 〈φ|A|ψ〉. Expressing the operators as matrices and the states as
vectors, then taking the complex conjugate one sees that,

〈φ|A|φ〉 = φ∗iaijψj (1.14)

〈φ|A|ψ〉∗ =
(
φ∗iaijψj

)∗
= ψ∗ja

∗
ijφj

Thus, if one wishes to define an operatorA† such that

〈ψ|A†|φ〉 = 〈φ|A|ψ〉∗, (1.15)

for any states |φ〉 and ψ, the operator A† must be represented by the complex-conjugate of the
matrix that representsA, then transposed.

A† =
∑
ij

(a†)ij|i〉〈j|, (1.16)

(a†)ij = a∗ji

The operator A† is known as the Hermitian conjugate of A. A Hermitian operator is one that
obeys the relation,

A = A†. (1.17)

The eigenvalues of a Hermitian operator are real, i.e. one can always find a change of basis
that diagonalizes A, with the elements all being real. To see this, assume the operator A has
eigenvalues ai and eigenvectors |i〉.

A|i〉 = ai|i〉, (1.18)

〈i|A† = a∗i 〈i|,
〈i|(A−A†)|i〉 = ai − a∗i .

IfA is Hermitian,A = A†, and ai must equal a∗i , so the eigenvalues are real.

Hermitian operators are important for two reasons,

1. They yield real numbers as expectations, 〈ψ|K|ψ〉∗ = 〈ψ|K|ψ〉. Because all physical
observables are real, they need to be represented by Hermitian operators. An example is
the HamiltonianH which represents the energy of a system.

2. They can be used to generate unitary transformations, eiKθ. An example is the time evo-
lution operator e−iHt. This will be discussed briefly in the next sub-section, but plays a
much larger role when we have a general discussion of symmetries.

4
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1.4 Unitary Operators and Transformations

A class of operators of that often play an important physical role is defined by those that corre-
spond to a change of basis, while keeping the new basis orthonormal. Examples are rotations,
translations and reflections. A common unitary operator is the evolution operator,U = e−iHt/~,
which corresponds to translations in time. Consider two sets of basis states |i〉 and i′〉, related
by a transformation operatorR,

|i′〉 =
∑
i

Ri′i|i〉, (1.19)

〈i′| =
∑
i

R∗i′i〈i|

=
∑
i

〈i|R†ii′.

Here, the set of states |i′〉 will refer to a new basis. The coefficientsRi′i must be constructed to
retain the orthormality properties,

〈i′|j′〉 = δi′j′ (1.20)

=
∑
ij

R†ii′Rj′j〈i|j〉

=
∑
i

Rj′iR
†
ii′

= (RR†)j′i′.

Here, the Hermitian conjugate R† was defined in Eq. (1.16). In simple words, the Hermitian
conjugate of a unitary matrix is its inverse, i.e., RR† = I, or equivalently, R−1 = R†. An
operator that satisfies this condition is called unitary. The word unitary follows from the fact
that a state U |ψ〉 has the same norm as |ψ〉, implying that the net probability is unchanged by
the unitary transformation U .

Hermitian operators are often used to generate unitary transformations,

U = e−iKθ. (1.21)

It is easy to see that such an operator is unitary ifK = K†,

UU † = e−iKθeiK
†θ (1.22)

= e−iKθeiKθ = e−i(K−K)θ

= I

If an operatorU is unitary, it represents unitary transformtions, under which a vector |ψ〉 trans-
forms as

|ψ′〉 = U |ψ〉, (1.23)

and an operatorA transform as

A′ = UAU−1. (1.24)
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The latter definition allows the vector |φ〉 = A|ψ〉 to transform as

|φ′〉 = (UAU−1)U |ψ〉 (1.25)
= U(A|ψ〉) = U |φ〉.

Summarizing, for a unitary transformation U ,

U † = U−1, (1.26)
|ψ′〉 = U |ψ〉,
〈ψ′| = 〈ψ|U †,
A′ = UAU †,

< ψ′|A′|ψ′〉 = 〈ψ|A|ψ〉

This last line emphasizes the fact that if you transform BOTH the operators and states, the matrix
element is unchanged. However, in some cases you transform the states, leaving the operator
unchanged, or you might transformed the operator and leave the state unchanged. This leads
to new matrix elements. It is always painful to realize which objects are being changed. This is
akin to performing a rotation, where rotating an object by φ or rotating the coordinate system
by−φ has the same effect.

1.5 Density Matrices

First, we stop and consider what forms of matrix elements might be considered as an observable.
Observables must be real and independent of the basis, i.e. all unitary transformations that act
on the bras, kets and operators should leave the observable unchanged. All observables can be
expressed as either the expectation of a Hermitian operator,

〈ψ|K|ψ〉, (1.27)

or as the squared overlap of two states,

|〈φ|K|ψ〉|2. (1.28)

Instead of describing a state ψ by a vector, one could describe it by a density matrix,

ρψ = |ψ〉〈ψ|, (1.29)

or as a matrix

(ρψ)ij = ψiψ
∗
j . (1.30)

By inspection, one can see that the density matrix is Hermitian. From the definition of the density
matrix, one can write the state |ψ〉 as a vector and the operatorK as a matrix, and using the cyclic
properties of the trace see that

〈ψ|K|ψ〉 =
∑
i,j

ψ∗iKijψj (1.31)

= Tr ρψK,

6
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and that

|〈φ|K|ψ〉|2 =< ψ|K†|φ〉〈φ|K|ψ〉 (1.32)

= Tr ρψK†ρφK.

Thus, the density matrices are sufficient to give all observables. The trace of a density matrix
is invariant under unitary transformations. Thus, one should always be able to transform to a
basis where the state |ψ〉 is

|ψ〉 =


1
0
...
0

 . (1.33)

In this basis ρψ is diagonalized and has the form,

ρψ =


1 0 · · · 0
0 0 · · · 0

...
0 0 · · · 0

 . (1.34)

A density matrix that can be diagonalized in such a way is known as a pure state. A projection
operator is a density matrix corresponding to a pure state. The reason that it is often called a
projection operator is that

P 2
ψ = Pψ, (1.35)

Tr Pψ = 1.

Projection operators can also play the role of a filter, e.g. a polarization filter. If one has a state
that is a linear combination of various states, a|ψ〉+ b|φ〉, the projection operator Pψ acting on
such a state returns a|ψ〉.
However, density matrices can be more general. If one has a density matrix which is an incoher-
ent sum over several states, the resulting diagonalized density matrix could have more than one
non-zero element, though the trace would have to remain equal to unity. Thus, density matrices
can be used to express non-pure states such as unpolarized beams. For instance, one can define
the following density matrix,

ρ =
1

2
|1〉〈1|+

1

2
|2〉〈2|. (1.36)

This density matrix describes being in state |1〉 50% of the time and in state |2〉 50% of the time.
If one were to write a state that was described by this density matrix, it would like like

1
√

2
|1〉+ eiφ

1
√

2
|2〉, (1.37)

with φ being treated as a random phase to justify ignoring the off-diagonal terms in the density
matrix. When performing calculations with such a state, one would ignore all terms in the
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density matrix with a leftover phase, eiφ, to account for the randomness of the phase. Note that
a density matrix ρ for an impure state is not a projection operator, i.e. ρ2 6= ρ.

Density matrices play an essential part in thermodynamics. In that case, one considers incoher-
ent sums over many states weighted by the energy. If one is in a basis where the Hamiltonian is
diagonalized, the density matrix takes the form

ρthermal =
1

Z


e−βE1 0 · · · 0
0 e−βE2 · · · 0
...

...
...

...
0 · · · 0 e−βEN

 , (1.38)

Z =
∑
i

e−βEi.

where β is the inverse temperature.

1.6 Rotations of Two-Component Spin-Half Systems

As an example of a unitary transformation we consider rotations in a two-component system.
For spin-1/2 systems the spin operator is

~S =
~
2
~σ. (1.39)

All operators can be written as a linear combination of the Pauli σ matrices and the unit matrix.

σz =

(
1 0
0 −1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
. (1.40)

As we will see later, under rotations the three matrices transform like components of a vector.
For now, we only notice that each matrix is Hermitian and that when squared gives the unit
matrix. Note that the Pauli matrices have the properties,

σ2
i = 1, (1.41)

{σi, σj} = 2δij,

[σi, σj] = 2iεijkσk.

where the anti-commutator is noted by {A,B} ≡ AB + BA for operators A and B, and the
regular commutator is noted by [A,B] ≡ AB − BA. From these expressions one can readily
show that for a unit vector n̂,

(~σ · n̂)2 = I. (1.42)

For a state with spin-up or spin-down along the z axis, we choose the basis

| ↑〉 =

(
1
0

)
, | ↓〉 =

(
0
1

)
. (1.43)
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Rotations by an angle θ are given by:

R(~θ) = e−i
~θ·~σ/2, (1.44)

where the direction of ~θ is along the axis of rotation n̂, or equivalently, ~θ = θn̂.

From performing a Taylor expansion, and using Eq. (1.41),

e−iθ~σ·n̂/2 = cos(θ/2)− i sin(θ/2)~σ · n̂. (1.45)

This trick comes in handy for a large number of physics examples, not just rotations.

It is important to note that this rule for rotating spin 1/2 systems does not follow for rotating the
two x and y components of a two-dimensional vector. In that case, the rotations only procede
via σz and the factor of 1/2 in exponent of e−iσz/2 vanishes. The difference comes from the fact
that for a spin-half particle, rotating by 180◦ changes one from spin-up to spin-down, i.e.,

R(π)| ↑〉 = | ↓〉, (1.46)

R(π)

(
1
0

)
=

(
0
1

)
,

whereas for two-dimensional vectors rotated around the z-axis, (this is true for the two polar-
izations along the z axis),

R(π/2)|x〉 = |y〉, (1.47)
R(π)|x〉 = −|x〉,

R(π)

(
1
0

)
=

(
−1
0

)
.

For the two-dimensional vectors rotating in the xy plane,

R(φ) = eiφσy (1.48)
= cosφ− iσy sinφ,

=

(
cosφ − sinφ
sinφ cosφ

)
.

Example 1.2: – Rotating Spin-1/2 Systems
Consider a fermion’s spin to originally be in the spin-up state, where “up” is defined by the z
axis.

|ψ〉 = | ↑〉 =

(
1
0

)
.

a) Find |ψ〉 after rotating by angles of θ = 90,◦ , 180◦ and 360◦ about the x axis.

b) What are the expectations of 〈ψ|σi|ψ〉 for each rotation.

c) What is |ψ〉 if it is rotated by an angle φ about the z axis?

9
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Solution:
a) Inserting σx into Eq. (1.45),

R(θ) = cos(θ/2)− i sin(θ/2)σx,

and the answers are:

R(θ = 90◦)| ↑〉 = |ψ(90◦)〉 =
1
√

2

(
1
−i

)
,

|ψ(180◦)〉 =

(
0
−i

)
,

|ψ(360◦)〉 =

(
−1
0

)
.

b) Just stick in the Pauli matrices,

〈ψ(0◦)|σx|ψ(0◦)〉 = 0, 〈ψ(0◦)|σy|ψ(0◦)〉 = 0, 〈ψ(0◦)|σz|ψ(0◦)〉 = 1,

〈ψ(90◦)|σx|ψ(90◦)〉 = 0, 〈ψ(90◦)|σy|ψ(90◦)〉 =
1

2
, 〈ψ(90◦)|σz|ψ(90◦)〉 =

1

2
,

〈ψ(180◦)|σx|ψ(180◦)〉 = 0, 〈ψ(180◦)|σy|ψ(180◦)〉 = 0, 〈ψ(180◦)|σz|ψ(180◦)〉 = −1,

〈ψ(360◦)|σx|ψ(360◦)〉 = 0, 〈ψ(360◦)|σy|ψ(360◦)〉 = 0, 〈ψ(360◦)|σz|ψ(360◦)〉 = 1.

c) Just reading it off from Eq. (1.45),

|ψ(φ = 90◦)〉 =

(
e−iφ/2

0

)
,

which is simply the original state multiplied by a phase factor.

1.7 Evolution in Time

Any function of time can be expressed as a Taylor series. For a state,

|ψ(t0 + τ )〉 = |ψ(t0)〉+ τ
d

dt
|ψ(t)〉t=t0 +

τ 2

2

d2

dt2
|ψ(t)〉t=0 + · · ·+

τn

n!

dn

dtn
|ψ(t)〉t=t0 + · · · .

(1.49)

Using the fact that the Taylor expansion for ex = 1 + x+ · · ·+ xn/n! + · · · , one can see that

|ψ(t0 + τ )〉 = U(t0, t0 + τ )|ψ(t)〉t=t0 (1.50)

U(t0, t0 + τ ) = exp

{
τ
d

dt

}
.

The operationU(t0, t0+τ ) is referred to as the evolution operator as it evolves the state forward
(or backward) in time by an amount τ . The norm of a state, 〈ψ|ψ〉, represents the probability so
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it which must remain equal to unity. This puts a condition on U ,

〈ψ(t)|ψ(t)〉 = 〈ψ(0)|ψ(0)〉 (1.51)

= 〈ψ(0)|U †(0, t)U(0, t)|ψ(0)〉,
U †(0, t)U(0, t) = I.

Thus, the evolution operator must be a unitary operator.

For small times,

U(t, t+ δt) = 1 + δt
d

dt
, (1.52)

where d/dt returns the derivative w.r.t. at time t. We can define an operatorH as

H(t) = i~
d

dt
, (1.53)

H(t)|ψ(t)〉 = i~
d

dt
|ψ(t)〉,

which is Schrod̈inger’s equation in general form and is nothing more than a definition ofH . The
evolution operator for small times is

U(t, t+ δt) ≈ 1− i
H(t)

~
δt, (1.54)

U †(t, t+ δt)U(t+ δt) ≈ 1− i
H(t)−H†(t)

~
δt.

Because U is unitary, one can state thatH(t) = H†(t), or thatH(t) must be Hermitian.

IfH is independent of time, one can take inspect the Taylor expansion in Eq. (1.49) and see that

U(t, t+ τ ) = e−iHτ/~. (1.55)

For many considerations, e.g. in time-dependent perturbation theory, H depends explicitly on
time, which then invalidates the simple expression above.

1.8 Evolution of Two-component Systems

Many problems in quantum mechanics can be reduced to two-state problems. Aside from the
“spin-up spin-down” problem, the two-kaon problem (see Baym), the solar neutrino problem
along with many other examples are really simple variations of the two-state problem.

The two-state problem is especially nice because all two-by-two matrices can be written in terms
of the unit matrix and the three sigma matrices,

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (1.56)
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These matrices are Hermitian, traceless, and obey simple commutation relations,

[σi, σj] = 2iεijkσk, {σi, σj} = 2δij. (1.57)

In fact, as we will see later, the matrices ~σ/2 obey the same commutation rules as angular mo-
mentum. From the anti-commutation relations, the square of any σ matrix is unity,

(~σ · n̂)2 = I (1.58)

The evolution of states under a Hamiltonian,

H = β~σ · n̂, (1.59)

is especially simple. In this case the evolution operator is

U(t) = e−iHt/~ (1.60)

= 1− iβt~σ · n̂+ (−iβt~σ · n̂)2 /2! + · · ·+ (iβt~σ · n̂)N /N ! + · · ·
= cos(βt)− i~σ · n̂ sin(βt),

because

(~σ · n̂)N =

{
I, N = even

~σ · n̂, N = odd
(1.61)

Example 1.3: – Evolving Spin 1/2 Particles

A spin-up(along the z-axis) particle is placed in an environment at t = 0 where it interacts with
a magnetic field pointed along the x axis,

H = βσx.

Find the probability of being in the “up” state as a function of time.

Solution:

|ψ(t)〉 = e−iHt/~|ψ(0)〉

= (cos(βt)− i sin(βt)σx)

(
1
0

)
=

(
cos(βt)
−i sin(βt)

)
.

Thus the probability of being in the “up” state is cos2(βt).

Example 1.4: – Neutrino Mixing
Two species of neutrinos, the νµ and ντ , have masses mµ and mτ . The Hamiltonian that de-
scribes these masses could be written:

H0 =

(
mµ 0
0 mτ

)
. (1.62)
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Now, we consider an extra term added to the Hamiltonian that mixes the two flavors of neutri-
nos,

Hmix =

(
0 α
α 0

)
. (1.63)

First, let us find the energies of two new states, which requires finding the eigenvalues of the
Hamiltonian. We do this by writing the Hamiltonian in terms of the sigma matrices.

H =
1

2
(mµ +mτ )I +

1

2
(mµ −mτ )σz + ασx

=
1

2
(mµ +mτ )I + β~σ · n̂.

Here, β is the “magnitude” of the two terms that multiply sigma matrices,

β =
√
α2 + (mτ −mµ)2,

and n̂ is a unit vector pointing in the direction,

n̂ = ẑ cos θ + x̂ sin θ

sin θ =
α

β

Finding the eigenvalues is simply a matter of rotating the σ matrices so that n̂ is in the z direc-
tion. The two energies are then,

E± =
1

2
(mµ +mτ )c

2I± βc2.

One could also just diagonalize the two-by-two matrix, which would lead to the same answer.

1.9 Heisenberg and Schrödinger representations

Usually, one wishes to caculate expectations of operators, e.g. 〈φ|AB · · ·C|ψ〉, where the states
evolve as a function of time, but the states are considered independent of time. Considering an
evolution operator, U = e−iHt/~, one can express the time development of the expectation of
AB · · ·C in either of two equivalent representations,

〈φ(t)|AB · · ·C|ψ(t)〉 = 〈φ(0)|U †AB · · ·CU |ψ(0)〉 (1.64)

= 〈φ(0)| U †AU U †BU · · ·U †CU |ψ(0)〉.

The upper line, Eq. (1.64), known as the Schrödinger representation, with the states evolving
while the operators are fixed.

In the Heisenberg representation, the time development of the operators can be written as a
differential equation, where the rate of change of the operator is given by the commutation of

13
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the Hamiltonian withA.

AH(t) ≡ U †(t)AS(t)U(t) (1.65)
d

dt
AH(t) =

∂

∂t

[
U †(t)AS(t)U(t)

]
=
i

~
U †(t)[H(t), AS]U(t) + U †(t)

(
∂

∂t
AS(t)

)
U(t).

Here, the subscripts S and H refer to Schrödinger and Heisenberg representations respectfully.
If there is no explicit time dependence inAS , then any operator that commutes with the Hamil-
tonian represents a constant of the motion. The most obvious such operator is H itself. Thus,
if the Hamiltonian has no explicit time dependence, the expectation of H , a.k.a. the energy, is a
constant of the motion.

Example 1.5: – Spin Precession in Heisenberg Representation
The spin-precession example from before can also be described by considering how the opera-
tors, in the Heisenberg representation, change with time, as opposed to how the states change
with time in the Schrödinger representation. Again, we consider the Hamiltonian, H = βσx.
The time development of σz and σy could be written as,

d

dt
σz(t) =

i

~
U †(t)[H,σz]U(t) (1.66)

=
i

~
βU †(t)[σx, σz]U(t) =

2β

~
σy(t)

d

dt
σy(t) =

i

~
βU †(t)[σx, σy]U(t) = −

2β

~
σz(t),

or equivalently,
d2

dt2
σz(t) = −

4β2

~2
σz(t). (1.67)

Thus,
〈σz(t)〉 = cos (2βt/~), (1.68)

if the initial spin is along the z axis.

Finally, we should point out that for any two Hermitian operatorsA and B that commute, a set
of states can be found that are eigenstates of both A and B. To see this, consider eigenstates of
B,

B|b〉 = b|b〉. (1.69)

IfA and B commute,
〈b′| [A,B] |b〉 = 0 = (b− b′)〈b′|A|b〉. (1.70)

Thus the operatorA does not mix states with different eigenvalues of B. Or in other words, one
can take the subset of states which have a given eigenvalue b, and this set should provide a basis
for simultaneously diagonalizingA.
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The implications of this simple statement are profound. For example if the angular momentum
operator operator Lz commutes with the Hamiltonian, the subset of states with the same eigen-
value of Lz, usually denoted by m, can be considered by themselves while diagonalizing the
Hamiltonian.

This also implies that for any operator A and a Hamiltonian H , where there is no explicit
time dependence in either operator, or equivalently the operator has no time dependence in
the Schrödinger representation, the time rate of change ofAH(t) is,

d

dt
AH(t) =

d

dt

(
eiHt/~ASe−iHt/~

)
(1.71)

=
i

~
eiHt([H,As])e−iHt.

Thus, any operator that commutes with the Hamiltonian is a constant of the motion.

1.10 Uncertainty Relations

In many examples one is interested in the expectations of the product of two or more Hermi-
tian operators. For instance, one might be interested in both the Hamiltonian and the number
operator. Here, we consider two Hermitian operators, A and B. One can choose states to be
eigenstates of either operator, but not necessarily both. This depends on whether the two oper-
ators commute. If there existed a basis where all the basis states were eigenstates of bothA and
B, one could state that

AB|ab〉 = ab|ab〉, (1.72)
BA|ab〉 = ab|ab〉.

In this case the productsAB and BAwould return the same result acting on any basis state and
one could say

AB = BA, (1.73)
[A,B] = 0.

Thus, the commutation of operators is essential if one is to be able to find a basis that serves as
eigenstates for both operators.

For the case where the operators no longer commute, one can find an uncertainty relation. The
non-commutation results in some non-zero operator C,

[A,B] = iC. (1.74)

The operator C must be Hermitian because the commutation of two Hermitian operators must
be anti-Hermitian,

(AB − BA)† = (BA−AB) (1.75)
= − (AB − BA) .

Equivalently, multiplying such commutation by i results in a Hermitian operator.
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To derive the uncertainty relation, one begins with the Cauchy-Schwarz inequality. For any two
operators δA and δB sandwiched between any state |ψ〉,

|〈ψ|δAδB|ψ〉|2 ≤ 〈ψ|δA2|ψ〉〈ψ|δB2|ψ〉. (1.76)

This is related to the fact that for vectors ~P and ~Q, |~P |2|~Q|2 ≥ (~P · ~Q)2. For our purposes, we
define

δA ≡ A− 〈ψ|A|ψ〉, δB ≡ A− 〈ψ|B|ψ〉. (1.77)

Next, one can see that

〈ψ|δAδB|ψ〉 =
1

2
〈ψ|[A,B]|ψ〉+

1

2
〈ψ|{δA, δB}|ψ〉, (1.78)

=
i

2
〈ψ|C|ψ〉+

1

2
〈ψ|{δA, δB}|ψ〉.

The first term is imaginary and the second term is real because the anti-commutator of two
Hermitian operators is Hermitian. Thus,

|〈ψ|δAδB|ψ〉|2 =
1

4
〈ψ|C|ψ〉2 +

1

4
〈ψ|{δA, δB}|ψ〉2. (1.79)

Plugging this into the Cauchy-Schwarz inequality, one obtains the Schrödinger-Robertson un-
certainty relation,

〈ψ|δA2|ψ〉〈ψ|δB2|ψ〉 ≥
1

4
〈ψ|C|ψ〉2 +

1

4
〈ψ|{δA, δB}|ψ〉2. (1.80)

Both terms on the r.h.s. are manifestly positive. The expectations 〈ψ|δA2|ψ〉 and 〈ψ|δB2|ψ〉
represent the degree to which either operator is well determined by |ψ〉. If the state |ψ〉were an
eigenstate ofA, δAwould be zero and the l.h.s. would vanish. Because the r.h.s. is positive, this
would require 〈ψ|δB2|ψ〉 to be infinite. Thus one cannot simultaneously find any state where
bothA and B are arbitrarily well determined.

The usual uncertainty relation involves ignoring the latter term, but including the latter term
strengthens the relation. For the famous Heisenberg uncertainty relation, the operators are the
position and momentum operators, X and P = −i~∂x, so C = ~, and ignoring the last term in
the Schrödinger-Robertson uncertainty relation,

〈ψ|δX2|ψ〉〈ψ|δP 2|ψ〉 ≥
~2

4
. (1.81)

1.11 Problems

1. Photons, traveling along the z axis can be polarized either linearly along the x or y axis,
or a linear combination of the two states. Write the operator that rotates the basis states by
45◦ about the z axis in terms of |x〉, |y〉 and the corresponding kets in the new basis, |45◦〉
and |135◦〉.
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2. Choosing the basis,

|x〉 →
(

1
0

)
, |y〉 →

(
0
1

)
,

write the matrix that rotates the states by φ about the z axis.

3. Right-hand circularly polarized (RCP) light is made of a linear combination of x and y
polarized light.

|R〉 =
1
√

2
(|x〉+ i|y〉) .

Light traveling along the z axis passes through a thin slab of thickness t whose index of
refraction, k = nω/c, is different for light polarized in the x and y directions. In terms of
nx, ny and t find the polarization vector for light which enters the slab as right-circularly
polarized.
HINT: The wave has a form e−iωt+ikz. The two components have the same ω but different
k while in the medium.

4. Find the density matrix for right-circularly polarized light in the basis defined above.

5. Using the basis described above, write the density matrix for light that is an incoherent
mixture, 50% polarized along the x direction and 50% along the y direction.

6. Considering a photon’s polarization, calculate 〈x|R(θ)|x〉 for θ=π/2, π, 2π, where the
rotation is about the z axis.

7. For a spin 1/2 particle, calculate 〈z,+|R(θ)|z,+〉, for the same angles when the rotation
is about the y axis.

8. Show that the unit matrix I, which can be considered as an operator, is unchanged by a
unitary transformation. Begin with the fact that for any matrixM,MI = IM =M.

9. Consider the rotation matrix for rotating Pauli spinors by an angle 90◦ about the z axis.
Using Eq. (1.45),

U = e−iσzπ/4 =
1
√

2
(1− iσz).

(a) Using the commutator and anti-commutator relations for the σ matrices, show that
the transformation of σx is

UσxU
† = σy.

(b) Show that rotating the state, |+, x〉, which refers to an eigenstate of σx with eigen-
value of +1, gives

U |+, x〉 = |+, y〉,
which is the eigenstate of σy with eigenvalue +1.

10. Consider some HermitianN×N matrixKij , with eigenvaluesλ(n) and the corresponding
normalized eigenvectors v(n),

Kv(n) = λ(n)v(n).

TheN eigenvectors each haveN components, v(n)
i . Create anN ×N matrix

Uij = v
∗(i)
j .

Thus, one is making a matrix by having each row be one of the eigenvectors.
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(a) Show that U is unitary.
(b) Show that the jth component of the vector Uv(n) is

(Uv(n))j = δnj,

Thus, the vectors Uv(n) are

(Uv(1)) =


1
0
0
...
0

 , (Uv(2)) =


0
1
0
...
0

 , · · ·

Now, consider the matrix
K′ = (UKU †),

and have it act on the vectors above. Show that

K′(Uv(n)) = λn(Uv(n)).

This shows that the vectors (Uv(n)) are eigenvectors of the matrix K′ with eigenval-
ues λn. Given that the eigenvectors are of the simple form above, the matrix (UKU †)
must be diagonal. Thus the matrix U defined above provides the unitary matrix for
transforming the matrixK into its diagonal form.

11. Consider the matrix:

M =

 1 0 0
0 0 1
0 1 0


(a) What are the eigenvalues ofM?

(b) What are the eigenvectors ofM?

12. Consider the 2×2 matrix

K =

(
A C∗

C B

)
(a) What are the eigenvalues ofK?
(b) What are the eigenvectors ofK?

13. A beam of light with wavelength 660 nm is sent along the z axis through a polaroid fil-
ter that passes only x polarized light. The beam is initially polarized at 30◦ to the x axis,
and the total energy of the pulse is exactly 10 Joules. Estimate the fluctuations of the en-
ergy of the transmitted beam, 〈(E − Ē)2〉1/2. Express the fluctuations as a fraction of the
average transmitted energy. (Hint: Consider the binomial distribution, with N tries with
probability p of success of each try.)
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14. Considering light moving along the z axis and using the following definitions for |R〉 and
|L〉 in terms of x and y polarized light,

|R〉 ≡
1
√

2
(|x〉+ i|y〉), |L〉 ≡

1
√

2
(|x〉 − i|y〉),

(a) In terms of |R〉(RCP) and |L〉(LCP) write the states |45〉 and |135〉which are linearly
polarized at 45◦ and 135◦ relative to the x axis.

(b) Calculate the 2× 2 transformation matrix from the 45, 135 basis, where

|45〉 =

(
1
0

)
, |135〉 =

(
0
1

)
,

to theR,L basis.
(c) Show that this transformation is unitary.

15. The probability that a photon in state |Ψ〉 passes through an x-polaroid is the average value
of a physical observable which might be called the x-polarizedness..

(a) Write down the operator Px, as a matrix in theXY basis where

|X〉 =

(
1
0

)
, |Y 〉 =

(
0
1

)
.

The projection 〈Ψ|Px|Ψ〉 is the probability that |Ψ〉makes it through the filter.
(b) What are its eigenvalues and eigenstates?
(c) Write the matrix Px in theRL basis, where RCP and LCP states are

|R〉 =

(
1
0

)
, |L〉 =

(
0
1

)
,

and show that the eigenvalues are the same as in the XY basis. Also, show that the
this matrix is a projection operator by explicitly multiplying Px by itself.

16. The trace of a matrixA is defined as:

TrA ≡
∑
i

Aii

(a) Show that the trace ofA is invariant under a transformation of basis,

A→ U †AU

(b) Show that TrAB = TrBA.

17. A plane polarized photon at θ = 45◦ enters a special crystal with indices of refraction:
nx=1.50 for photons polarized along the x axis
ny=1.52 for photons polarized along the y axis.
Assuming the wavelength of the light is 660 nm before it enters the crystal, choose the
thickness of the crystal such that the outgoing light is right circularly polarized. Assume
the dispersion is linear, k = nω/c.
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18. Consider the matrix for rotation about the z axis,

R(φ) = e−iσzφ/2. (1.82)

Show that after rotation about the z axis,

R(φ)σxR
−1(φ) = σx cos(φ) + σy sin(φ) (1.83)

19. Consider a basis for spin-up and spin-down electrons (along the z axis),

| ↑〉 =

(
1
0

)
, | ↓〉 =

(
0
1

)
(a) Write down the 4 vectors describing an electron with spin pointed along the posi-

tive/negative directions of x and y axes.
(b) Write the six density matrices describing electrons polarized along the positive/negative

directions of each of the three axes.
(c) Write the density matrix describing an incoherent mixture of 60% spin-up and 40%

spin down.
(d) Using the density matrix, calculate< y,+|Sz|y,+〉.

20. Neutral Kaon Oscillations: There are two kinds of neutral kaons one can make using down
and strange quarks,

|K0〉 = |ds̄〉, |K̄0〉 = |sd̄〉.

If particle and anti-particle symmetry (CP) were exact, the two species would have equal
masses, and the Hamiltonian (for a kaon in the ground state of a well) would be

H0 =

(
M 0
0 M

)
.

However, there is an additional term that mixes the states due to the weak interaction that
mixes the two states,

Hm =

(
0 ε
ε 0

)
.

The masses of a kaon neutral kaon are 497.6 MeV, without mixing, but after adding the
mixing term the masses differ by 3µeV. The two eigenstates are known as KS (K-short)
andKL (K-long), because they decay with quite different lifetimes.

(a) What is ε?
(b) If one creates a kaon in the K0 state at time t = 0, find the probability it would be

measured as a K̄0 as a function of time.

FYI: If the above were exactly true, theKs state would be even under CP,

|KS〉 =
1
√

2
(|K0〉+ |K̄0〉,

|KL〉 =
1
√

2
(|K0〉 − |K̄0〉,
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and the KS could decay to two pions and the KL could decay to three pions. However,
there is an additional small CP violating term in the Hamiltonian which allowsKL to have
a small probability of decaying to two pions. This was the first experimental laboratory ob-
servation of CP violation. CP violation is required to explain the preponderance of matter
vs. anti-matter in the universe.

21. Neutrino Oscillations: There are three kinds of neutrinos corresponding to the three lepton
families, and recent evidence has suggested that they may oscillate between generations.
Here we consider two flavors, the µ neutrino and the τ neutrino. Suppose that the Hamil-
tonian can be written as a free term plus a term that mixes the µ and τ neutrinos, which is
proportional to α.

H =

( √
k2 +m2

µ 0

0
√
k2 +m2

τ

)
+ α

(
0 1
1 0

)
(a) Supposing you are in the rest frame of the neutrino and that the momentum k is zero,

show that the evolution operator e−iHt/~ can be written as

e−i(mµ+mτ )t/2~ {cosωt− iσn sinωt} ,

where

~ω ≡
√
α2 + (

mτ −mµ

2
)2

σn ≡
mτ−mµ

2
σz + ασx

~ω
(b) If a neutrino starts as a µ neutrino, what is the probability, as a function of time, of

being a τ neutrino?

(c) As a function of the masses and α, what is the oscillation time? I.e. the time to return
to its original flavor.

(d) If the neutrinos are extremely relativistic, k >> m, describe how the oscillation time
translates into an oscillation as a function of the distance from the creation.
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2 Coordinate and Momentum Space

In the previous section we considered problems with a finite number of discrete states. If there
were N discrete states, the problem was reduced to a linear algebra exercise involving N -
dimensional vectors to represent the states and N × N dimensional matrices to represent the
operators. For particles confined to a finite volume, such as a harmonic oscillator or a infinite
potential well, the system still has discrete levels, but the number of such levels is unbounded
as the states can have arbitrarily high energy. A vector space, where the dimensionality ap-
proaches infinity is known as a Hilbert space. Thus, linear algebra is not applicable without some
sort of truncation. In its place, differential equations provide the dominant mathematical tool to
represent the physics.

Having the number of states approach infinity is typically the result of either (a) a continuum of
points in coordinate space or (b) a infinite extent to coordinate space, or (c) both. An example
of (a) is an infinite square well or a harmonic oscillator. The solutions to these problems lead to
an infinite number of discrete states. An example of (b) would be an infinitely long chain with
sites separated by some distance `. In this case there is a continuum of momentum solutions,
e.g. phonons, but with a maximum momentum of the order ~/`. Finally, for (c), one has a
continuum of solutions, and no upper bound on the energy or momentum. For problems with
a continuum in coordinate space, the physics is often described by some sort of wave equation,
most famously Schrödinger’s wave equation. The qualifier wave is invoked to distinguish it
from Hψ = Eψ, which is not necessarily a wave equation, and might also be referred to as
Schrödinger’s equation.

2.1 Schrödinger’s Wave Equation

One of the most famous equations in physics is Schrödinger’s wave equation,

i~
∂

∂t
ψ(x) = −

~2

2m

∂2

∂x2
ψ(x) + V (x)ψ(x), (2.1)

where ψ is a complex function of the continuous variable x. Rather than thinking of ψ(x) as a
wave function, it is more revealing to recognize it as overlap of the state |ψ〉with the state |x〉.

ψ(x) = 〈x|ψ〉. (2.2)

The only difference between a label in coordinate space and a label that denotes a discrete vari-
able such as spin, is that because the x label is continuous, the normalization has to be changed.

〈x′|x〉 = δ(x− x′). (2.3)

This implies that |x〉 has dimensions of inverse length to the one-half power. The completeness
relation becomes ∫

dx |x〉〈x| = I, (2.4)∫
dx 〈φ|x〉〈x|ψ〉 = 〈φ|ψ〉.
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Next, we wish to show that the Schrödinger equation is merely the continuum limit of a matrix
equation where ψ0, ψ1 · · ·ψN will represent ψ(x) at x = 0, δx, 2δx · · · . To do this we write
the second derivative as

∂2

∂x2
ψ(x) = lim

δx→0

∂

∂x

ψ(x+ δx/2)− ψ(x− δx/2)

δx
(2.5)

= lim
δx→0

ψ(x+ δx)− 2ψ(x) + ψ(x− δx)

δx2
.

Thus, by making the substitution,

ψ(x)→ ψi
1
√
δx
, (2.6)

the normalization becomes: ∑
i

|ψi|2 = 1. (2.7)

One may now rewrite Schrödinger’s equation in terms of discrete vectors,

i
∂

∂t
ψi(t) = −

~2

2mδx2
(ψi+1(t)− 2ψi(t) + ψi−1(t)) + V (x)ψi(t). (2.8)

If one takes the limit of δx → 0, the number of states |x〉 within a finite length approaches
infinity.

For the case where δx is finite one may also write the Hamiltonian as a matrix.

H = −
~2

2mδx2


· · · · · · · · · · · · · · ·
· · · −2 1 0 · · ·
· · · 1 −2 1 · · ·
· · · 0 1 −2 · · ·
· · · · · · · · · · · · · · ·

+


· · · · · · · · · · · · · · ·
· · · V (xi−1) 0 0 · · ·
· · · 0 V (xi) 0 · · ·
· · · 0 0 V (xi+1) · · ·
· · · · · · · · · · · · · · ·

 .
(2.9)

Here, the potential term is diagonal while the kinetic term is band diagonal.

2.2 Momentum States

A momentum state is no more than a linear combination of coordinate-space states,

|p〉 =

∫
dx eipx/~|x〉, (2.10)

〈x|p〉 =

∫
dx′ eipx

′/~〈x|x′〉

=

∫
dx′ eipx

′/~δ(x− x′)

= eipx/~.
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With this definition of the state |p〉, the normalization becomes

〈p′|p〉 =

∫
dxdx′ ei(px−p

′x′)/~〈x′|x〉 (2.11)

=

∫
dx ei(p−p

′)x/~

= 2π~δ(p− p′),

and the dimensionality of |p〉 is length to the one-half power. The inverse transformation is

|x〉 =
1

2π~

∫
dpe−ipx/~|p〉. (2.12)

Expressed as a completeness relation,∫
dp

(2π~)
〈x|p〉〈p|x′〉 =

∫
dp

(2π~)
eip(x′−x)/~ (2.13)

= δ(x′ − x) = 〈x|x′〉.

Thus,
1

2π~

∫
dp |p〉〈p| = I. (2.14)

Sandwiching this between some normalized state ψ,

1

2π~

∫
dp 〈ψ|p〉〈p|ψ〉 = 〈ψ|ψ〉 (2.15)

1

2π~

∫
dp ψ∗(p)ψ(p) = 1,

ψ(p) = 〈p|ψ〉.

Thus, the probability per differential momentum for observing a particle with momentum p in
some state ψ is

dPψ

dp
=

1

2π~
ψ∗(p)ψ(p). (2.16)

Changing the problem to n dimensions only affects the expressions here by changing dp to dnp
and replacing (2π~) with (2π~)n.

The label p here refers to a continuum of momentum states. If a system is confined, then no
eigenstate of the momentum operator really exists, but one still uses the label p to point to
eigenstate of the momentum operator within the volume, but with discrete values of p rather
than a continuum. In that case the normalizations are different. It is the duty of the watchful
reader to accurately interpret the notation.

The momentum and position operators can be expressed as,

X =

∫
dx x|x〉〈x| (2.17)

P =

∫
dp

2π~
p|p〉〈p|.
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From the definition of X , one can see that

〈φ|X |ψ〉 =

∫
dx 〈φ|x〉x〈x|ψ(x)〉 (2.18)

=

∫
dx φ∗(x)xψ(x).

One can also perform a similar operation with the momentum operator.

〈φ|P|ψ〉 =

∫
dp

2π~
φ∗(p)pψ(p), (2.19)

ψ(p) = 〈p|ψ〉.

However, the customary way to view the momentum operator is not in momentum space, but
as a derivative in coordinate space. Expanding |p〉 in terms of coordinate space states, one can
use completeness to express the 〈φ|P|ψ〉 in terms of wave functions,

〈φ|P|ψ〉 =

∫
dxdy

dp

2π~
〈φ|x〉〈x|p〉p〈p|y〉〈y|ψ〉 (2.20)

=

∫
dxdy

dp

2π~
〈φ|x〉eip(x−y)/~p〈y|ψ〉

The factor p can be changed into a derivative of the phase e−ipy/~ with respect to y,

〈φ|P|ψ〉 =

∫
dxdy

dp

2π~
(
i~∂yeip(x−y)/~) 〈φ|x〉〈y|ψ〉 (2.21)

=

∫
dxdy

dp

2π~
eip(x−y)/~〈φ|x〉 (−i~∂y〈y|ψ〉)

=

∫
dx 〈φ|x〉 (−i~∂x) 〈x|ψ〉

=

∫
dx φ∗(x) (−i~∂x)ψ(x),

P =

∫
dx |x〉 (−i~∂x) 〈x|.

This algebra also shows that the one can write the momentum as a left-acting derivative, but
with a change of sign.

Thus, the momentum operator can be thought of a −i~∂/∂x. With some algebra, one can see
that commuting P with X yields,

[P,X ] =

∫
dx|x〉(−i~∂x)(x〈x|)−

∫
dx |x〉(x(−i~∂x))〈x| (2.22)

= −i~
∫
dx |x〉〈x|

= −i~I.
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Aside: Schrödinger’s Wave Equation as Operator
Before we find solutions, we regress to consider the notation and vocabulary associated with
Schrödinger’s equation. One often writes the Hamiltonian in this way,

Hψ(x) = Eψ(x), H = −
~2

2m

∂2

∂x2
+ V (x). (2.23)

Referring to H above as the Hamiltonian is actually incorrect, as it does not represent the fact
that the Hamiltonian is an operator and should be sandwiched between a bra and ket. More
correctly, beginning withH defined as an operator, then using completeness,

H|ψ〉 = E|ψ〉 (2.24)∫
dx′〈x|H|x′〉〈x′|ψ〉 = E〈x|ψ〉.

Now, one assumes that H does not mix |x〉 with |x′〉 unless x and x′ are a the same position
(or neighboring positions in the limit that one discretizes coordinate space). In that case one can
define the function h(x) as,

〈x|H|x′〉 = h(x)δ(x− x′), (2.25)

and Schrödinger’s equation becomes

h(x)〈x|ψ〉 = E〈x|ψ〉, (2.26)
h(x)ψ(x) = Eψ(x),

h(x) = −
~2

2m

∂2

∂x2
+ V (x).

This is not simply an exercise in notation. It emphasizes that the Hamiltonian does not mix states
with x far from x′. Without such a constraint, one would not have local current conservation.
Local conservation of current requires that charge cannot instantaneously transport across large
distances.

2.3 Local Charge Conservation and the Equation of Continuity

The equation of continuity is omnipresent across physics,

∂tρ(~r, t) = −∇ ·~j(~r, t). (2.27)

To see that this infers that charge conservation is local, one applies the divergence theorem. For
any volume V ,

∂t

∫
V

d3r ρ(~r, t) = −
∫
V

d3r∇ ·~j(~r, t) (2.28)

d

dt
Q = −

∮
d ~A ·~j(~r, t),
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where Q is the charge within the volume V . By considering arbitrarily small volumes, this
shows that the change in charge within that volume can be identified with the current density
~j exiting the surface of the volume. Thus, charge cannot leave a small volume in East Lansing,
only to instantaneously appear in Kalamazoo. Instead, it appears in the neighboring volume,
and then makes its way to Kalamazoo over time.

Schrödinger’s equation allows one to identify both the charge and current densities. First, con-
sider Schrödinger’s wave equation and its complex conjugate,

−~2∇2
2

2m
ψ∗(~r1, t1)ψ(~r2, t2) + V (~r2, t2)ψ∗(~r1, t2)ψ(~r2, t2) = −i~

∂

∂t2
ψ∗(~r1, t1)ψ(~r2, t2),

(2.29)
−~2∇2

1

2m
ψ∗(~r1, t1)ψ(~r2, t2) + V (~r1, t1)ψ∗(~r1, t2)ψ(~r2, t2) = i~

∂

∂t1
ψ∗(~r1, t1)ψ(~r2, t2),

The second equation is found by taking the complex conjugate of the first equation, then switch-
ing (1 ↔ 2). Subtracting the two equations, and using the fact that∇2

1 − ∇2
2 = (∇1 − ∇2) ·

(∇1 +∇2),

−
~2

2m
(∇1 +∇2) · (∇1 −∇2) [ψ∗(~r1, t1)ψ(~r2, t2)] + [V (~r1, t)− V (~r2, t)] [ψ∗(~r1, t1)ψ(~r2, t2)]

(2.30)

= −i~
(
∂

∂t1
+

∂

∂t2

)
[ψ∗(~r1, t1)ψ(~r2, t2)] .

Then dividing by i~,

(∇1 +∇2) ·
−i~
2m

(∇2 −∇1)ψ∗(~r1, t1)ψ(~r2, t2) +
−i
i~

[V (~r1, t)− V (~r2, t)] [ψ∗(~r1, t1)ψ(~r2, t2)]

(2.31)

=

(
∂

∂t1
+

∂

∂t2

)
ψ∗(~r1, t1)ψ(~r2, t2).

Setting ~r1 = ~r2 and t1 = t2, one finds

∂tρ(~r, t) = −∇ ·~j(~r, t), (2.32)
ρ(~r, t) = ψ∗(~r1, t1)ψ(~r2, t2)

~j(~r, t) = −
i~

2m
ψ∗(~r, t)∇ψ(~r, t) +

i~
2m

[∇ψ∗(~r, t)]ψ(~r, t).

If one associates ~i~∇/m with the velocity, then the current looks like the velocity density. For
Schrödinger’s equation, the net number of particles is a conserved quantity. If the described
particle has some charge q, then the charge density is qψ∗ψ.
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2.4 Potential Problems in One Dimension

Consider Schrödinger’s wave equation,

−
~2

2m

∂2

∂x2
Ψ(x, t) + V (x)Ψ(x, t) = i~

∂

∂t
Ψ(x, t). (2.33)

If Ψ(x, t) is an eigenstate of the Hamiltonian, the solution becomes

Ψ(x, t) = e−iEt/~ψ(x), (2.34)

and the time derivative i~∂/∂t can be replaced by E in Schrödinger’s wave equation. Because
the time dependence is then simply a phase factor, all observables become fixed in time for eigen-
states. For many applications, we will consider the steady-state case by looking for eigenstates.
However, the fact that these are eigenstates does not preclude that the currents are zero. One
can set boundary conditions such that current enters and exits the boundary, thus resulting in a
steady-state solution, but one where the charge moves.

To find solutions for problems where the potential is continuous, it is sufficient to find solutions
to the wave equation that have the correct behavior at x → ±∞. If the potential is discontinu-
ous at certain points, boundary conditions must be enforced at every point where a discontinuity
is formed.

If the discontinuity is finite (not a delta function or an infinite square well), the boundary condi-
tions at the discontinuity are:

1. ψ(x) is continuous.

2. ∂x ψ(x) is continuous.

If ψ were discontinuous, the derivative would be infinite at that point and the current would be
infinite at the discontinuity, which would make it impossible to enforce the equation of continu-
ity. If the first derivative were discontinuous at some point y, the second derivative would be
infinite at that point. To understand the second boundary conditions we integrate Schrödinger’s
equation from x = y − ε to x = y + ε, where ε→ 0.

−
~2

2m

(
∂

∂x
ψ(x)|y+ε −

∂

∂x
ψ(x)|y−ε

)
=

∫ y+ε

y−ε
dx(E − V (x))ψ(x). (2.35)

We now consider a discontinuity at y, and perform the integral over an infinitesimal range cen-
tered about y. If the potential is finite the integral on the r.h.s. vanishes as ε → 0, and one
obtains

−
~2

2m

(
∂

∂x
ψ(x)|y+ε −

∂

∂x
ψ(x)|y−ε

)
= 0, (2.36)

thus demonstrating the requirement that the derivative of ψ be continuous. However, if the
potential is a delta function, integrating the right-hand side of Eq. (2.36) over the infinitesimal
range can yield a finite value. Thus, if

V (x) = βδ(x− y), (2.37)
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the boundary condition becomes

−
~2

2m

(
∂

∂x
ψ(x)|x+ε −

∂

∂x
ψ(x)|y−ε

)
= −βψ(y). (2.38)

For the remainder of this section, we consider a number of potential examples.

Example 2.1: – Sudden Disintegration of Square Well

Consider the simple potential,

V (x) =


∞, x < −a
0, −a < x < a
∞, x > a

The ground state wave function is

ψ(x) =

√
1

a
cos(πx/2a), E =

~2

2m

(
π

2a

)2

.

If the well suddenly dissolves, what is the probability the particle will be observed with momen-
tum p?

Solution: From Eq. (2.16), the probability of observing p is

dPψ

dp
=

1

2π~
|〈p|ψ〉|2, (2.39)

〈p|ψ〉 =

∫
dx 〈p|x〉〈x|ψ〉

=

∫
dx eipx/~ψ(x)

=
1
√
a

∫ a

−a
dx [cos(k) + i sin(kx)] cos(k0x)]

=
1
√
a

∫ a

−a
dx cos(kx) cos(k0x),

k0 ≡
π

2a
, k ≡

p

~
.

The term with sin(kx) was discarded by symmetry. Integrating,

〈p|ψ〉 =
1

2
√
a

∫ a

−a
dx {cos[(k + k0)x] + cos[(k − k0)x]} (2.40)

=
1
√
a

{
sin[(k + k0)a]

k + k0

+
sin[(k − k0)a]

k − k0

}
=
√
a cos(ka)

{
1

ka+ π/2
−

1

ka− π/2

}
=
√
a cos(ka)

π

(ka)2 − π2/4
.
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Figure 2.1: Differential probability of observing particles of momentum p from a square well of width
2a, solved in Example 2.4.

The dimension of |〈p|ψ〉|2 is that of length, and given that the units of ~ are momentum×length
(or energy×time), the probability dPψ/dp indeed has units of inverse momentum. The proba-
bility is displayed in Fig. 2.1.

Example 2.2: – Finite Potential Well

Consider the potential,

V (x) =


∞, x < 0
−V0, 0 < x < a

0, x > a
(2.41)

Solve for the binding energy and wave function of the lowest energy state:

Solution: Assume the energy is negative. In the region of the well solutions of Schrödinger’s
equation are sines and cosines with wave number, k =

√
(2m(V0 − B)/~2), where B is the

binding energy (a positive number between zero and V0). The BC at the origin is that the wave
function must go to zero due to the infinite potential. Thus, only the sine piece remains,

ψI(x) = sin(kx). (2.42)

We have chosen an arbitrary normalization constant of unity.

In the second region, exponentially growing/decaying solutions work with a decay constant of
q =

√
(2mB/~2). The exponentially growing piece can be thrown out as we wish to find a

solution where some probability is near the origin.

ψII(x) = Ae−qr (2.43)

Thus far, we have neglected the two boundary conditions at x = a, which are necessary to
determine the two unknowns, the binding energy B and the normalization factor A. Writing
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the two BCs,

sin(ka) = Ae−qa (2.44)

k cos(ka) = −qAe−qa

Dividing the two BCs eliminatesA and gives the relation,

tan(ka) =
−k
q
,

k =
√

2m(V0 −B)/~2, q =
√

2mB/~2.

This is a transcendental equation for B which can be solved graphically as a function of k, or
on the computer, and keeping in mind that k must be between zero and kmax =

√
2mV0/~2.

In order for the two functions above to intersect and have the same slope, the tangent function
must have a negative slope, and because k < kmax =

√
2mV0/~2, this can only happen when

kmaxa > π/2. Thus, the solution disappears if the depth, V0, is too small or if the the width a
is too narrow. At the point where kmaxa = π/2, the solution has binding energy zero and from
the previous equation one can see that tan(ka) =∞, or ka = π/2 as just stated.

In one dimension, if a potential remains zero or below zero for all x, there is always at least one
bound state. However, in this case the potential is positive, and in fact infinite, for x < 0.

Example 2.3: – Delta Function Potential

Consider the potential,

V (x) = −βδ(x), β > 0.

Find the binding energy of the bound state.

Solution: Assume the existence of a bound state of binding energy B. The solutions are ex-
ponentials with decay constant k =

√
2mB/~2, and the requirement that they go to zero at

x = ±∞ gives

ψ(x) =

{
exp(−kx) x > 0

exp(kx) x < 0

Plugging them into the BC at x = 0, Eq. (2.38), gives

~2k

m
= β. (2.45)

The binding energy is

B =
~2k2

2m
=
β2m

2~2
.

Example 2.4: – Plane Wave Incident on Finite Barrier
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Consider a plane wave of wave number k incident on a positive barrier,

V (x) =

{
0, x < 0
V0, x > 0

Find the reflection and transmission probabilities for a particle with energy E which is greater
than V0.

Solution: Solutions must be of the form,

ψI(x) = eikx +Ae−ikx, k =
√

2mE/~2

ψII(x) = Beiqx, q =
√

2m(E − V0)/~2

The reflection probability is |A|2. The transmission probability is 1 − |A|2 which should equal
the ratio of the fluxes, (q/k)|B/A|2.

The BCs yield

1 +A = B

k(1−A) = qB

Here, k and q are known, and the unknowns areA andB. Solving forA andB,

A =
k − q
k + q

, B =
2k

k + q

Thus, one quickly obtains the reflection and transmission probability. In order to check the
answer, one can see that the outgoing fluxes sum to the incoming flux.

k|A|2 + q|B|2 = k.

2.5 Wave Packets

A plane wave can be written as

ψp(x) = 〈x|p〉 =
1
√
L
eipx/~, (2.46)

which is normalized in the length L, but is not really an eigenstate of the momentum operator
due to the sharp cutoff at the boundaries. A more physical description is a wave packet, which
confines the probability to a finite region, and because of the uncertainty principle is accompa-
nied by a spread in the momentum. This state |Q〉 will NOT be an eigenstate of the momentum
operator, but will instead be a linear combination of states |p〉, which are eigenstates of the mo-
mentum operator P = −i~∇.

|Q〉 =

∫
dp

2π~
g(p−Q)|p〉, (2.47)

g(p−Q) = 〈Q|p〉.
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For our purposes we will assume g to be of a Gaussian form,

g(p−Q) = α exp

(−(p−Q)2

4∆2

)
. (2.48)

As an exercise, one should check that this resulting wave packet is properly normalized by

α = (2π)1/4

√
~
∆

(2.49)

By inspection, one sees that the width of the wave packet in momentum space is ∆.

To understand the spatial shape of the packet, one can see that

ψQ(x) = 〈x|Q〉 =

∫
dp

2π~
e−ipx/~g(p−Q) (2.50)

=
α∆

~

√
2

π
e−iQx/~e−x

2∆2/~2,

|ψQ(x)|2 =
2∆

~

√
1

2π
exp

{
−

(2∆)2

~2

x2

2

}
,

which is also of Gaussian form, with the spatial spread being ~/(2∆).

Thus the product of the spread in momentum space multiplied by the spread in coordinate
space is ~/2, exactly the minimum allowed by the uncertainty principle. If the packet had been
described with eipx~ → eip(x−x0)/~, the packet would be centered at x0 instead of the origin.

For the wave packet at arbitrary times,

ψQ(x, t) =

∫
dp

2π~
e−Ept/~+ipx/~g(p−Q), (2.51)

we expect the packet to move in time. The packet has contributions from all momenta which
represent differential additions with a wide variety of phases. At every time t there is a point x
for which the phases are constant in the region near Q. At this point, the differential contribu-
tions add in-phase and the wave function in coordinate space is a maximum. To find that point
we take a derivative of the phase with respect to p atQ, and require it to be zero.

d

dp
(−iEpt+ ipx)|p=Q = 0, (2.52)

x =
dEp

dp
t.

Given that dE/dp|p=Q = v, even for relativistic particles, one sees that

x = vt (2.53)

which is not surprising. Here, g(p) was assumed to be a real function, but if it were given
a momentum-dependent phases, eiφ(p), then the same condition would lead to x = vt −
~dφ/dp|p=Q, and the additional term would set the position of the wave packet at t = 0.
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Example 2.5: – Wave Packet Reflecting off Finite Barrier

As an example where wave packets are involved, we will consider a packet as described above,
incident on a potential barrier. The goal is to find the time delay of scattering. We consider a
simple square well potential of the form,

V (x) =

{
0, x > 0
V0, x < 0

We also assume that the packet is narrow and that V0 is larger than Ek, so the wave packet
should completely reflect (assuming that g(p− k) is narrow).

The incoming wave packet can have the form,

ψin(x, t) =
1

2π~

∫
dp e−iEpt/~−ipx/~g(p− k).

Such a packet should have a reflection, with the reflected wave packet,

ψout(x, t) = −
1

2π~

∫
dp e−iEpt/~+ipx/~e+2iδ(p)g(p− k).

The negative sign is chosen so that in the limit of an infinite potential δ(p) = 0. The reflected
packet has the same amplitude, because the flux must be the same both ways given that the
reflection is total. However, there could be a phase factor that might be momentum dependent.
The factor of two in the phase is a convention which we will encounter again when we discuss
scattering theory.

Solving for the phase shift, we assume the solutions in regions I (x > 0) and II (x < 0) are

ψI(x) = e−ipx/~ − eipx/~+2iδ(p),

ψII(x) = Beqx/~, q =
√

2m(V0 − E).

The BC give

1− e2iδ = B

−ip(1 + e2iδ) = qB.

The solution for the phase shift is

tan δ =
p

q
.

Looking for the point xwhere the phase is stationary, one finds the expression

x = vt− 2
d

dp
δ(p).

Using p2 + q2 = 2mV0, one finds
dδ

dp
=

2mV0

q3
.
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From the equation for ψout, one can see that the condition for a stationary phase in the outgoing
wave packet becomes

d

dp
{−iEpt/~ + ipx/~ + 2iδ(p)} = 0, (2.54)

∆x = −2~
d

dp
δ(p),

∆t = −2
~
vp

d

dp
δ(E) = −2~

d

dE
δ(E).

This time delay is relative to the case where V0 = ∞. The same ideas will be applied to spher-
ical waves when we cover scattering theory, where the phase shifts, δ, provide a standard, and
insightful, means for understanding the effects of a potential in scattering.

2.6 The Harmonic Oscillator

One of the most common problems in physics is the harmonic oscillator. In fact, quantum field
theory considers every point in space to have it’s own oscillators for every type of quantum field.
We begin with a single oscillator with the Hamiltonian,

H =
P2

2m
+
mω2

2
X 2, (2.55)

where the spring constant is expressed in terms of a frequency ω, k = mω2. Here, X and P are
operators.

Dirac’s solution to the problem involves first defining two new operators,

a ≡
√
mω

2~
X + i

√
1

2~mω
P, a† =

√
mω

2~
X − i

√
1

2~mω
P. (2.56)

The operators are known as the annihilation (or destruction) and creation operators respectively
for reasons to be seen below.

The operators satisfy simple commutation relations,

[a, a†] = −2i

√
mω

2~

√
1

2~mω
[X ,P] = 1. (2.57)

Furthermore, the Hamiltonian may be written as

H = ~ω
(
a†a+

1

2

)
. (2.58)

To see that the creation operator does exactly what is sounds like, consider an eigenstate of the
Hamiltonian such that

a†a|n〉 = n|n〉. (2.59)
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At this point we do not know that the eigenvalues, n, of a†a are integers. By using the commu-
tation relations, aa† = a†a+ 1, one can see that

a†a(a†|n〉) = a†(a†a+ 1)|n〉 (2.60)

= (n+ 1)a†|n〉

by commuting the a† to the far left. Doing the same with the state a|n〉 one finds

a†a(a|n〉) = (aa† − 1)a|n〉 (2.61)
= (n− 1)(a|n〉).

Thus, to within a normalization constant,

a†|n〉 ∝ |n+ 1〉, a|n〉 ∝ |n− 1〉. (2.62)

To calculate the normalization constant Z,

a†|n〉 =
1
√
Z
|n+ 1〉, (2.63)

〈n|aa†|n〉 =
1

Z
= 〈n|(a†a+ 1/2)|n〉 = n+ 1/2,

Z =

√
1

n+ 1
,

a†|n〉 =
√
n+ 1|n+ 1〉.

Similarly for the destruction operator,

a|n〉 =
1
√
Z
|n− 1〉, (2.64)

〈n|a†a|n〉 = n,

Z =
1
√
n
,

a|n〉 =
√
n|n− 1〉.

The operator a†a is referred to as the number operator, and because the energy is expressed in
terms of the number operator, and because that energy must not have arbitrarily small negative
values, the values of n cannot be arbitrarily negative. Thus, the sequence of repeatedly applying
the operator a to some state nmust terminate at some point. This only happens if there is a state
with n = 0,

a|n = 0〉 = 0, (2.65)

which constrains all the n to be integers. With the constraint that n is an integer, the normaliza-
tions can be expressed as

(a†)n|0〉 =
√
n!|n〉. (2.66)
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and the eigenenergies are

En = (n+ 1/2)~ω, (2.67)
n = 0, 1, 2, · · ·

We will see later on that similar tricks are used with angular momentum raising and lowering
operators.

Finally, it is straight-forward to find the ground state wave function if one is sufficiently prescient
to guess that the form of the solution is a Gaussian with some as-yet-undetermined width b.

ψ0(x) = e−x
2/(2b2). (2.68)

For the moment, we neglect the normalization. To show that it is a solution we first take deriva-
tives with respect to x.

d

dx
ψ0(x) = −

x

b2
ψ0(x),

d2

dx2
ψ0(x) =

x2

b4
ψ0(x)−

1

b2
ψ0(x). (2.69)

Plugging this into the Schrödinger equation,

−
~2

2m

[
x2

b4
−

1

b2

]
ψ0(x) +

mω2x2

2
ψ0(x) = Eψ0(x), (2.70)

allows one to determine a and E by inspection.

b =

√
~
mω

, E =
1

2
~ω. (2.71)

One may also calculate the normalization Z by enforcing the constraint

ψ0(x) = Z−1/2e−x
2/(2b2), Z =

∫ ∞
−∞

dxe−x
2/b2. (2.72)

This gives Z = (π1/2b).

If one were to consider an n dimensional problem,

HΨ = −
~2

2m

d2

dx2
1

Ψ−
~2

2m

d2

dx2
2

Ψ · · · −
~2

2m

d2

dx2
n

Ψ +
mω2

2
x2

1Ψ +
mω2

2
x2

2Ψ · · ·+
mω2

2
x2
nΨ,

(2.73)
one would write the solution as

Ψ(x1, x2, · · ·xn) = ψ1(x1)ψ2(x2) · · ·ψn(xn), (2.74)

where ψi are the solutions to the 1-d Schrödinger equation with eigenenergies ~ω(ni + 1/2),
and the total energy is

E = ~ω
∑
i

(ni + 1/2), (2.75)

with the ground state energy being for n = 0, E0 = ~ω/2. For a three-dimensional oscillator,
the ground state energy would be 3~ω/2.
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2.7 Propagators, Green’s Functions and Integral Equations

A propagator is merely an incarnation of an evolution operator and is often confused with being
the same as a Green’s function, which it sometimes is. A propagator is defined as

K(x, t;x′, t′) ≡ 〈x| exp

[−iH(t− t′)
~

]
|x′〉, (2.76)

and represents the amplitude from evolving from a position |x′〉 at time t′ to a position |x〉
at time t. Rather than propagating from x to x′, one can also define propagators from some
momentum state p to some final momentum state p′. Propagators form the basis of diagram-
matic perturbation theory, and in that application provide a physical understanding of specific
processes.

If the eigenstates, |a〉, ofH are known the propagator may be written as

K(x, t;x′, t′) =
∑
a

e−iεat/~〈x|a〉〈a|x′〉. (2.77)

Because K is the evolution operator, one sees that determining the propagator is equivalent to
solving the Schrödinger equation,

ψ(x, t) =

∫
d3x′K(x, t;x′, t′)ψ(x′, t′). (2.78)

In fact, the propagator is a solution of Schrödinger’s equation for t > t′,(
−
~2∇2

2m
+ V (x)

)
K(x, t;x′, t′) = i~

∂

∂t
K(x, t;x′, t′), (2.79)

while being zero for t < t′ and equal to δ3(x− x′) when t = t0+.

We now consider the simple case of a free particle in one dimension. In that case the eigenstates
of the Hamiltonian are momentum states and

K0(x, t;x′, t′) =

(
1

2π~

)∫
dp exp

[
ip · (x− x′)

~
−
ip2(t− t′)

2m~

]
(2.80)

=

√
m

2πi~(t− t′)
exp

[
im(x− x′)2

2~(t− t′)

]
.

The integral in the last step was performed by completing the square. Note that the phase in the
exponential looks (1/2)mv2t/~, where the velocity is given by ∆x/∆t. A similar expression
can easily be found in higher dimension. To see that this form approaches δ(x− x′) as t → t′,
one can check:

1. that
∫
dxK(x, t;x′, t′) = 1.

2. that at small time differences the phase oscillates quickly except when x = x′.
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Adding a potential makes finding the propagator much more difficult. One can see that if the
propagator is expressed as

K(x, t;x′, t′) = K0(x, t;x′, t′) +
1

i~

∫
dt′′dx′′K0(x, t;x′′, t′′)V (x′′, t′′)K(x′′, t′′;x′, t′),

(2.81)
the Schrödinger equation will be satisfied. This expression for the propagator can be viewed
as the integral representation of Schrödinger’s wave equation. Note that the second propagator
in the right side is the “full” propagator which means that solving the equation is not simply a
matter of performing an integral. Instead, one must find a self-consistent solution.

By replacingK withK0, one has found the “first-order perturbative corrections to the propaga-
tor”. We will see this again later.

2.8 Phase Space Density and Wigner Functions

We have seen that |ψ(x)|2 = |〈x|ψ〉|2 can be identified as the density dN/dx, and |ψ(p)|2 =
|〈p|ψ〉|2 can be identified as the number per dp/(2π~). One can also get a measure of the
number per dpdx, which simultaneously expresses a probability of observing the particle with
both a specific momentum and density by performing what is called a Wigner transform of the
wave function,

f(p, x) =

∫
dδx ψ∗(x+ δx/2)ψ(x− δx/2)eipδx/~. (2.82)

With this definition,∫
dp

2π~
f(p, x) =

∫
dδx ψ∗(x+ δx/2)ψ(x− δx/2)

∫
dp

2π~
eipδx/~

= ψ∗(x)ψ(x).

Further, one can express f(p, x) in terms of ψ(p),

f(p, x) =

∫
dδx

∫
dp1

2π~
eip1(x+δx/2)/~ψ∗(p1)

dp2

2π~
e−ip2(x−δx/2)/~ψ(p2)eipδx/~. (2.83)

Integrating over δx,

f(p, x) =

∫
dδp

2π~
ψ∗(p+ δp/2)ψ(p− δp/2)eiδpx/~, (2.84)

and integrating over x, ∫
dx f(p, x) = ψ∗(p)ψ(p). (2.85)

Thus, when one integrates over either p or x, f(p, x) behaves like the phase space density,

dN

dpdx
=
f(p, x)

2π~
. (2.86)
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This is called the phase space density, or occupancy, because it can be related to the number of
particles per single-particle level. To demonstrate this, we consider the limit of a large box of
length with an infinite square well potential confining the particle to within 0 < x < L, the
boundary conditions give solutions of

ψn(x) = sin(pnx/~) = sin(nπx/L), n = 1, 2, 3, · · · , (2.87)
pn = nπ~/L.

The number of states with momentum pwithin some range ∆p is

∆N =
L

π~
∆p. (2.88)

If one uses plane waves, which allows the states p to be both positive or negative, one alters the
expression to

∆N =
L

2π~
∆p. (2.89)

Because f(p, x) gives the number of particles per unit ∆x∆p/(2π~), and the number of states
is ∆x∆p/(2π~), f(p, x) can also be viewed as the number of particles per single particle level.
Of course, this interpretation is based on the idea that ∆x = L is large enough so that ∆n can
be treated as a continuous function.

The interpretation of f(p, x) might seem to violate the uncertainty principle, which forbids the
simultaneous measurement of p and x. However, simply having an expression for f(p, x) does
not mean that you can measure both p and x simultaneously. In fact f(p, x) can be negative, or
greater than unity, for some values of p and x, and for some wave functions. This disqualifies it
as a probabilistic measure because probabilities must lie between zero and unity.

Example 2.6: – Wigner Transform of Harmonic Oscillator Wave functions
Here, we find the phase space density, a.k.a. the Wigner transform, of the ground state of the
harmonic oscillator.

ψ0(x) =
1

π1/4b1/2
e−x

2/2b2,

f(p, x) =
1

π1/2b

∫
dδx eipδx/~e−(x+δx/2)2/2b2e−(x−δx/2)2/2b2

=
1

π1/2b
e−x

2/b2
∫
dδx eipδx/~e−δx

2/4b2

= 2e−x
2/b2−p2b2/~2.

One can check the normalization by showing that∫
dp

2π~
dx f(p, x) = 1.
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2.9 Numerically Solving Schrödinger’s Equation

Here, we provide algorithms for solving one-dimensional Schrödinger’s equations for two types
of problems. For both types we consider potentials that are infinite for x < 0. This bound-
ary condition also applies for spherical wave decompositions in three dimensions, where for a
particular spherical wave the problem reduces to a one-dimensional problem with an effective
potential for angular momentum, but because there are no negative radii, one sets a BC that
ψ(r = 0) = 0. The first type of problems to be considered is solving for a bound state energy
for a finite (for x > 0) potential that vanishes beyond some position, V (x > a) = 0, and the
second type of problem involves finding the phase shift for the same kind of potential.

To find a bound state energy numerically, one must first guess at a binding energy B. For the
sake of convenience, instead of B we will refer to q, where ~2q2/2m = B. For x > a, the
bound state wave function behaves asAe−q(x−a), whereA is an unknown constant. For x < a,
we solve the problem numerically on a grid of resolution ∆x,

ψ(x = 0) = 0, ψ(x = ∆x) = ψ1. (2.90)

Here, ψ1 can be any value. Normalization will be chosen later. For the sake of convenience, one
might choose a real value such as dx. Next, one uses the discrete representation of Schrödinger’s
equation,

−1

(∆x)2
(ψn+1 − 2ψn + ψn−1) =

(
−q2 −

2mV (xn)

~2

)
ψn, (2.91)

to solve for ψn+1,

ψn+1 = 2ψn − ψn−1 − (∆x)2

(
−q2 −

2mV (xn)

~2

)
ψn. (2.92)

One can iterate this forward, first solving for ψ2, then ultimately for ψN , where N = a/dx.
At that point one can consider the boundary conditions. By comparing logarithmic derivatives,
(dψ/∆x)/ψ, one can ignore the constantA, and see that

ψN+1 − ψN−1

2(∆x)ψN
= −q. (2.93)

The difficulty is finding the value of q that satisfies this equation. This involves guessing a value,
then comparing the equivalence. One then adjusts q until one finds a satisfactory fit. This can
be done with Newton’s method, or with a root-finding package. The bound state energy is then
−~2q2/(2m).

The second class of problem to be considered is that of finding the phase shift for a given in-
coming wave number k. This is easier because, the energy is given. Again discretize the wave
function, and assume that the wave function behaves like the incoming wave, e−ikx,

φN+1 = e−ik(N+1)∆x, φN = e−ikN∆x. (2.94)

One then iterates forward,

φn−1 = 2φn − φn+1 − (∆x)2

(
q2 −

2mV (xn)

~2

)
φn. (2.95)
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Ultimately, one finds φ0, which of course does not satisfy the BC. Because Schrödinger’s equa-
tion is real, one also knows that φ∗ is also a solution, also not satisfying the BC. However, one
can take the combination,

ψn = φn − e2iδφ∗n, (2.96)

choosing the phase shift to fit the BC,

e2iδ =
φ0

φ∗0
. (2.97)

With this choice of δ, the net wave function at x = 0 vanishes. This method even works for cases
where the potential blows up at the origin, although one may have to extrapolate the phase to
x = 0 from x = ∆x and x = 2∆x.

2.10 Problems

1. Proof that ~ = 0 Consider a normalized momentum eigenstate of the momentum operator
|q〉, i.e. P|q〉 = q|q〉 and 〈q|P = 〈q|q. Consider the expectation,

〈q|(PX − XP)|q〉 = 〈q|(qX − Xq)|q〉
= q〈q|(X − X )|q〉 = 0.

However the commutation relation, PX − XP = −i~, so we also have

〈q|(PX − XP)|q〉 = −i~.

Comparing the two equations, ~ = 0.

What went wrong?

2. Prove that the average kinetic energy is always positive, i.e.

〈−
~2∂2

x

2m
〉 = −

~2

2m

∫
dx ψ∗(x)∂2

xψ(x) > 0.

3. Consider the one-dimensional potential,

V (x) =


0, x < −a
−V0, −a < x < a

0, x > a

V
0

a

For fixed a, find the minimum V0 for the number of bound states to equal or exceed 1,2,3....
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4. Consider a particle of massm under the influence of the potential,

V (x) = V0θ(−x)−
~2

2m
βδ(x− a), V0 →∞, β > 0.

(a) Find the transcendental equation for the energy of a bound state?
(b) What is the minimum value of β for a ground state?
(c) For increasing β can one find more than one bound state?

5. Consider plane wave moving in the −x̂ direction to be reflected off the potential of the
previous problem. For(x > a) the plane wave will have the form

e−ikx − e2iδeikx.

(a) Find the phase shift δ as a function of ka, and plot for βa = 0.5 and for 0 < ka < 10.
Because addition ofnπ to phase is arbitary, translate all phases to angles between zero
and π.

(b) Repeat for βa = 0.99, 1.01, 1.5.

6. Consider a particle of massm interacting with a repulsive δ function potential,

V (x) =
~2

2m
βδ(x).

Consider particles of energy E incident on the potential.

(a) What fraction of particles are reflected by the potential?
(b) Show that the currents at x = 0+ and x = 0− are the same.

7. Consider a three-dimensional harmonic oscillator with quantum numbers nx, ny and nz.
How many states are there with a givenN = nx +ny +nz? Find a closed expression (no
sum). Test it for all n ≤ 3.

8. Calculate 〈0|aaa†aa†a†|0〉 and 〈n|a†a†a†a|m〉.
9. Findψ1(x), the wave function of the first excited state by applying a†, defined in Eq. (2.56),

to the ground state.

10. Consider a particle of massm in a harmonic oscillator with spring constant k = mω2.

(a) Write the momentum and position operators for a particle of mass m in a harmonic
oscillator characterized by frequency ω in terms of the creation and destruction oper-
ators.

(b) Calculate 〈n|X 2|n〉 and 〈n|P2|n〉. Compare the product of these two matrix ele-
ments to the constraint of the uncertainty relation as a function of n.

(c) Show that the expectation value of the potential energy in an energy eigenstate of the
harmonic oscillator equals the expectation value of the kinetic energy in that state.

11. (a) What is the representation of the position operator in the momentum basis – how is
〈p|X |Ψ〉 related to 〈p|Ψ〉?
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(b) Suppose that the potential is v(x) = (k/2)x2. What is the Schrödinger equation
written in momentum space; that is, what is the equation of motion of the amplitude
〈p|Ψ(t)〉?

12. Consider a potential

V (x) =
0, x < −a

u(x), −a < x < a
0, x > a

where u(x) is an arbitrary real function. Consider a wave incident from the left. Suppose
that the transmission amplitude, defined as the ratio of the transmitted wave at x = a
to the incident wave at x = −a, is S(E). Now consider a wave incident from the right.
Show that the transmission amplitude, now defined as the ratio of the transmitted wave at
−a to the incident wave at a, is also S(E). (Hint: the Schrödinger equation in this case is a
real equation, so the complex conjugate of a solution is also a solution.)

13. (a) Derive and solve the equations of motion for the Heisenberg operators a(t) and a†(t)
for the harmonic oscillator.

(b) Calculate [a(t), a†(t′)].

14. (a) Calculate the correlation function 〈0|x(t)x(t′)|0〉where |0〉 is the harmonic oscillator
ground state, and x(t) is the position operator in the Heisenberg representation.

(b) Suppose that a time dependent force F (t) is applied to a particle in the oscillator
potential. Show that x(t) obeys the equation of motion,

m

(
d2

dt2
+ ω2

)
x(t) = F (t)

where ω is the oscillator frequency. Hint: The term to add to the Hamiltonian is
HF = −F (t)X .

15. What are the matrix elements of the operator 1/|p| in the position representation? That is,
find 〈r|1/|p||r′〉. Work the problem in three dimensions.

16. Calculate the Wigner transform f(p, x) for a particle in the ground state of an infinite
square well potential,

V (x) =


∞, x < 0
0, 0 < x < a
∞, x > a

.

Are there any regions with phase space densities either greater than unity or less than zero?
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3 Charged Particles in an Electromagnetic Field

3.1 Vector and “Scalar” Potentials

Electric and magnetic fields are determined by the vector potential ~A and the scalar potential Φ,

~E = −∇Φ−
1

c

∂ ~A

∂t
, ~B = ∇× ~A. (3.1)

The Hamiltonian for a charge e is written using the principle of minimal substitution. One re-
places−i~∇ with−i~∇− e ~A/c and i~∂/∂t with i~∂/∂t− eΦ. Relativistically, the “scalar”
potential is the zeroth component of the four-vector,A0 = Φ, so the principal of minimal substi-
tution becomes i~∂µ → i~∂µ − eAµ. Thus, there is nothing “scalar” about the scalar potential,
as it is not invariant under Lorentz transformations. The units of eΦ and e ~A are both energy.
This is consistent with cgs units, where the magnetic and electric fields have the same units.
The coupling e must change sign if the charge of the particle is reversed, i.e. this sign would be
reversed for an electron. Schrödinger’s wave equation becomes:[
−i~∇− e ~A(~r, t)/c

]2
2m

ψ(~r, t)+V (~r, t)ψ(~r, t)+eΦ(~r, t)ψ(~r, t) = [i~∂/∂t− eΦ(~r, t)]ψ(~r, t),

(3.2)

Hψ(~r, t) = i~∂tψ(~r, t),

H =
1

2m

(
~P −

e ~A

c

)2

+ eΦ(~r, t)

=
1

2m

[
P2 −

e

c
( ~P · ~A+ ~A · ~P) +

(
e

c

)2

A2

]
+ eΦ(~r, t).

Solving for the equations of motion,

d~r

dt
=

[~r,H]

i~
(3.3)

d

dt
ri =

1

2mi~
{ri(Pj − eAj/c)(Pj − eAj/c)− (Pj − eAj/c)(Pj − eAj/c)ri}

=
1

2mi~
{ri(Pj − eAj/c)(Pj − eAj/c)

− (Pj − eAj/c)ri(Pj − eAj/c) + (Pj − eAj/c)(i~δij)}

=
(Pi − eAi/c)

m
=

Πi

m
,

~Π ≡ ~P − e ~A/c.

Here, ~Π is the canonical momentum, i.e. the mass multiplied by the velocity. Thus, the momen-
tum ~P = −i~∇ is NOT the operator associated with the mass multiplied by the velocity in the
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classical limit. Instead, the canonical momentum ~Π plays that role. In fact, the current density
from the previous chapter is also redefined,

~j(~r, t) =
−i~
2m

(ψ∗(~r, t)∇ψ(~r, t)− (∇ψ∗(~r, t))ψ(~r, t))−
e ~A

mc
|ψ(~r, t)|2. (3.4)

Showing that this definition is consistent with the equation of continuity is left as a homework
problem.

One can also solve for d~Π/dt, but first we calculate the commutator,

[Πi,Πj] = [( ~P − e ~A)i, ( ~P − e ~A/c)j] (3.5)
= (i~) (e∂iAj/c− e∂jAi/c) = i~eεijkBk/c.

Moving forward,

[Π2
i ,Πj] = Πi[Πi,Πj] + [Πi,Πj]Πi (3.6)∑

i

[Π2
i ,Πj] = (i~e)εijk(BkΠi + ΠiBk)/c

d

dt
~Π =

i

~
[H, ~Π]

=
e

2mc

(
~Π× ~B − ~B × ~Π

)
−∇Φ.

This becomes the usual, d ~P/dt = e~v × ~B/c, if one replaces ~P with ~Π and if one ignores the
fact that ~B and ~Π = m~v might not commute.

Gauge invariance in electromagnetism shows that if one alters the vector and scalar potentials
in the following manner,

~A(~r, t)→ ~A(~r, t) +∇Λ(~r, t), Φ(~r, t)→ Φ(~r, t)−
1

c

∂Λ(~r, t)

∂t
, (3.7)

that ~E and ~B are unchanged. However, the Hamiltonian is a function of ~A and Φ, not ~E and ~B,
which makes one question whether physics is invariant under a gauge transformation. Here, we
show that even though the changes from the gauge transformation to ~A and Φ indeed yield a
new Hamiltonian, the solutions are identical to those of the original Hamiltonian after applying
a simple phase factor,

ψ(~r, t)→ exp

[
ieΛ(~r, t)

~c

]
ψ(~r, t) (3.8)

Showing that the charge and current densities are unaffected by the transformation is left as a
homework problem.
Aside: Checking Dimensions
The dimensions for electromagnetism are painful. Our notation is consistent with cgs units in
that ~A and Φ have the same dimension. Both e ~A and eΦ have dimensions of energy. Both ~B

and ~E also have the same dimensions, as the dimensions of e~E and e ~B are both energy per
length.
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3.2 Interaction with Uniform Electro-Magnetic Fields

A constant magnetic field in the z direction can be described with the vector potentials,

Az = 0, Aρ = 0, Aφ = ρB/2, (3.9)

which has azimuthal symmetry about the z axis as the vector potential winds around the z axis.
Through a gauge transformation, on can also rewrite the vector potential as

Ay = Bx, Ax = 0, Az = 0, (3.10)

which gives the identical magnetic field. This appears to violate the azimuthal symmetry but
has the advantage is that it is easy to solve. The wave function can be written in the form

ψ(x, y, z) = eikzz+ikyyφ(x) (3.11)

because both Py and Pz commute with the Hamiltonian.

The differential equation for φ then turns out to be

Exyφ(x) = −
~2

2m
∂2
xφ(x) +

1

2m
(~ky − eBx/c)2φ(x) (3.12)

= −
~2

2m
∂2
xφ(x) +

e2B2

2mc2
(x− x0)2φ(x),

where E = Exy + ~2k2
z/2m, and

x0 ≡ ~ky/(eB) (3.13)

But this is the harmonic oscillator Hamiltonian with

ω =
eB

mc
, (3.14)

where the harmonic oscillator frequency is the same as the orbital frequency for a classical par-
ticle in a magnetic field of strengthB.

The solutions thus look like a particle whose x position is centered about x0, which is deter-
mined by ky and whose position in the y and z directions are simply uniform. Furthermore,
it seems odd that a particle with circular motion would be an eigenstate of Py. The solution to
the paradox is that if Py is constant, it does not imply that vy = (~ky − eAy/c)/m is constant.
Instead,

mvy + eBx/c = ~ky, (3.15)

where py is the eigenvalue of Py. In fact this does describe circular motion centered about a
point (xc, yc) with frequency ω = eB/mc. To see this consider the general form for circular
trajectory of frequency ω,

x = x0 +R cos(ωt+ φ), y = y0 +R sin(ωt+ φ), (3.16)

whose velocities are

vx = −ωR sin(ωt+ φ), vy = ωR cos(ωt+ φ). (3.17)
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Inserting the expressions for x0 and ω in Eq.s (3.13) and (3.14) into Eq.s (3.16) and (3.17), one
sees that that Eq. (3.16) is simply a statement of circular motion with the x position centered
around the minimum of the harmonic oscillator, which is determined by ky. The center of the y
motion is arbitrary, as this solution is a linear combination of orbits with different y0 values.

The solutions are thus that of a harmonic oscillator for the motion in the x − y multiplied by a
plane-wave form for the z motion. The eigenenergies are

En(kz) =
~2k2

z

2m
+ (n+ 1/2)~ω, (3.18)

whereω is the cyclotron frequency described above. Energies are independent of ky. The energy
levels are known as Landau levels. The degeneracy of the levels with respect to ky will play the
central role in describing the integral quantum Hall effect which we will discuss next semester.

It is interesting to study the consequences of adding an electric field directed perpendicular to
the magnetic field. Consider the case where the field is in the x direction. The Hamiltonian picks
up an extra term,−eEx. In this case the differential equation for φ becomes

Exyφ(x) = −
~2

2m
∂2
xφ(x) +

1

2m
(~ky − eBx/c)2φ(x)− eExφ(x) (3.19)

= −
~2

2m
∂2
xφ(x) +

e2B2

2mc2
(x− x0)2φ(x) +

mc2

2

(
E

B

)2

φ(x),

x0 =
~cky
eB
−
mc2E

eB2
.

The x position averaged over time would simply be x0, the center of the harmonic oscillator.
One can also calculate the average vy,

vy =
~ky
m
−
eBx

mc
(3.20)

v̄y =
~ky
m
−
eBx0

mc

=
Ec

B
.

Thus, the particle moves, on average, in the y−direction with velocity E/B. It might seem odd
given that the electric field was applied in the x−direction. However, this is exactly the same
result one finds for a classical trajectory. Because the electric field results in the particle having in-
creased speed for the positive−x part of the trajectory compared to the negative-x, the magnetic
force is then stronger for that portion of the trajectory, which is pointed in the negative−x di-
rection and the difference in the magnetic forces cancels out, on average, the electric force in the
x direction. Because the speed is greater for the +x portion of the trajectory, when the particle
has positive vy, the trajectory also moves in the +y direction, on average. One can also un-
derstand the result by considering the relativistic transformation properties of electromagnetic
fields. If one begins with a magnetic fieldBz in the z direction, then boosts in the y direction by
a small velocity vy, one generates an electric field in the x direction of strength Ex = −vyBz.
Hence, if one has an electric field in the x direction, but views it in a frame moving with velocity
vy = Ex/Bz, one sees no electric field and the motion is purely circular.
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Figure 3.1: Illustration of the Aharanov-Bohm effect: The magnetic field ~B in the solenoid changes the
relative phase of two paths of a charged particle which produce the interference pattern on the screen to
the right. This modification derives from the changing the vector potential ~A in the region of the paths.
The interference pattern shifts despite the fact that the paths never sample a region with non-zero ~B.

3.3 Path Integrals and the Aharanov-Bohm Effect

One way to perform Quantum Mechanics is through path integrals. Path integrals are usually a
rather inconvenient way to go, but sometimes come in handy. The name refers to the fact that a
sum over all intermediate states can be thought of as a path. To get a better idea we consider the
matrix element

〈ψf |e−iHt|ψi〉 =
∑

x1···xN−1

〈ψf |e−iHδt|xN−1〉〈xN−1| · · · |x2〉〈x2|e−iHδt|x1〉〈x1|e−iHδt|ψi〉

(3.21)

≈
∑

x1···xN−1

〈ψf |(1− iHδt)|xN−1〉〈xN−1| · · · |x2〉〈x2|(1− iHδt)|x1〉

〈x1|(1− iHδt)|ψi〉.

Here, δt = t/N and the approximation becomes exact in the limit of largeN .

If the set of states x1 → xn correspond to positions in coordinate space arranged in a mesh of
size δx, the succesive points in the path, xi and xi+1, are constrained to be neighbors becauseH
is local. One can appreciate the locality by returning to the picture from Chapter 2, where space
was discretized in steps of δx and the kinetic term of the Hamiltonian only mixed neighboring
sites,

〈i|H|i+ 1〉 = −
~2

2mδx2
, (3.22)

and the potential terms were diagonal. This means that each term in the sum can be thought of
as a continuous trajectory where at each step in time the trajectory either remains at the same
position or moves by ±δx. This motivates the name path integral, though one might more ac-
curately state that one sums over all trajectories rather than over all paths. The classical limit
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of quantum mechanics comes from the constraint of choosing the trajectory for which the phase
becomes fixed with respect to small variations of the trajectory. This line of approximation is
what motivates the simple calculations of interference phenomena, such as 2-slit interference, in
elementary physics courses.

In principle, all matrix elements can be considered in this fashion. Lattice gauge theory, which
provides a powerful tool for numerically calculating the structure of the non-perturbative QCD
vacuum where the trajectory accounts for all possible field configurations at each point in space-
time, is built upon exactly such concepts. Path integral techniques are also often used in statisti-
cal mechanics by making the analogous decomposition,

e−βH =
∑

α1···αN−1

e−δβH|αN−1〉〈αN−1| · · · |α2〉〈α2|e−δβH|α1〉〈α1|e−δβH (3.23)

The interaction with an electromagnetic field ~A also contributes an off-diagonal piece due to the
presence of the term (−ie~/mc) ~A · ∇. The off-diagonal term to the Hamiltonian is then

〈i|H|i+ 1〉 = −
~2

2mδx2
−

ie~
2mcδx

Ai = −
~2

2mδx2

(
1 +

ieδx

~c
Ai

)
. (3.24)

Now, if we consider the evaluation of element 〈~ri|e−iHt|~rf〉 as a sum over trajectories as de-
scribed above. Each must include a series of links between neighboring sites. The effect of the
vector potential is to add a product of the terms∏

links

(
1 +

ieδx

~c
Ai

)
(3.25)

to each trajectory.

Thus the effect of the vector potential for propagation along a specific path from ~r1 to ~r2 is to
modify the matrix element by a phase factor,

〈~r1|e−iHt|~r2〉 → 〈~r1|e−iHt|~r2〉 exp

[
ie

~c

∫
path

d~r · ~A
]
, (3.26)

where the path extends from ~r1 to ~r2. This added phase depends only on the path taken, but
not the time-dependence of the trajectory because we have no time dependence and because the
vector potential ~A is contracted only with d~r. Note that we have taken the liberty to jump to
three dimensions at this point.

Now, we consider a two-slit interference experiment, where between the slits lies a small mag-
netic solenoid. In the upper path, the particle goes above the solenoid, while in the lower path
the particle travels below the solenoid. Neither path samples the region inside the solenoid,
where there is a magnetic fieldB and a flux, ΦB = Bσ. Here, σ is the cross sectional area of the
solenoid.

However, there is a vector potential outside the solenoid which must satisfy Stoke’s theorem,∮
~A · d` = ΦB = | ~B|σ. (3.27)
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The two path’s contributions to the amplitude have phases which differ by this factor, multiplied
by the charge,

∆φ =
eΦB

~c
. (3.28)

Because the expression for ∆φ does not depend on the precise paths taken, it exactly sums up
how any interference is adjusted between the upper and lower paths due to the presence of the
vector potential ~A. When the phase difference equals π, the maxima and minima of the inter-
ference pattern will have traded positions. This phenomena has been observed experimentally
with a thin magnetized iron filament called a whisker, as illustrated in Fig. 3.1.

Thus altering the current through the solenoid shifts the interference pattern even though there
are no magnetic or electric fields along the sampled trajectories. This illustrates that ~A and
Φ that are the fundamental fields in nature, not ~E and ~B. Even though this means that ~A is
fundamental, gauge transformations do not change any physical observables, even though a
gauge transformation changes ~A. For example, the integral

∮
~A · d~̀, is also independent of a

gauge transformation, ~A→ ~A+∇Λ.

The relative phases described by Eq. (3.26) must return to zero, or a multiple of 2π if the path
returns to its beginning. For a charge q,

iq

~c

∫
path

d~r · ~A = 2nπ. (3.29)

By Stoke’s theorem this leads to a quantization of magnetic flux,

ΦB =
2nπ~c
q

. (3.30)

Thus, the magnetic field in some fixed area cannot be assigned arbitrary values, but instead
comes in integral units. This seems peculiar because the integral units of flux for flux depend on
the charge. The Aharanov Bohm effect plays a critical role in Josephson’s junctions. In that case
the relevant charge is 2e, the charge of a Cooper pair. The quantized unit of flux is then

Φ0 =
2π~c
2e

= 2.068× 10−15 Tm2.

3.4 Problems

1. Using the equations of motion for the wave function, show that the density and current
defined by

ρ(~r, t) = |ψ(~r, t)|2,

~j(~r, t) =
−i~
2m

(ψ∗(~r, t)∇ψ(~r, t)− (∇ψ∗(~r, t))ψ(~r, t))−
e ~A

mc
|ψ(~r, t)|2,

satisfies the continuity equation,

∂tρ+∇ ·~j = 0.
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2. Consider a particle of charge e traveling in the electromagnetic potentials

A(r, t) = −∇Λ(r, t), Φ(r, t) =
1

c

∂Λ(r, t)

∂t

where Λ(r, t) is an arbitrary scalar function.

(a) What are the electromagnetic fields described by these potentials?
(b) Show that the wave function of the particle is given by

ψ(r, t) = exp

[
−
ie

~c
Λ(r, t)

]
ψ0(r, t),

where ψ0 solves the Schrödinger equation with Λ = 0

(c) Let V (r, t) = eΦ(t) be a spatially uniform time varying potential. Show that

ψ(r, t) = exp

[
−
ie

~

∫ t

−∞
Φ(t′)dt′

]
ψ0(r, t)

is a solution if ψ0 is a solution with Φ = 0.

3. For a gauge transformation, described in Eq. (3.7), including the associated the phase
change to the wave function ψ, described in Eq. (3.8),

(a) Show that the charge density eψ∗ψ and the current is unchanged by the gauge trans-
formation

(b) Show that the current

~j =
e

2m
[ψ∗(−i~∇− ψ) + (i~∇ψ∗)ψ]−

e

mc
~Aψ∗ψ.

is unchanged.
(c) Show that 〈χ|H|ψ〉 is unchanged in a gauge transformation where Λ is independent

of time.

4. Find the function Λ(~r, t) that corresponds to the gauge transformation in Eq. (3.7) respon-
sible for re-expressing the vector potential in Eq. (3.9) to the form of Eq. (3.10), and show
that both forms give the same magnetic field.

5. The expression for the v̄y in Eq. (3.20) is only valid for non-relativistic velocities, where
|E| << |B|. For a uniform magnetic fieldBẑ, with no electric field, consider the form for
the vector potential in Eq. (3.10). Performing a relativistic boost (Lorentz transformation),
but for non-relativistic velocities, in the y direction by a velocity vy, what is the result-
ing zerothe component of the vector potential A0? Equating this with the electric scalar
potential, express the strength of the resulting electric field in terms of vy andB.
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4 Angular Momentum and Central Potentials

4.1 The Baker-Campbell-Hausdorff Relation

To demonstrate how commutation affects the ability to express two transformations as one, we
derive the Baker-Campbell-Hausdorff relation. It shows how the product of two unitary trans-
formations, eA and eB, are not the same as one transformation eA+B. The relation is

eA+B = eAeBe−C/2, (4.1)

for when commuting A and B gives an operator C that commutes with both A and B, e.g. the
unit matrix.

C ≡ [A,B] (4.2)

For angular momentum [Li, Lj] = i~εijkLz and, becauseLz does not commute withLx andLy,
this relation doesn’t apply. Nonetheless, it helps clarify the role of commutators and is applicable
in some other cases.

To demonstrate the relation, consider the expansion

eA+B =
∑
N

(A+B)n

n!
. (4.3)

Expanding (A + B)n gives all terms with all orderings of the n operators. For example, for
n = 5 one of the terms is ABBAB. We wish to move all the A operators to the left, which
requires commuting them past the B operators. Every time an A operator moves past a B
operator one must add a term where the BA pair is replaced by −C = [B,A]. Using the
binomial theorem, one can then write

(A+B)n

n!
=

∑
i+j=n

AiBj

n!

n!

i!j!
+ (−C)

Ai−1Bj−1

n!

n!

i!j!
N̄1(i, j) + (−C)2

Ai−2Bj−2

n!

n!

i!j!
N̄2(i, j)

(4.4)

+ · · ·+ (−C)`
Ai−`Bj−`

n!

n!

i!j!
N̄`(i, j) + · · ·

where N̄` is the average number of ways to pick ` AB pairs from an order n term, under the
constraint that theB operators in the pair were initially to the right of theA terms. This number
is simply the number of such independent pairs times (1/2)` to account for the fact that only
half the time does a given pair start off with theBA ordering,

N̄` =

(
1

2

)` i(i− 1) · · · (i− `+ 1)j(j − 1) · · · (j − `+ 1)

`!
. (4.5)

One can then factor the exponentials in the expression above to get Eq. (4.1),

e(A+B) =
∑
ij`

AiBj

i!j!

(−C/2)`

`!
(4.6)

= eAeBe−C/2.
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4.2 Rotations and Groups

In quantum mechanics the angular momentum of a state, or an operator, tells us how the object
behaves under rotation. Rotations are unitary transformations which can be classified as a group,
and the operators that represent such transformations can be written in the form ei

~L·~θ/~, where
the |~θ| is the angle of the rotation about an axis the θ̂ direction. If an object does not depend
on angle, then a rotation should have no effect on it. These are scalars, and examples are time,
mass, or the dot product of two vectors, ~u · ~v. Under rotations, both ~u and ~v change but the
angle between the two vectors remains the same and ~u · ~v is unchanged.

The rotation group consists of unitary operators,

R(~α) = ei
~L·~α/~. (4.7)

To understand why this a rotation, consider the case where ~α is along the z axis. One can then
see that

Lz = xPy − yPx = −i~
(
x
∂

∂y
− y

∂

∂x

)
= −i~

∂

∂φ
, (4.8)

which means that for a rotation of angle φ about the z-axis,

eiLzα/~f(φ) = eα∂φ (4.9)

=

(
1 + α

∂

∂φ
+
α2

2!

∂2

∂φ2
· · ·
)
f(φ)

= f(φ+ α).

In order to be a true group, two consecutive rotations of ~α and ~β must be identical to a single
rotation ~γ.

ei
~L·~β/~ei

~L·~α/~ = ei
~L·~γ/~. (4.10)

Because the different components of ~L do not commute, it can be non-trivial to find the equiva-
lent single rotation ~γ given ~α and ~β.

Given the definition ~L = ~r × ~p, it is straightforward to find the commutation relations,

[Li, Lj] = i~εijkLk. (4.11)

Our goal in this section is to discuss the requirement of using different operators, Sx, Sy and Sz
to generate rotations, not in coordinate space but in a discrete vector space, meaning that ~S can
be expressed as matrices. The important requirement for S to be considered a rotation is that

ei
~S·~β/~ei

~S·~α/hbar = ei
~S·~γ/~, (4.12)

where the same ~γ results from a given ~α and ~β as would have resulted from using ~L instead of
~S.

We wish to demonstrate that if the components of ~S obey the same commutation laws of the
components of ~L, the rotations will be identical. To see this we divide the two rotations into N
smaller rotations withN →∞.

ei
~S·~β/~ei

~S·~α/~ = ei~
~S·~β/(~N)ei

~S·~β/(~N) · · · ei~~S·~β/(~N)ei~
~S·~α/(~N)ei~

~S·~α/(~N) · · · ei~~S·~α/(~N).
(4.13)
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To find the equivalent single rotation, one must expand each exponential then commute them in
a manner as was done for the Baker-Campbell-Hausdorff lemma earlier. There are of order N2

such commutations.

For our purposes we wish to consider the inner two exponentials,

ei
~S·~β/(~N)ei~

~S·~α/(~N) = 1 + i~S · (~α+ ~β)/(~N) (4.14)

−
1

2(~N)2

(
~S · (~α+ ~β)

)2

+
1

2(~N)2
[~S · ~α, ~S · ~β] +O

1

(~N)3

= exp i

(
~S · (~α+ ~β)/(~N) + i

1

2(~N)2
[~S · ~α, ~S · ~β]

)
+O

1

(~N)3
.

Because there are of order N2 such commutations we must perform to find ~γ, we may throw
away all terms of order 1/N3 or higher. One can then see that the final rotation is determined
by knowing the commutation relations, i.e. if the commutation relations for the components for
~S are identical to the commutation relations for ~L, that the equivalent angle ~γ will be the same
in both cases.

In group theory the rotation matrices, exp(i~S ·~α/~), are the group elements and the components
of ~S are referred to as generators of the group.

The simplest example of three operators, Sx, Sy and Sz, which generate such rotations is the
2× 2 representation,

Sx ≡
~
2
σx , Sy ≡

~
2
σy , Sz ≡

~
2
σz. (4.15)

Many Lagrangians in physics have rotational symmetry, which would suggest that the angular
momentum is conserved. This can be seen by commuting the rotation operator for an infinites-
imal rotation with the Hamiltonian. If Lz commutes with the Hamiltonian, then the eigenstates
ofH can be simultaneously chosen as eigenstates of Lz. However, if the Hamiltonian has terms
such as ~L · ~S, neither Lz nor Sz commutes with the Hamiltonian. However, in that case the
operator Jz ≡ Lz + Sz does commute. We perform this as an example in class.

4.3 A Greatly Abbreviated Guide to Group Theory

Groups are made of elements that represent transformations. The elements of a group are NOT
the object being transformed, they are the transformations themselves. To be classified as a
group, the group of elementsRi must satisfy the following conditions:

1. The Combination of any two elements returns an element of the group,RiRj = Rk. This
is known as closure. Note this need not be commutative,RiRj 6= RjRi.

2. Associativity, (RiRj)Rk = Ri(Rj)Rk)

3. There must exist an identity element I, such that IRi = Ri andRiI = Ri.

4. Every elementRi must have and inverse elementR−1
i , such thatRiR−1

i = I.

Often the elements of a group represent symmetry transformations. For example, consider the
symmetries of an equilateral triangle, where the base lies along the x axis. The six group ele-
ments are:
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1. R1, The identity

2. R2, Rotating by 120◦

3. R3, Rotating by 240◦

4. R4, Reflecting about an axis through the center of the triangle in the 30◦ direction

5. R5, Reflecting about an axis through the center of the triangle in the 90◦ direction

6. R6, Reflecting about an axis through the center of the triangle in the 150◦ direction

The group is defined by the integer coefficients a(i, j) = 1 − 6, where RiRj = Ra(i,j). The
elements a(i, j) can be expressed as an N ×N matrix, known as a Cayley Table, https://en.
wikipedia.org/wiki/Cayley_table.

Rotations are an example of a Matrix Lie Group. The Lie groups used in physics are generally of
the form

R(θ) = e
∑
n=1,N iGnθn, (4.16)

The group elements are denoted by the N−dimensional vector θ, and the group elements are
infinite in number. The matrices Kn are the generators of the group, and are often (but not al-
ways, e.g. the Lorentz transformation) Hermitian matrices, which makes each transformation
unitary. As long as the commutation of any two generators gives a linear combination of gen-
erators, the multiplication of two group elements will be equivalent to a single element. These
commutation rules are encapsulated by what are referred to as structure constants fijk

[Gi,Gj] = ifijkGk. (4.17)

The commutation rules for the N generators effectively define the entire group. Rotations are
an example of a group, and for three dimensional rotations one needs three generators, corre-
sponding to the rotations described by the three Euler angles.

To understand the role of the group conditions for the rotations of spin, one can imagine some
quantum mechanical state with spins, and also perhaps with orbital angular momentum. If one
rotates the entire system twice, by angles ~θ1 and ~θ2, where the direction is that of the rotational
axis, it should be equivalent to a single rotation ~Θ. That single angle ~Θ should not depend on
whether one is rotating a spin wave function, or the orbital wave function. Even though rotating
a spin-1/2 particle uses two-by-two matrices, and rotating a spin-one particle involve three-by-
three matrices, the mapping of ~θ1 and ~θ2 to ~Θ must be the same for both matrices. This will
follow if the generators for the two cases have the same structure constants, even if the genera-
tors have different dimensionality, or in group theory parlance they are different representations
of the same group but are isomorphic.

4.4 WignerDMatrices

This is for the most point an exercise in notation, but it does emphasize that rotations mix states
within a given multiplet of angular momentum `, where the degeneracy is 2` + 1. Rather than
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expressing rotations as a function of αx, αy and αz, one can express a rotation as a function of
the three Euler angles, which represent consecutive rotations about the z, y and the new z axes.

D`mm′(α, β, γ) = exp

(−iSzα
~

)
exp

(−iSyβ
~

)
exp

(−iSzγ
~

)
. (4.18)

The label ` refers to dimension of the matrices used to represent the rotations, e.g. for two
component matrices ` = 1/2, while m and m′ refer to the components of the matrices, −` ≤
m ≤ `.
For instance, for ` = 1/2,

D1/2 = exp

(−iσzα
2

)
exp

(−iσyβ
2

)
exp

(−iσzγ
2

)
=

(
e−i(α+γ)/2 cos(β/2) e−i(α−γ)/2 sin(β/2)
ei(α−γ)/2 sin(β/2) ei(α+γ)/2 cos(β/2)

)
.

4.5 More about Angular Momentum

The angular momentum operator Lz = −i~∂/∂φ commutes with the Hamiltonian if the
Hamiltonian is invariant to rotations about the z axis. Furthermore, if the Hamiltonian is in-
variant to rotations about any axis, all three components of ~L commute with H . One may then
define states which are simultaneously eigenstates of H and Lz, or Lx or Lz. But, one may
not necessarily find states which are simultaneously eigenstates of Lx, Ly and Lz because these
operators do not commute with one another.

However, the operator L2 = L2
x + L2

y + L2
z is spherically symmetric and commutes with any

of the three components of ~L. This is because rotating something that is spherically symmetric
about some axis does not change it. One may therefor define eigenstates of a spherically sym-
metric Hamiltonian that are also eigenstates of both L2 and Lz. We define the eigenvalues in
terms ofm and `.

Lz|`,m〉 = m~|`,m〉 , L2|`,m〉 = `(`+ 1)~2|`,m〉. (4.19)

The curious choice of `(`+ 1) will become apparent below.

4.6 Raising and Lowering operators

We define operators,
L± ≡ Lx ± iLy. (4.20)

These operators have the fortuitous property that

[Lz, L±] = ±~L±, (4.21)

which means that

Lz (L±|m〉) = L±Lz|m〉 ± L±|m〉 (4.22)
= (m± 1)~ (L±|m〉) .
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This means that L± effectively change an eigenstate of Lz to a new eigenstate with the eigen-
value either raised or lowered by ~.

One can also find the normalization of the new states by noting that

〈m|L∓L±|m〉 = 〈m|L2
x + L2

y ∓ Lz|m〉 (4.23)

= 〈m|L2 − L2
z ∓ Lz|m〉

=
(
`(`+ 1)−m2 ∓m

)
~2.

By inspection, one can see that if the sequence of ms is to be finite that they must begin at −`
and end at `, thus giving 2`+ 1 values ofm for a given `. Because thems must be separated by
unit steps, ` andmmust therefore be either integer or half integer.

4.7 Spherical Harmonics

The kinetic energy term in Schrödinger’s wave equation may be written

HK = −~2
∇2

2m
= −

~2

2m

(
∂2

∂r2
+

2

r

∂

∂r

)
−

~2

2mr2

(
1

sin2 θ

∂2

∂φ2
+

1

sin θ

∂

∂θ
sin θ

∂

∂θ

)
. (4.24)

Furthermore, the components of angular momentum may be written in terms of angular deriva-
tives,

Lz = −i~
∂

∂φ
(4.25)

Lx = −i~
(
− sinφ

∂

∂θ
− cot θ cosφ

∂

∂φ

)
Ly = −i~

(
cosφ

∂

∂θ
− cot θ sinφ

∂

∂φ

)
L± = −i~e±iφ

(
±i

∂

∂θ
− cot θ

∂

∂φ

)
.

Using the relation, L2 = L2
z +L+L−+ i~Lz, one can see that the∇2 term for the kinetic energy

may be written as

−
~2

2m
∇2 = −

~2

2m

(
∂2

∂r2
+

2

r

∂

∂r

)
+

L2

2mr2
, (4.26)

which is the usual relation from classical physics. If the potential is spherically symmetric, the
Hamiltonian commutes with each component of L because they only involve angular deriva-
tives, and each component ofL commutes withL2. Thus we may write the solution as an eigen-
state of an single component of ~L, such as Lz, and also as an eigenstate of L2. The eigenstates of
Lz and L2 will be labeled bym and `.,

Ψ(~r) = φ`(r)Y`,m(θ, φ). (4.27)

Being an eigenstate of L2, the operator L2 in Eq. (4.26) can be replaced with its eigenvalue
`(`+1). The spherical harmonic then factors out, and there is no mention ofm in Schrödinger’s
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equation, which justifies having φ`(r) with being independent ofm. Schrödinger’s equation for
an energy E is then

Eφ`(r) = −
~2

2m

(
∂2

∂r2
+

2

r

∂

∂r

)
φ`(r) + ~2`(`+ 1)φ`(r). (4.28)

Our immediate goal is to understand the angular functions Y`,m(θ, φ) which are eigenstates of
Lz and L2 and are refered to as spherical harmonics. In terms of bras and kets,

Y`,m(θ, φ) = 〈n̂|`,m〉, (4.29)

which implies the normalization,∫
dφd cos θ|Y`,m(θ, φ)|2 = 1. (4.30)

Given the requirement that the raising operator (see definition above) working on Y`,` gives
zero, one can write the expression for Y`,`(θ, φ),

Y`,`(θ, φ) = c`e
i`φ sin` θ, (4.31)

where the normalization is given by

c` =

[
(−1)`

2``!

]√
(2`+ 1)(2`)!

4π
. (4.32)

By operating on the known Y`,ms withL− one may generate Y`,ms for successively lower values
of m. Because the Y`,ms are eigenstates of Lz the m dependence is always trivial as it goes
proportional to eimφ, but the θ dependence can be messy. Examples of a few spherical harmonics
are

Y0,0 =
1
√

4π
(4.33)

Y1,0 =

√
3

4π
cos θ

Y1,±1 = −
√

3

8π
sin θe±iφ

Y2,0 =

√
5

16π
(3 cos2 θ − 1)

Y2,±1 = −
√

15

8π
sin θ cos θe±iφ

Y2,±2 =

√
15

32π
sin2 θe±2iφ

One might ask why half integer values of ` are never mentioned for spherical harmonics. The
problem is that the wave functions then become discontinuous as φ goes past 2π. Thus half-
integral angular momenta can only be used for intrinsic spins and not as labels for a spatial
wave function where the Hamiltonian includes spatial gradients.
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Finally, Legendre polynomials are defined as

P`(cos θ) ≡

√
4π

2`+ 1
Y`,m=0(θ). (4.34)

TheY`,ms with odd ` have odd parity, i.e. under the transformation (θ → π−θ, φ→ φ+π) the
Y`,ms with odd ` switch sign. This will play an important role in determining that many matrix
elements will be zero. Note that the radial wave function is always invariant under parity.

4.8 Separating out relative and center-of-mass coordinates

Consider the Schrödinger equation for two particles interacting through a potential V (~r1− ~r2).
The kinetic energy term,

HK = −
~2

2m1

∇2
1 −

~2

2m2

∇2
2 (4.35)

needs to be rewritten such that the derivates are with respect to center-of-mass and relative
coordinates,

~R ≡
m1~r1 +m2~r2

m1 +m2

, ~r ≡ ~r1 − ~r2, (4.36)

Using these definitions, one can show that that the kinetic energy becomes

HK = −
~2

2M
∇2
r −

~2

2µ
∇2
r, (4.37)

whereM ≡ m1 +m2 and µ ≡ m1m2/(m1 +m2).

The wave function may then be written as a product of center-of-mass and relative coordinates,

Ψ(~r, ~R) = eiK·
~Rφrel.(~r), (4.38)

with the overall energy being a sum of the eigenenergy of the relative wave function plus
~2K2/2M .

Note that if one of the masses is much larger than the other that the reduced mass µ equals the
smaller of the two masses. If both masses are equal, the reduced mass is half the mass of either
of the two individual masses. For our purposes, we will solve problems such as the hydrogen
atom assuming the potential is fixed. For the real case, one need only replace the mass with the
reduced mass to include the effect that the source of the potential is itself mobile.

Separating the center of mass coordinates is convenient whenever one has a potential that is a
function of ~r1 − ~r2 only. Writing Schrödinger’s equation,{

−
~2

2M
∇2
R −

~2

2µ
∇2
r

}
eiK·

~Rφ(~r) + V (r)eiK·
~Rφ(~r) = EeiK·

~Rφ(~r), (4.39)
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One can factor out eiK·~R after operating with∇2
R and get a simple equation for the relative wave

function φ(~r).

−
~2

2µ
∇2
rφ(~r) + V (r)φ(~r) = Erelφ(~r) (4.40)

E =
~2K2

2M
+ Erel

The factorization above works whenever the potential is a function of ~r and not ~R.

4.9 The 3-Dimensional Harmonic Oscillator in Cartesian Coordinates

One especially easy example of factorization is the three-dimensional harmonic oscillator in
Cartesian coordinates. In this case the problem is even more factorizable.

V (~r1, ~r2) =
1

2
k|~r1 − ~r2|2 =

1

2
k
[
x2 + y2 + z2

]
. (4.41)

This potential is spherically symmetric, and is thus a candidate to solve using wave functions
that are products of radial wave functions and Y`ms. However,because this potential can be
written as the sum of an x-dependent, a y-dependent and a z-dependent piece, it also works to
factorize the wave function as

φ(~r) = φx(x)φy(y)φz(z). (4.42)

One can separate the Schrödinger equation for the three-dimensional relative wave function into
three one-dimensional Schrödinger equations.

−
~2

2µ
∂2
xφx +

1

2
kx2φx(x) = Exφx(x) (4.43)

−
~2

2µ
∂2
yφy +

1

2
ky2φy(y) = Eyφy(y)

−
~2

2µ
∂2
zφz +

1

2
kz2φz(z) = Ezφz(z)

Here, E = Ex + Ey + Ez. By multiplying the first equation by φyφz, the second equation
by φxφz and the third by φxφy, then adding the three equations, one finds that they provide a
solution to the three-dimensional equation.

Thus, one is able to take a six-dimensional equation, factor out the center-of-mass motion, and
recognize the factorizability, and reduce the problem to three trivial one-dimensional equations
of motion. The energies are

Ex = (nx + 1/2)~ω, Ey = (ny + 1/2)~ω, Ez = (nz + 1/2)~ω, (4.44)

where ω =
√
k/µ. The total energy is thus the sum

E = (nx + ny + nz + 3/2)~ω. (4.45)
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These solutions are known as the Cartesian-basis solutions to the harmonic oscillator. Because
the harmonic oscillator has a spherically symmetric solution there also exist eigenstates of good
angular momentum which can be expressed in terms of Y`,ms.

One convenient aspect of harmonic oscillator potentials is that they can be solved form the N -
body case where N particles of mass m interact through mutual harmonic oscillator potentials.
Consider the potential,

V (~r1, · · ·~rN) =
1

2
k

(∑
i<j

|~ri − ~rj|2
)
. (4.46)

This potential is independent of the center-of-mass coordinates. That is, a translation of all co-
ordinates does not affect the potential. One can therefore write the solution as a product of a
center-of-mass wave function and a wave function that depends onN − 1 relative coordinates.

The above problem would be intractable if not for a trick which is unique to the harmonic oscil-
lator. One adds a fictitious potential that depends only on the center of mass coordinate.

Vf =
1

2
k|~r1 + ~r2 + · · ·~rN |2 =

1

2
N2k|Rcm|2. (4.47)

With this choice, the sum of the real and fictitious potentials cancels all the cross terms and
becomes,

Vtot = Vf + V =
1

2
Nk

(
r2

1 + r2
2 + · · · r2

N

)
. (4.48)

The total energy can be written as the sum of the center-of-mass energy plus the relative energy,

Etot = (nf + 3/2)~
√
Nk/m+ Erel, (4.49)

where Erel is the energy of relative motion which is our ultimate goal. Here the term (nf +

3/2)~
√
Nk/m replaces the usual kinetic energy of the center-of-mass. The single factor of

N inside the square root comes from the two factors of N in the expression for the fictitious
potential canceled by the one factor ofN in the total mass,

ωf =

√
N2k

M
, M = Nm. (4.50)

The total energies are those of N harmonic oscillators with mass m and spring constant Nk,
and have eigenenergies

Etot = (n1 + n2 + · · ·nN + 3N/2)~
√
Nk/m. (4.51)

The ground state energy we are interested in is thusEtot(ni = 0) minus the energy of the center
of mass, (3/2)~

√
Nk/m.

E0,rel =
3N

2
~
√
Nk/m−

3

2
~
√
Nk/m (4.52)

=
3(N − 1)

2

√
Nk/m.
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ForN = 2, the ground state energy is that of a single oscillator with reduced mass of µ = m/2.
The wave function of the ground state can be written as the product of all the ground state
wave functions, divided by the wave function of the center-of-mass. If one wanted to include
the center of mass motion, one could assign a momentum to the center of mass, ~P , then add
|~P |2/2m to the energies, and add a factor of ei ~P ·~Rcm/~ to the wave function.

4.10 Solving the Radial Wave Equation for Spherically Symmetric Cases

Similar factorization ideas are applied any time one deals with a spherically symmetric potential.
In that case one can write the wave function as a product of φ`(r) and Y`,m(θ, φ) and reduce the
problem to a one-dimensional problem of the radial coordinate. In that case the one-dimensional
Schrödinger equation for φ`(r) becomes

−
~2

2µ

(
∂2
r +

2

r
∂r

)
φ`(r) +

(~2`(`+ 1)

2µr2
+ V (r)

)
φ`(r) = Eφ`(r). (4.53)

Although this is a one-dimensional differential equation, it is not a one-dimensional Schrödinger
equation due to the extra derivative term (2/r)∂r. The one-dimensional Schrödinger form can
be regained by defining

u(r) ≡ rφ(r). (4.54)

The wave equation for u looks like a 1-d Schrödinger equation with a centrifigul potential,

−
~2

2µ

∂2

∂r2
u(r) +

(~2`(`+ 1)

2µr2
+ V (r)

)
u(r) = Eu(r). (4.55)

The boundary condition for u is that it must go to zero at the origin so that φ is finite at the
origin.

The wave equation is particularly simple for swaves (` = 0) as such solutions reduce to simple
1-d problems with an infinite potential when r < 0. Considering non-zero ` introduces a diver-
gent centrifugal potential at the origin, proportional `(`+ 1)/r2. In the neighborhood of r = 0
the solution looks like either

u`(r) r
`+1

(
1 +Or +Or2 · · ·

)
, the regular solution, (4.56)

or
u`(r) r

−` (1 +Or +Or2 · · ·
)
, the irregular solution. (4.57)

Clearly, only the regular solution satisfies the boundary conditions. Even when a Coulomb
potential is added, which is also divergent at the origin only less so, the behavior at the origin
can be expanded as shown above. If the divergence of the potential at the origin is as strong or
stronger than 1/r2, one needs to rethink the expansion above.

When the potential V (r) is zero the solutions are known as spherical bessel functions. The so-
lution that behaves regularly at the origin is referred to as j`(kr), while the irregular solution is
referred to as n`(kr). For the low `s,
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j0(x) =
sinx

x
,

j1(kr) =
sinx

x2
−

cosx

x
,

j2(kr) =

(
3

x3
−

1

x

)
sinx−

3

x2
cosx,

...

n0(x) = −
cos(x)

x
(4.58)

n1(x) = −
cosx

x2
−

sinx

x

n2(kr) = −
(

3

x3
−

1

x

)
cosx−

3

x2
sinx

...

By taking a linear combination of j` and n`, one can find a solution which behaves like an out-
going wave at large r,

h`(kr) = j`(kr) + in`(kr) (4.59)

≈ (−i)`+1
eikr

kr
, as r →∞

As an example, for ` = 1,

h1(x) =
eix

x

(
−1−

i

x

)
(4.60)

Example 4.1: – Spherical Wells
1. Solve for lowest energies of the ` = 0 and ` = 1 states of infinite spherical well of radius
R. (Note that for the ` = 1 solutions, a transcendental expression will remain.
Solution: The BC and solutions for ` = 0 are

j0(kR) = 0,

sin(kR) = 0,

k =
π

R
,

E0 =
~2π2

2mR2
.

For ` = 1,

j1(kR) = 0,

sin(kR)

kR
− cos(kR) = 0,

tan(kR) = kR, (transcendental eq.for k)

E1 =
~2k2

2m
.

2. Outline how one would solve for the bound state of a well of finite depth −V0 and width
R for ` = 1.

Solution: One would choose j1(kr) for the interior solution (region I), with

k =
√

2m(V0 −B)/~2,
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then match to a solution for negative energy (imaginary k) outside. The outer solution
would be chosen as

Ah1(iqr) = −A
e−qr

iqr

(
1 +

1

qr

)
,

where q =
√

2mB/~2 and A is an unknown constant. One then needs to satisfy the two BC
(continuous value and slope) at r = R by varying the binding energy B and the constant A.
This would lead to a transcendental equation forB.

4.11 Spherical Harmonic Oscillator – Spherical Basis

The spherically symmetric harmonic oscillator can be approached either through cartesian co-
ordinates as performed earlier or in a spherical basis. First, we review the Cartesian solutions.
Because the potential can be written as

V (~r) =
1

2
kr2 =

1

2
k
(
x2 + y2 + z2

)
, (4.61)

the solutions factorize into x, y and z-dependent functions,

Ψ(~r) = ψnx(x)ψny(y)ψnz(z). (4.62)

Each piece is a solution of the 1-dimensional Schrödinger’s equation and the total energy is

E = (N + 3/2)~ω , N ≡ nx + ny + nz, ω
√
k/µ. (4.63)

TheN = 0 andN = 1 eigenstates have the form

φnx=ny=nz=0(~r) ∼ e−r2/(2a2) (4.64)

φnx=1,ny=nz=0(~r) ∼ xe−r2/(2a2)

φnx=0,ny1,nz=0(~r) ∼ ye−r2/(2a2)

φnx=ny=0,nz=1(~r) ∼ ze−r2/(2a2)

By looking at the form of the Y`,ms, one can see that the N = 0 state has a ` = 0,m = 0 an-
gular dependence, and can therefore be written as a spherically symmetric function, e−r2/(2a2

0),
multiplied by Y0,0. The solution for the nx = ny = 0, nz = 1 state can be written as a prod-
uct of Y1,0 and the radial function re−r2/(2a2

0). By taking linear combinations, φnx=1,ny=nz=0 ±
φnx=0,ny1,nz=0, one finds solutions which can be written as the same radial wave function mul-
tiplied by Y1,±1.

In spherical coordinates the labels nx, ny and nz are replaced by N , ` and m. Mapping the
solutions for higher N is a bit tricky. For N ≥ 2, one can count the states from a Cartesian
perspective. One needs to know the number of ways to get three integers to add toN . First, the
number of ways, d⊥ to get two integers to add toN⊥ is

d⊥(N⊥) =
∑

nx=0,N⊥

= N⊥ + 1. (4.65)
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Requiring that a third integer adds toN gives the total degeneracy d(N),

d(N) =
∑

N⊥=0,N

d⊥(N⊥) =
(N + 1)(N + 2)

2
. (4.66)

Thus there is one way to getN = 0, 3 ways to getN = 1, six ways to getN = 2, etc.

To determine which ` multiplets combine to create the dN Cartesian solutions with a given
energy, (N + 3/2)~ω, consider two pieces of evidence: First, creating the cartesian state with
nz = N,nx = ny = 0 is represented by the spherical state Y`=N,`=N , therefore there must be
at least one ` = N multiplet. Secondly, all the multiplets for N − 2 must have corresponding
multiplets which are generatedy by operating on those states with the spherically symmetric
operator a2

x + a2
y + a2

z. We can now determine the multiplets by:

d(N) =
(N + 1)(N + 2)

2
= (2N + 1) + d(N − 2) + any others. (4.67)

Solving for the number of others, one finds there are no others. Hence the excitation N + 2
states have the same states, but with one more multiplet of ` = N + 2. Because one knows that
for N = 0 there is one ` = 0 state and for N = 1 there is one ` = 1 multiplet, one can quickly
find all the multiplets for anyN .

As an example the N = 5 states are covered by one ` = 5 multiplet, one ` = 3 multiplet and
one ` = 1 multiplet. Note that all states with even N have even parity and all states with odd
N have odd parity.

4.12 The Hydrogen Atom

There are three standard problems of spherically symmetric potentials where the solutions are
analytic, the inifinite well, the harmonic oscillator and the Coulomb potential. Here, we consider
the case where the potential is attractive,

V (r) = −
e2

r
. (4.68)

One may rewrite the Schrödinger equation,(
−
∂2

∂r2
+
`(`+ 1)

r2
−
Z1Z2

a0r

)
u`(r) = −k2u`(r), (4.69)

where the Bohr radius is defined a0 ≡ ~2/(µe2) and k2 = −2µE/~2. For large r the potential
and centrifigal terms are negligible and the wave function must behave as e−kr multiplied by
terms that vary more slowly in r.

The solutions to the Schrödinger equation can be written in terms of associated Laguerre plyno-
mials.

Rn,`(r) =
un,`

r
=

{(
2

na0

)3 (n− `− 1)!

2n[(n+ `)!]3

}1/2

e−r/(na0)

(
2r

na0

)`
L2`+1
n+`

(
2r

na0

)
. (4.70)
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For a given ` there are many solutions labeled by the integer n > `. The eigenenergies can be
written simply as

En = −
e2

2a0

1

n2
. (4.71)

If larger charges are used the above expressions are modified by scaling a0 by 1/(Z1Z2).

Writing a few solutions,

R1,0 =
2

a
3/2
0

e−r/a0 (4.72)

R2,0 =
1

(2a0)3/2

(
2−

r

a0

)
e−r/(2a0)

R2,1 =
1

(2a0)3/2

r

a0

√
3
e−r/(2a0)

The degeneracy, where energies with different ` have the same energies seems accidental, but is
related to the similar degeneracy in the harmonic oscillator. Both degeneracies can be explained
by considering the Lenz vector, which commutes with the Hamiltonian for the special case of
the Coulomb potential.

~Q ≡
1

2µ
(~p× L− L× ~p)−

e2

r
~r. (4.73)

This operator is Hermitian and, if the commutation between ~p and ~L is ignored, is identical to
the classical expression for the Lenz vector.

One can also define a scaled operator,

~K ≡
√
−m
2H

~Q, (4.74)

which is a little odd because one is defining the square root of an operator. However, because
we are considering only eigenstates with negative energies, this is not too sick.

One can show that the components of ~K and the components of the angular momentum ~L obey
simple commutation relations,

[Ki,Kj] = i~εijkLk , [Ki, Lj] = i~εijkKk (4.75)

These commutation relations are reminiscent of angular momentum commutation relations, and
in fact, if one defines two new operators,

~M ≡
~L+ ~K

2
(4.76)

~N ≡
~L− ~K

2
,

one can see thatM andN obey the same commutation relations as L,

[Mi,Mj] = i~εijkMk, [Ni, Nj] = i~εijkNk, [Mi, Nj] = 0 (4.77)
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Because ~M and ~N are linear combination of the ~L and ~K, they commute with the Hamiltonian,
and because they commute with one another they may simultaneously be defined.

Furthermore, some algebra reveals that the Hamiltonian may be written as

H = −
me4

2( ~K2 + ~L2 + ~2)
=

me4

2(2 ~M2 + 2 ~N2 + ~2)
(4.78)

Finally, note that the Lenz vector is always perpendicular to the angular momentum, which
means that ~r · ~L = ~K · ~L = 0. From the definitions of ~M and ~N , one then sees the constraint
that

M = N (4.79)

whereM andN are the quantum numbers denoting the magnitude of the vectors ~M and ~N in
the same way that ` denotes the magnitude of ~L. The eigenenergies are thus,

EM = −
me4

2~2(4M(M + 1) + 1)
= −

me4

2~2(2M + 1)2
(4.80)

BecauseM could be either integral over half integral, the numbers

n ≡ 2M + 1 (4.81)

are integral values.

These states are not eigenstates ofL, but given the fact that there must exist eigenstates ofL, one
can conclude that several states of the same `might be degenerate.

4.13 Adding Angular Momentum

In a spherically symmetric potential, the orbital angular momentum, L, commutes with the
Hamiltonian and ` and m` are good quantum numbers as `(` + 1) and m` are the eigenvalues
ofL2 andLz respectively. Many particles also have intrinsic spin, even those particles which are
currently considered as point particles such as electrons and photons. Thus in addition to the
orbital quantum numbers two more quantum numbers may be used to describe the eigenstates
of a single particle in the potential, s and ms, which describe the magnitude and projection of
the spin angular momentum.

Often a term exists in the Hamiltonian which couples the two types of spin,

Hs.o. = α~L · ~S, (4.82)

which is known as the spin-orbit term. This term originates from relativistic considerations
which we will see later in the course. Because the term is written as a rotational scalar and
does not involve an external field, which would explicitly break the rotational symmetry, we
expect that the overall angular momentum remains conserved. Indeed, one can see that the total
angular momentum

~J ≡ ~L+ ~S (4.83)
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commutes with the spin-orbit term, even though none of the components of L or S commute
with Hs.o.. Furthermore the total orbital and total spin angular momentum also commute with
Hs.o.. Thus there are two new quantum numbers j and mj which replace m` and ms as good
quantum numbers, whilem` andms are no longer good quantum numbers.

A clearer insight into the spin-orbit term can be attained by rewriting it explicitly in terms of j,
` and s. (

~L+ ~S
)2

= ~L2 + ~S2 + 2~L · ~S (4.84)

~L · ~S =
1

2

(
~J2 − ~L2 − ~S2

)
,

which means that the spin-orbit term may be rewritten in terms of the eigenenstates of the j,m−
j basis,

Hs.o. =
α~2

2
(j(j + 1)− `(`+ 1)− s(s+ 1)) . (4.85)

The coupling of spins is a common occurence in all branches of physics. In nuclear physics, the
spin-orbit term is surprisingly large, and is responsible for the basic scheme for nuclear shell
structure. In describing hadron spectroscopy, a spin-spin interaction is largely responsible for
the difference of the spin 3/2 delta baryon and the spin 1/2 proton which are comprised of
quarks of the same flavor. The coupling of angular momentum in physics is thus really a study
of changing bases from them`,ms basis to the j,mj basis.

When changing bases, the number of states involved is (2s+1)(2`+1) as can be determined by
considering the number of combinations of m` and ms. However, changing to the j,mj basis
only mixes states with identical mj = m` +ms. Because the states in a multiplet described by
j must be complete, running from−j to j, we see that the maximum value of j is

j ≤ `+ s. (4.86)

Because there is only one state withm` = ` andms = s, there is only one state withmj = `+s
and thus only one j multiplet with j = `+ s. Counting the number of pairs ofm` andms that
add up to a specific value of mj , and realizing that every j multiplet must be complete lets one
see that the values of j involved are

jmax = `+ s (4.87)
jmin = |`− s|.

These are known as the triangle relations, as they can be considered as constraints involved in
adding vectors. One cannot add two vectors of lengths ` and s and obtain a vector of length j
outside this range.

Furthermore, if s < ` the number of j multiplets is (2s+1) while the average j of the multiplets
is `, which means that the number of states is 〈2j+1〉(2s+1) = (2s+1)(2`+1) as mentioned
before.
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4.14 Clebsch-Gordan Coefficients

Changing from the m`,ms basis to the j,mj basis is described by the overlap of matrix ele-
ments,

〈`, s, j,mj|`, s,m`,ms〉. (4.88)

Such matrix elements are known as Clebsch-Gordan coefficients and are referred to through
a variety of confusing notations, such as C(`, s,m`,ms; j,m)and nearly every other possible
permutation of the arguments. Sometimes the coefficients are labeled by superscripts and sub-
scripts and sometimes they look like matrix elements 〈j,mj|`, s,m`,ms〉, where ` and s are
implied in the bra. The notations are remarkably confusing given that the only purpose of not
writing down eight labels, with two repeated as in Eq. (4.88), is that the labels ` and s, which are
always the same in the bra and ket, are not written down twice. To emphasize that the coeffi-
cients are matrix elements we will refer to the coefficients either in the form 〈j,mj|`, s,m`,ms〉
or with ` and s repeated in the bra as in Eq. (4.88).

The matrix elements are usually used as part of a basis transformation, e.g. expressing states
labeled by |`, s, j,mj〉 as a linear combination of |`, s,m`,ms〉. Using completeness,∑

m`,ms

|`, s,m`,ms〉〈`, s,m`,ms| = I, (4.89)

|`, s, j,mj〉 =
∑
m`,ms

|`, s,m`,ms〉〈`, s,m`,ms|`, s, j,mj〉

=
∑
m`,ms

〉〈`, s,m`,ms|`, s, j,mj〉|`, s,m`,ms〉

= 〈j,mj|`, s,m`,ms〉|`, s,m`,ms〉.

The last line was justified by the fact that the Clebsch-Gordan coefficients are real (because the
raising and lowering operators don’t introduce any complex phases).

Finding the matrix elements is straight-forward given the algebras for raising and lowering an-
gular momentum. First, remember that the matrix elements are all proportional to δmj ,m`+ms .
Now, because there is only one multiplet withmj = `+ s that matrix element is simple to write
down.

〈`, s, j = `+ s,mj = `+ s|`, s,m` = `,ms = s〉 = 1 (4.90)

To generate the coefficients involving the asame j = ` + s but reduced mj , one can use the
lowering operators,

|`, s, j,mj − 1〉 =
1√

j(j + 1)−mj(mj − 1)
J−|`, s, j,mj〉 (4.91)

=
1√

j(j + 1)−mj(mj − 1)
(L− + S−) |`, s, j,mj〉

Applying this to the case where mj = j = ` + s one generates an expression for the matrix
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elements withmj = `+ s− 1,

|`, s, j = `+ s,mj = `+ s− 1〉 =
1√

j(j + 1)−mj(mj − 1)
(4.92)

· (L− + S−) |`, s,m` = `,ms = s〉

=
1√

j(j + 1)−mj(mj − 1)

·
(√

`(`+ 1)−m`(m` − 1)|`, s,m` = `− 1,ms = s〉

+
√
s(s+ 1)−ms(ms − 1)|`, s,m` = `,ms = s− 1〉

)
One can now read off the Clebsch-Gordan coefficients. For instance,

〈`, s, j = `+ s,mj = `+ s− 1|`, s,m` = `− 1,ms = s〉 =

√
`(`+ 1)−m`(m` − 1)√
j(j + 1)−mj(mj − 1)

.

(4.93)

Finding the Clebsch-Gordan coefficient for j 6= ` + s is a bit trickier. By knowing that the
j = ` + s − 1 states are orthogonal to the j = ` + s states, allows one to write down the
j = `+ s− 1 states down by inspection. For instance,

|`, s, j = `+ s− 1,mj = `+ s− 1〉 = (4.94)
1√

j(j + 1)−mj(mj − 1)
·
(√

`(`+ 1)−m`(m` − 1)|`, s,m` = `,ms = s− 1〉

−
√
s(s+ 1)−ms(ms − 1)|`, s,m` = `− 1,ms = s〉

)
Of course, one could multiply the states by any arbitrary phase and the coefficients would work
as well. The convention is that the coefficient 〈j1, j2, j, j|j1, j2,m1 = j1,m2 = j − j1〉 is real
and positive.

Example 4.2: – Calculating Clebsch-Gordan Coefficients
Find 〈j1 = 3/2, j2 = 1, j = 3/2,m = 3/2|j1 = 3/2, j2 = 1,m1 = 3/2,m2 = 0〉.
First, using J− = J1,− + J2,−

|j = 5/2,m = 5/2〉 = |m1 = 3/2,m2 = 1〉 (4.95)√
(5/2)(7/2)− (5/2)(3/2)|j = 5/2,m = 3/2〉 =√

(3/2)(5/2)− (3/2)(1/2)|m1 = 1/2,m2 = 1〉+
√

(1)(2)− (1)(0)|m1 = 3/2,m2 = 0〉
|j = 5/2,m = 3/2〉 =√

3

5
|m1 = 1/2,m2 = 1〉+

√
2

5
|m1 = 3/2,m2 = 0〉.

Now, because the state |j = 3/2,m = 3/2〉 is orthogonal to the state above,

|j = 3/2,m = 3/2〉 =

√
3

5
|m1 = 3/2,m2 = 0〉 −

√
2

5
|m1 = 1/2,m2 = 1〉. (4.96)
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Example 4.3: – Neutron and Proton with Spin-Spin and Magnetic Interaction
A neutron and proton are each in an s wave of a nuclear potential. The two particles feel a
spin-spin interaction,

Vss = α~Sp · ~Sn, (4.97)

and also feel a magnetic field of strengthB,

Vb = −µp ~B · ~Sp − µn ~B · ~Sn. (4.98)

In terms of α, µp, µn andB, find the four energy eigenvalues.

This problem is made difficult by the fact that Vb is diagonal in the mp,mn basis, while Vss is
diagonal in the j,m basis. (We will omit the sp = 1/2, sn = 1/2 labels in the bras and kets to
save space.)

〈j,m|Vss|j′,m′〉 = δj,j′δm,m′
α~2

2
(j(j + 1)− sp(sp + 1)− sn(sn + 1)) (4.99)

〈mp,mn|Vb|m′p,m
′
n〉 = δmp,m′pδmn,m′nB~ (µpmp + µnmn)

To proceed further, one must choose a basis. We choose the j,m basis with the following eigen-
values,

|j = 1,m = 1〉 =


1
0
0
0

 , |j = 1,m = −1〉 =


0
1
0
0

 , (4.100)

|j = 1,m = 0〉 =


0
0
1
0

 , |j = 0,m = 0〉 =


0
0
0
1

 .

In this basis Vss is diagonal,

Vss =


α~2/4 0 0 0

0 α~2/4 0 0
0 0 α~2/4 0
0 0 0 −3α~2/4

 (4.101)

while writing Vb requires first rewriting each of the states in themn,mp basis.

|j = 1,m = 1〉 = |mp = 1/2,mn = 1/2〉 (4.102)
|j = 1,m = −1〉 = |mp = −1/2,mn = −1/2〉

|j = 1,m = 0〉 =
1
√

2
(|mp = 1/2,mn = −1/2〉+ |mp = −1/2,mn = 1/2〉)

|j = 0,m = 0〉 =
1
√

2
(|mp = 1/2,mn = −1/2〉 − |mp = −1/2,mn = 1/2〉) .
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If the problem involved higher angular momentum, one would have to go through the proce-
dure of the previous exercise, utilizing raising and lowering operators, to write the j,m states
in terms of them1,m2 basis.

From the above form, we can see that Vb will mix the two states with with m = as they are not
eigenstates in themp,mn basis.

Vb = −
~B
2


(µp + µn) 0 0 0

0 −(µp + µn) 0 0
0 0 0 (µp − µn)
0 0 (µp − µn) 0

 . (4.103)

Thus the first two eigenvalues are simple to write down

ε1 = α~2/4 + (µp + µn)~B/2 (4.104)
ε2 = α~2/4− (µp + µn)~B/2,

while the last two eigenvalues are most easily found by writing the lower-right 2×2 sub-matrix
in terms of σ matrices,

V2×2 = −α~2/4 + (α~2/2)σz + [(µp − µn)~B/2]σx (4.105)

The eigenvalues of the submatrix are

ε± = −α~2/4±
√
α2~4/4 + (µp − µn)2~2B2/4 (4.106)

4.15 Problems

1. (a) Show that ~r2 = x2 + y2 + z2 commutes with Lz.

(b) Show that ~r · ~p commutes with Lz.

2. Any two rotations, ~α and ~β, can be written as a single rotation by ~γ, which in the spin 1/2
basis means

ei
~β·~σ/2ei~α·~σ/2 = ei~γ·~σ/2

Show that the equivalent angle ~γ may be written in terms of ~α and ~β as

cos(γ/2) = cos(β/2) cos(α/2)− β̂ · α̂ sin(α/2) sin(β/2)

γ̂ sin(γ/2) = cos(β/2) sin(α/2)α̂+ cos(α/2) sin(β/2)β̂ + sin(β/2) sin(α/2)α̂× β̂,

where α̂, β̂ and γ̂ are the corresponding unit vectors. Note that these relations would hold
for any rotation, not just the spin 1/2 system.
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3. Consider the matrices,

Sx =
~
√

2

 0 1 0
1 0 1
0 1 0

 , Sy =
~
√

2

 0 −i 0
i 0 −i
0 i 0

 , Sz = ~

 1 0 0
0 0 0
0 0 −1

 .
These represent the rotation matrices for angular momentum S = 1, S(S + 1) = 2. Note
that the eigenvalues of Sz are -1,0,1 as expected.

(a) Explicitly multiply the matrices to show that

[Si, Sj] = i~εijkSk.

For efficiency, just pick one of the three combinations to check.
(b) Explicitly multiply the matrices to show that∑

i

S2
i = 2~2I.

4. Express eiLzφ/~Xe−iLzφ/~ in terms ofX , Y and Z.

5. Consider the six group elements for the symmetry of the equilateral triangle listed in Sec.
4.3. As a six-by-six matrix, write down the coefficient aij .

6. In terms of `,m1 andm2 find expressions for:

(a) 〈`m1|L2
x|`m2〉

(b) 〈`m1|L2
x + L2

y|`m2〉

7. (a) In terms of nx, ny and nz, find the energy levels of the three-dimensional harmonic
oscillator, by considering the problem in Cartesian coordinates, with the overall wave
function factorizing,

Φ(~r) = φx(x)φy(y)φz(z)

Express the answer in terms of ~,m and ω, and show that the energy is ~ω(nx+ny+
nz + 3/2).

(b) How many independent solutions are there forN = nx + ny + nz = 0, 1 or 2.
(c) Write expressions for all the wave functions Φ(~r) withN = 1.
(d) By inspection of the answer above, write down the wave functions Φ(~r) for the three

first excited states in spherical coordinates, which are proportional to Y11, Y10 and
Y1−1.

8. Consider a particle of mass m in a spherical well of radius R, where the potential is +∞
for r > R and zero for r < R.

(a) Find the ground state energy.
(b) Describe how one would find the energy of the first excited state of the same well.
(c) If the particle is an electron and the radius of the well is 0.15 nm, give a numerical

value for the energy of the ground state in eV.
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9. Find the ground state binding energies of the following atoms in eV.

a. e, Pb
b. µ−, p
c. e+e−

d. p̄, P b

The mass of a muon is 205 times larger than that of an electron.

10. For the same cases above, find the associated Bohr radii.

11. For the Hydrogen atom, calculate the expectation of the operator X between the ground
state and each of the four n = 2 states.

12. Prove the following recurrence relation for spherical Bessel functions:

j`+1(z) = −j′`(z) +
`

z
j`(z).

Begin with the differential equation for j`,

−j′′` (z)−
2

z
j′`(z) +

`(`+ 1)

z2
j`(z) = j`(z).

13. Find the Clebsch-Gordan coefficient

〈` = 1, s = 1, j = 0,m = 0|` = 1, s = 1,m` = 1,ms = −1〉

14. Calculate the Clebsch-Gordan Coefficients 〈` = 12, s = 1, j = 12,mj = 12|` = 12, s =
1,m`,ms〉 for allm` andms.

15. An electron is in an ` = 1 state of a hydrogen atom. It experience a spin orbit interaction,

Vs.o. = α~L · ~S

and also feels an external magnetic field

Vb = µ~B ·
(
~L+ 2~S

)
.

(a) Using the basis

|m` = 1,ms = 1/2〉 =


1
0
0
0
0
0

 , |m` = −1,ms = −1/2〉 =


0
1
0
0
0
0



|m` = 1,ms = −1/2〉 =


0
0
1
0
0
0

 , |m` = 0,ms = 1/2〉 =


0
0
0
1
0
0
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m` = 0,ms = −1/2〉 =


0
0
0
0
1
0

 , m` = −1,ms = 1/2〉 =


0
0
0
0
0
1


write the HamiltonianH = Vs.o. + Vb as a 6×6 matrix.

(b) What are the six eigenvalues?

16. A spin 1/2 particle is bound to a fixed center by a spherically symmetrical potential. The
particle is in an ` = 0 state with spin-up, i.e.

Ψ(~r,m) = ψ(r)

(
1
0

)
.

In terms of ψ(r) and ~r, write the matrix element for

〈~r,ms|~σ · ~r|Ψ〉

(a) forms = 1/2

(b) forms = −1/2
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5 Symmetries and Conservation Laws

5.1 Continuous and Discrete Symmetries

Symmetries can be classified as either continuous or as discrete. Examples of continuous sym-
metries are rotational and translation symmetries while parity and time reversal are examples of
discrete symmetries. Rotational and translational symmetries can be continuous because of the
continuum of rotations under which the system can be rotated. However, sometimes symme-
tries involve rotations or translations by a finite angle. For instance, a lattice is invariant under
translations of size na where n is an integer and a is the lattice spacing. A circular chain of n
identically spaced identical objects can also have symmetry under rotations of 2π/n.

In classical mechanics and in field theory, one studies Noether’s theorem which associates a
conserved charge with any continuous symmetry. There exists an analogous relation in quantum
mechanics which is perhaps easier to see. A continuous symmetry can be expressed

U †(θ)HU(θ) = H, (5.1)

where H is the Hamiltonian and U represents the unitary transformation by a continuous vari-
able θ. One can write such a transformation as

U = e−iGθ/~, (5.2)

whereG is an operator which generates the transformation. As θ → 0,

U = 1− iGθ/~, (5.3)

and
U †(θ)HU(θ) = H − i[H,G]θ/~, (5.4)

which shows that H must commute with G if the Hamiltonian is to be left invariant under the
transformation. Also, such a commutation implies that 〈G〉 is a constant of the motion.

∂

∂t
〈G〉 = i〈[H,G]〉/~ = 0 (5.5)

The degeneracies of levels is also intimately related to symmetry. For instance, if one considers
an electron orbiting a proton, even with spin-orbit splitting, the Hamiltonian commutes with
J2, and because one may rotate such states into one another by changing the coordinate system,
the (2j + 1) states must be degenerate. If one explicitly breaks the symmetry by adding an
interaction with an external magnetic field, the degeneracy is no longer expected to exist.

5.2 Parity

The parity operator Π reflects the system about some point, x → −x, y → −y, z → −z, or
equivalently three planar reflections. Parity is an example of a discrete symmetry. One can also
have a system invariant under only a subset of the parity operator, e.g. a reflection about the
x = 0 plane, Πx. Both the coordinate and momentum operators should flip sign under parity.
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Because Π2 should return one to the original state, eigenstates of Π should have eigenvalues of
±1.

The angular momentum operator,
L ≡ r× p, (5.6)

is invariant under parity because both ~r and ~p change signs. Pseudo-vectors, which are defined
by taking the cross products of two vectors, rotate like vectors but have the opposite behavior
under parity. Examples of pseudo-vectors are angular momenta and the magnetic field B. In
fact, defining the direction of pseudo-vectors requires arbitrarily choosing a right-hand vs left-
hand rule, and if parity is conserved, there should not be any behavior that differs by this choice.
For instance, if some atom had its angular momentum (a pseudo-vector) oriented in the z direc-
tion by a magnetic field (also a pseudo-vector) in the z direction, the emission of a charged
particle from radioactive decays should be the same parallel or anti-parallel to the applied field.
After all, whether is direction is anti-parallel or parallel to the field depends on one’s choice of
right- vs left-handed convention, whereas the direction of a charged particle certainly defines
a direction in a non-arbitrary way. In fact the electric current density is a vector. Shockingly
however, experiments proposed by T.D. Lee and performed by Madame Chien-Shiung Wu Wu
in 1956 showed that the weak interaction maximally violates parity by observing the decay of
polarized 60Co, https://en.wikipedia.org/wiki/Wu_experiment. The angular distribution of
decaying electrons was strongest along the direction of the applied field, with zero probability
density for a decaying electron being observed in the perfectly anti-parallel direction.

Most Hamiltonians are even under parity. In that case, the eigenstates can be either even or
odd because they must be eigenstates of the parity operator. The eigenvalues are ±1 because
π2 must return one to the original state. If the Hamiltonian has any odd-parity terms, then the
eigenstates have admixtures, and if the original state has parity +1, it would then develop some
admixture of parity −1 over time, which would then not be eigenstates of Π. For instance, the
weak interaction of an electron with a nucleus mixes the 2s and 2p states in the Hydrogen atom.

Finally, we point out that parity allows one to recognize many matrix elements as being zero.
For instance, if one looks at the matrix element,

〈φ|A|ψ〉, (5.7)

where the parities of the two states and the operator are (−1)pφ , (−1)pA and (−1)pψ , the matrix
element will be zero if pψ+pφ+pA is an odd number. This can be understood by just considering
what should happen when integrating over even or odd functions of x.

5.3 Time Reversal

Time reversal is an odd kind of symmetry. It suggests that a motion picture of a physical event
could be run in reverse without the viewer being able to tell something is wrong. Of course, this
does not apply whenever dissipation (friction) is included. In classical mechanics the motion of a
particle in a potential V (r) should be equally valid when watched in reverse. In electrodynam-
ics, the reverse motion should be fine as long as the direction of the magnetic field is reversed.
Summarizing time reversal behavior of particles in classical electrodynamics,

E→ E, B→ −B, j→ −j, ρ→ ρ (5.8)
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should lead to an equally valid evolution. To understand the signs above, imagine a charged
particle moving in an electric field from times t0 to tf . If at tf you reversed the velocity, the
particle would trace out the identical trajectory. However, to get a particle to retrace its trajectory
in a magnetic field, one would have to flip the sign of the magnetic field. The charge density is
not a function of time reversal, and because the velocity clearly changes sign, and because the
current density is ρ~v, clearly the current density is odd under time reversal.

The electric potential Φ and the vector potential ~A appear in the combinations, H0 − eΦ and
~P−e ~A/c, so one expects Φ and ~A to have the same time-reversal properties as the Hamiltonian
and as the momentum, respectively, i.e. Φ is even and ~A should be odd.

In quantum mechanics, we expect the following behavior under time reversal,

t→ −t, r→ r, p→ −p. (5.9)

The gradient operator and ∂t should be even and odd, respectively, under time reversal. How-
ever ~P = −i~∇ and H = i~∂t are odd and even respectively. Thus, for quantum mechanics,
the time reversal operator must also involve taking the complex conjugate. Thus under time
reversal,

i~∂t → i~∂t, (5.10)
−i~∇ → i~∇.

One may also see that time reversal entails taking the complex conjugate by considering Schrödin-
ger’s wave equation,

−
~2

2m

∂2

∂x2
Ψ(x, t) + V (x)Ψ(x, t) = i~

∂

∂t
Ψ(x, t). (5.11)

If Ψ(x, t) = ψ(x)e−iEt is a solution, taking the complex conjugate and reversing the time also
gives a solution to the Hamiltonian. In fact, because H is real one may write ψ(x) as a purely
real function or purely imaginary function. A purely real function would be even under time
reversal symmetry while a purely imaginary function would be odd. For instance a plane wave
solution is neither even nor odd as it has both real and imaginary parts. In that case taking the
complex conjugate changes the direction of the momentum, thus signifying the motion reversal
mentioned before.

An easy example is to consider plane waves

Ψ(x, t) = eikxe−iEt. (5.12)

By both taking the complex conjugate and reversing the sign of t, one obtains a new solution
where the momentum is reversed but the energy remains the same.

Of course, when one gets away from the Schrödinger equation, there are many Hamiltonians
which are not real but are Hermitian, e.g. those that involve σy. Nonetheless there usually
exists a time-reversal symmetry though it may be more complicated than merely taking the
complex conjugate. In particle physics, the symmetry of switching times is clearly linked to the
existence of solutions with opposite energy (anti-particles). In that case the operation which
includes taking the complex conjugate is associated with finding negative-energy or antiparticle
solutions, but that is material for another course.
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The time reversal operator acts only to the right because it entails taking the complex conjugate.
In terms of bras and kets the time-reversed matrix elements satisfy the relations below, using the
notation, |α̃〉 = Θ|α〉, α̃i = α∗i .

〈β̃|α̃〉 = (β∗i )
∗α∗i = α∗iβi = 〈α|β〉 = 〈β|α〉∗. (5.13)

Similarly, the expectation of operators satisfies the relations,

〈β̃|ΘAΘ−1|α̃〉 = 〈β̃|ΘA|α〉 = (β∗i )
∗A∗ijα

∗
j = 〈α|A†|β〉 = 〈β|A|α〉∗, (5.14)

or is equivalent to saying that the time reversed operator ΘAΘ−1 sandwiched between time-
reversed states gives the complex conjugate of the same matrix element without the time rever-
sals.

Most operators of interest are either even or odd under time reversal.

ΘAΘ−1 = ±A (5.15)

Clearly an operator that is a linear combination of an odd and an even operator would be neither.
Examples of odd and even operators are:

Θ~PΘ−1 = −~P , Θ ~AΘ−1 = − ~A, Θ~rΘ−1 = ~r, Θ~LΘ−1 = −~L. (5.16)

Note that the commutation relations,

[x, p] = i~ , [Li, Lj] = i~εijkLk, (5.17)

have apparently different behaviors under reversal on the left and right-hand sides of the equa-
tions, until one remembers to consider the i~, which flips sign under the time-reversal operator.
Notice that the raising and lowering operator for a harmonic oscillator, x + ip, is even under
time reversal.

Hamiltonians are usually invariant under time reversal. Here we list a few terms which might
appear in a Hamiltonian and discuss whether they violate time reversal or parity.

1. p2/2m is invariant under both.

2. p · r is invariant under parity but not time reversal.

3. L · p is invariant under time reversal but not parity.

4. S · B and p · A are invariant under both.

5.4 Time Reversal and Angular Momentum

The time reversal operator acts in a surprisingly complex manner when operating on eigenstates
of angular momentum. For integer-spin particles, one can understand the behavior by consider-
ing properties of the Y`,ms. By taking the complex conjugates, one sees

Θ|j,m〉 = (−1)m|j,−m〉. (5.18)
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However, we should realize that the (−1)m is basically the result of a phase convention and
should not be taken too seriously.

The case of spin 1/2 particles is more surprising. In this case the spins cannot be represented
by Y`,ms and one must instead consider the two-component system where |+〉 and |−〉 refer
to spin-up and spin-down with the direction being chosen along the z axis. In this basis an
arbitrary normalized state, with spin in some arbitrary direction, may be written,

|α〉 = eiδ1
(

cos θ/2
eiγ1 sin θ/2

)
. (5.19)

The time-reversed state must be a state with opposite spin, thus it must be orthoganal. The time
reversal operator must be that which creates the orthogonal state,

Θ|α〉 = eiδ2
(
−e−iγ1 sin θ/2

cos θ/2

)
(5.20)

The phases δ1 and δ2 are arbitrary, and labeling their difference as η ≡ δ2 − δ1 we see that Θ
must equal

Θ = eiη
(

0 1
−1 0

)
K, (5.21)

where K is an operator which takes the complex conjugate. The surprising property of Θ is
viewed by squaring the operator,

Θ2 =

(
0 1
−1 0

)2

= −1, (5.22)

independent of the choice of η.

Making an arbitrary choice of eiη = −i, one sees that

Θ|+〉 = i|−〉 , Θ|−〉 = −i|+〉. (5.23)

This allows one to summarize both the integral and half-integral results with

Θ|j,m〉 = i2m|j,−m〉 (5.24)

Thus, performing two time-reversal operations does not return the same state in the case of
half-integral spin, but it does for the case of integral spin.

To make the time-reversal operator in spin 1/2 systems seem a bit more peculiar it is often
written as

Θ = σyK, (5.25)

which makes the operator look odd because the y direction appears to be preferentially singled
out. However, this has nothing to do with the y direction, but only with the fact that the only the
operator which flips spin must change the place of the two components and change one sign to
make an orthogonal state. One could have associated any of the three sigma matrices with the x
, y and z directions, but the time reversal operator must be proportional to the anti-symmetric
off-diagonal matrix.

Note that the eigenstates of L2 and Lz are not eigenstates of the time-reversal operator, unless
the projection m = 0, because they have the form eimφ. However, one can make eigenstates of
the time reversal operator by combining the states |m〉 and | −m〉, i.e. (|m〉 ± | −m〉)/

√
2.
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5.5 A Particle in a Periodic Potential

A second class of discrete symmetries involves particles moving in a periodic lattice. In that case
translational invariance gives

τaHτ
−1
a = H or V (x+ a) = V (x). (5.26)

One thus expects the solution to be an eigenstate of the translation operator,

τaψ(x) = ψ(x+ a) = eikaψ(x), (5.27)

where the eigenvalue is eika. We label the eigenvalue by k, which must be real if the wave
function is to remain finite.

As an example, we consider the Kronig-Penney model, which is a 1-d model with delta-function
potentials separated by a,

V (x) =
∑
n

βδ(x− na). (5.28)

The solution between x = 0 and x = amay be written as

ψ(x) = eiqx +Be−iqx, (5.29)

with boundary conditions,

ψ(a) = eikaψ(0) ,
d

dx
ψ(x)|x=a−ε − eika

d

dx
ψ(x)|x=ε +

2mβ

~2
ψ(a) = 0. (5.30)

The boundary conditions become

eiqa +Be−iqa = eika(1 +B) (5.31)

iq
(
eiqa −Be−iqa − eika + eikaB

)
= −

2mβ

~2
eika(1 +B)

EliminatingB, one can find a transcendental expression for q.

p sin(qa) + 2q cos(qa)− 2q cos(ka) = 0, (5.32)

where p ≡ 2mβ/~2. Notice that the solution only depends on cos(ka) thus there are solutions
for −π < ka < π with the solutions symmetric about k = 0. However, for any k there are
a variety of solutions q to the transcendental equation. Plotting the solutions as a function of k
yields bands. In the limit p → 0, the solutions are given by q = k, otherwise they are shifted,
especially near the points where cos(ka) = ±1 as seen in the example in Fig. 5.1.

Example 5.1: – Object with Discrete Rotational Symmetry
Another example of a discrete symmetry is the case where the object has a symmetry of its own,
rather than the potential. An example is a circular chain of massm and radiusRwith n equally
spaced identical particles fixed to the chain that can rotate together. Because this is rotation in a
plane, the position of the chain is specified by a single angle

0 < φ < 2π/n. (5.33)
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−π −π/2 0 π/2 π

ka

0

π

2π

3π

4π
qa

Figure 5.1: First four bands of the Kronig Penny
model from Eq. (5.32) where the lattice spacing is a,
and for a coupling where pa = 5. Energies would
be given by ~2q2/2m.

The Hamiltonian for rotational kinetic energy would be of the form

H =
L2

2mR2
= −

~2

2mR2
∂2
φ.

The boundary condition must be that the wave function is returned to the same state, within a
phase, by a rotation by 2π/n,

ψ(φ+ 2π/n) = ψ(φ).

ψm(φ) = eimφ , m = · · · ,−2n,−n, 0, n, 2n, · · · ,

Em =
~2m2

2mR2
.

Thus, the first rotational state is at a higher energy if the symmetry is higher. In fact if the chain
was perfectly circular, n → ∞, one could not rotate it. This has implications for nuclear and
atomic physics. Many nuclei are elliptical and therefore behave similarly to chains with n = 2
because the the nucleus has a reflection symmetry, ψ(n̂) = ψ(−n̂). Thus only even values of n
are allowed. For three-dimensional objects only even ` are allowed for elliptic objects, and the
sequence of energy levels with ` = 0, 2, 4 · · · are referred to as rotational bands.

5.6 Problems

1. Let T~d denote the translation operator (displacement vector ~d);D(n̂, φ), the rotation oper-
ator; and π the parity operator. Which, if any, of the following pairs commute? Why?

(a) T~d and T~d′ (~d and ~d′ are in different directions.)
(b) D(n̂, φ) andD(n̂′, φ′) (n̂ and n̂′ are in different directions.)
(c) T~d and Π.
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(d) D(n̂, φ) and Π.

2. Because of weak (neutral-current) interactions there is a parity-violating potential between
the atomic electron and the nucleus as follows:

V = λ
[
δ3(~r)S · p + S · pδ3(~r)

]
where S and p are the spin and momentum operators of the electron, and the nucleus is
assumed to be situated at the origin. As a result, the ground state of an alkali atom, usually
characterized by |n, `, j,m〉 actually contains tiny contributions from other eigenstates as
follows

|n, `, j,m〉 → |n, `, j,m〉+
∑

n′,`′,j′,m′

Cn′,`′,j′,m′|n′, `′, j′,m′〉

On the basis of symmetry considerations alone, what can you say about (n′, `′, j′,m′)
which give rise to non-vanishing contributions?

3. Suppose a spinless particle is bound to a fixed center by a potential V (~r) so asymmetrical
that no two energy levels are degenerate. Using time-reversal invariance prove

〈L〉 = 0.

for any energy eigenstate. Use the fact each eigenwave functionψ(~r) must be an eigenstate
of the time reversal operator with eigenvalue eiγ , thus ψ∗(~r) = eiγψ(~r). (This is known
as quenching of orbital angular momentum.)

4. Consider the time-reversal operator for spin-1/2 particles, Θ = σyK, where K takes the
complex conjugate of all quantities to its right. Show that Θ commutes with the rotation
operator,

R(~θ) = cos(θ) + i~σ · θ̂ sin(θ).

5. Consider a particle of massM confined to a two-dimensional circle of radiusR.

(a) Write down the Schrödinger equation for the wave functionψ(φ), where the potential
depends only on φ, and radial motion is ignored.

(b) Assuming the potential is periodic,

V (φ+ 2π/N) = V (φ),

whereN is an integer. Write the boundary condition relatingψ(φ) andψ(φ+2π/N),
where the eigenvalue of the rotation operator,R(2π/N) is eiγ . What values of γ are
allowed?

(c) Assume the potential ,

V (φ) = β
∑
j=1,N

δ(φ− 2πj/N),

Assume the wave function has the form,

ψ(φ) = eimφ +Be−imφ, 0 < φ < 2π/N,

where m is not necessarily an integer. Find a transcendental expression for m in
terms of β, M , γ and n. Hint: Note the similarity to the Kronig-Penny model, where
the solution in Eq. (5.32) translates to this problem with q → m, ka → γ, and
a→ 2π/N .
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6 Approximation Methods

Later in this chapter, we will cover various approaches to perturbation theory. But first, we study
three non-perturbative approximation methods:

1. WKB Method

2. Variational Method

3. Sudden and Adiabatic Approximations

6.1 The WKB Approximation

The WKB (Wentzel-Kramer-Brillouin) approximation is a useful method for estimating wave
functions and tunneling probabilities for smooth potentials or for potentials with only a few
discontinuities. The WKB approximation for a wave function can be written as:

ψ(x) = A+(x)eiφ(x) +A−(x)e−iφ(x) (6.1)

φ(x) =

∫ x

dx′p(x′)/~,

where the lower limit of the integral is absorbed by the arbitrary phases in A+ and A−. The
function p(x) is defined by

p(x) ≡
√

2m(E − V (x)), (6.2)

and can be thought of the momentum of a classical particle with energy E at position x.

To assess the accuracy of the approximation one can apply the Schrödinger equation to the as-
sumed form for ψ. Here we use only theA+ term.

(H − E)ψ(x) = −~2
∂2

∂x2
ψ(x)− (E − V )ψ(x) (6.3)

=

{
p(x)2

2m
− E − V (x)

}
A+(x)eiφ(x)

+
i~

2m

{
2p(x)

∂

∂x
A+(x) +A+(x)

∂

∂x
p(x)

}
eiφ(x)

−
~2

2m

{
∂2

∂x2
A+(x)

}
eiφ(x).

The first term disappears from our choice of p(x) while the second term will vanish if we choose

A+(x) ∝ p(x)−1/2. (6.4)

The last term does not vanish, but is neglected in the limit that ~ is small as it is proportional to
~2. One can understand the accuracy of the approximation by taking the second derivative of
A+(x) in the last term and comparing it to the other terms. One then sees that the approxima-
tion becomes exact when characteristic length scales of the the potential are much longer than
~/p(x).
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Physically, one may understand the p−1/2 dependence of A+ by realizing that the WKB ap-
proximation has no reflection associated with it, at least when E > V and p(x) is real. Thus
conservation of flux requires p|A|2 to be constant.

To estimate a bound state wave function, one sets the phase φ(x) to be zero at one turning point
(a point where p(x) = 0), then solves for φ(x) at the other turning point. By finding an energy
for which the phase changes by π one then has a solution. For one may then combine such a
solution with theA− solution to return to the original turning point incurring a net phase change
of 2π.

The most common use of the WKB approximation is in estimating tunneling probabilities. In
this case the wave functions have exponentially growing and decaying amplitudes.

ψ(x) = A+(x)eφ(x) +A−(x)e−φ(x) (6.5)

φ(x) =

∫ x

dx′q(x′)/~,

where the approximation is applied to tunneling regions, V (x) > E. The function q(x) is
defined as

q(x) ≡
√

2m(V (x)− E), (6.6)

In fact, one usually ignores the x dependence of the amplitude and merely states that the tun-
neling probability form going from turning point a to turning point b is

Pa→b ≈ exp

{
−

2

~

∫ b

a

dx
√

2m(V (x)− E)

}
, (6.7)

with the factor of two coming from squaring the amplitude.

Example 6.1: – Ground State of Harmonic Oscillator in WKB approximation
Consider a particle of massm in the one-dimensional harmonic oscillator potential

V (x) =
1

2
mω2x2. (6.8)

In this case one fourth of 2nπ must result from integrating
∫
k(x)dx from zero to the turning

point.
nπ

2
=

√
2m

~

∫ a

0

dx

√
1

2
mω2a2 −

1

2
mω2x2, (6.9)

where the turning point a depends on the unknown ground state energy, E = mω2a2/2. Solv-
ing the equation above for a gives

a2 =
2n~
mω

(6.10)

E = n~ω,

which is correct aside from an extra ~ω/2. Because the WKB requires the wave function to
vanish at the turning point, rather than to simple be falling to match the energy, one expects it to
consistently give an over-prediction of the energies.

86



PHY 851 6 APPROXIMATION METHODS

6.2 Variational Theory

Variational calculations are used to calculate ground state wave functions by using the simple
fact that all states must have energies greater or equal to that of the ground state. Thus, by
writing a state in terms of some parameters αi, and minimizing E = 〈~α|H|~α〉 with respect
to the parameters αi, one knows that the energy can never fall below the true ground state
energy. The minimization procedure therefore can be used to estimate the ground state energy
and ground state wave functions.

Example 6.2: – Variational Estimate of Ground State Energy of Hydrogen Atom
Consider the Coulomb potential

V (r) = −
e2

r
. (6.11)

We suppose that we were lucky and guessed an exponential form for ground-state hydrogen
atom wave function by assuming a trial form,

ψ(r) =
2

√
4πa3

e−r/a, (6.12)

where a is the variational parameter and the prefactor was chosen to normalize the wave func-
tion. One would then minimize the expectation of 〈H〉with respect to a.

〈H〉 = 4π

∫
r2dr ψ(r)

[
−

~2

2m
(∂2
r + (2/r)∂r)−

e2

r

]
ψ(r) (6.13)

=
~2

2ma2
−
e2

a
.

The minimization, (∂/∂a)〈H〉 = 0, yields

a =
~2

me2
, (6.14)

which in this case gives the exact wave function and ground state energy, but only due to the
fortunate choice for the form of the wave function. In general, one would obtain an approximate
wave function with on overestimate of the ground state energy.

Variational calculations are popular in a variety of many-body applications where the interac-
tions and many-body wave functions can be extremely complicated.

6.3 The Sudden Approximation

The sudden approximation can be used for calculating transition probabilities for cases where
the Hamiltonian changes rapidly between two times t1 and t2. The approximation becomes
exact in the limit that the Hamiltonian changes instantaneously. In fact, there is no real technique
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involved in the approximation, but merely an approximation that the reaction was so quick that
one can approximate the transition amplitude by a simple overlap,

P (β → α) = |〈α|U(t2, t1)|β〉|2, (6.15)
〈α|U(t2, t1)|β〉 ≈ 〈α|β〉,

where |β〉 is usually an eigenstate of the Hamiltonian before t1, and |α〉 is usually an eigenstate
of the Hamiltonian after t2.

The sudden approximation can be used whenever the times t1 and t2 are so close that the rel-
evant energy changes multiplied by (t2 − t1)/~ are small. The sudden approximation is com-
monly used in nuclear reaction theory. For instance, one may consider a deuteron where an
electric field from a relativistic particle flies by and deposits some momentum ~q to the proton
while leaving the neutron unchanged. One might then use the sudden approximation (or the
Glauber approximation which is similar) to estimate the chance that the deuteron remains in its
ground state.

When a potential is changed slowly, the probability remains assigned to the same state. This
is because for each differential change in the potential, a differential change ε is induced in the
wave function. However, if the changes occur at much different times, as would be the case
for a slow change, the differential amplitudes contribute with uncorrelated phases and the net
change in the probability goes as

∑
|ε|2 = 0. Thus if a particle is in the ground state, and the

well changes slowly, it remains in the ground state afterward. This also implies that entropy is
not generated, hence the term adiabatic.

Example 6.3: – Expanding Well
The most common example used to illustrate the sudden approximation is the case of a particle
of massm in an expanding well. Here, we consider an infinite square well confining particles to
the region 0 < x < a which suddenly expands at time t = 0 to allow particles to occupy the
region 0 < x < 2a.

Assuming a particle was in the ground state of the old well,

• What is the probability of being in the state n of the new well? The wave functions of the
new eigenstates are

ψn(x) =

√
1

a
sin [nπx/(2a)] , 0 < x < 2a,

where the new ground state has n = 1.

• What is the expectation of the energy 〈H〉 after the expansion of the well?
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Solution: a) Take the overlap of the two ground state wave functions then square it,

P (0→ n′) = |M0→n|2,

M0→n =

√
2

a

√
1

a

∫ a

0

dx sin(πx/a) sin(nπx/2a)

=

√
2

4a

∫ a

0

dx
[
−ei(n+2)πx/2a − ei(−n−2)πx/2a + ei(n−2)πx/2a + ei(−n+2)πx/2a

]
=

√
2

2a

∫ a

0

dx {cos[(n− 2)πx/2a]− cos[(n+ 2)πx/2a]}

=

√
2

π

{
−

sin[(n+ 2)π/2]

(n+ 2)
+

sin[(n− 2)π/2]

(n− 2)

}
=

√
2

π
sin(nπ/2)

{
1

n+ 2
−

1

n− 2

}

=


4
√

2
π

(−1)(n+1)/2/(n2 − 4), n = odd
1√
2
, n = 2

0, n > 2 and even

P (0→ n) =


32/[π2(n2 − 4)2], n = odd

1
2
, n = 2

0, n > 2 and even

The ground state is n = 1 and that probability is 32/9π2.

b) The energy of the states n are En = ~2n2π2/8a2, summing over n should give the original
energy because the wave function does not change in the instant the well is moved,

∑
n

En|M0→n|2 =
~2π2

2ma2
.

6.4 Stationary-State Perturbation Theory

Here, we present stationary-state perturbation theory which is also known as Rayleigh-Schrödinger
perturbation theory. In such a theory one solves for states and their energies in an expansion of
powers of λwhere the Hamiltonian is

H = H0 + λV. (6.16)

The potential V is known as the perturbation and is assumed to be small while λ is assumed
to be unity and is only used to keep tally of the expansion of V , i.e. the expansion in λ is an
expansion in V .

Before one embarks on perturbation theory, one assumes that one has already solved for the
states |n〉, which are eigenstates of H0, with eigenenergies εn. The goal is to express solutions
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for the new eigenenergies and eigenfunctions of the full Hamiltonian, H , as an expansion in
terms of |n〉 and εn.

We assume that both the eigenstates and eigenenergies of the new Hamiltonian can be written
as an expansion if powers of λ,

|N〉 = |n〉+ λ|N (1)〉+ λ2|N (2)〉+ · · · (6.17)

En = εn + λE(1)
n + λ2E(2)

n + · · ·

Here, the terms |N (j)〉 andE(j)
n denote the corrections to the specific eigenstate |n〉 and energies

of order λj . We are also free to make an assumption about normalization of the state |N〉.

〈n|N〉 = 1, (6.18)

which is equivalent to saying that the additional parts of the wave function have no |n〉 compo-
nent,

〈n|N (j)〉 = 0. (6.19)

The Schrödinger equation,
(H0 + λV )|N〉 = En|N〉, (6.20)

must be satisfied to every power of λ individually. By inspecting the jth power of λ, this gives

H0|N (j)〉+ V |N (j−1)〉 =
∑
k=0,j

E(k)
n |N

(j−k)〉. (6.21)

Here, the sum over k goes from zero to j with the understanding that |N (0)〉 = |n〉 and E(0) =
εn. We solve for the expressions iteratively. That is, one first finds E(k) then finds |N (k)〉, then
given those states move onto k + 1. To find E(k))

n , one takes the overlap of Eq. (6.21) with 〈n|
and using the normalization definitions one obtains

〈n|V |N (j−1)〉 = E(j). (6.22)

For the case where j = 1, one gets the lowest-order perturbation theory answer for the energy.

E(1)
n = 〈n|V |n〉. (6.23)

The state |N (j)〉 is defined by its overlap with the states 〈m| where m 6= n. Given one knows
E(j)
n one can find the 〈m|N (j)〉 by taking the overlap of 〈m|with Eq. (6.21),

εm〈m|N (j)〉+ 〈m|V |N (j−1)〉 =
∑
k=0,j

E(k)
n 〈m|N

(j−k)〉. (6.24)

Solving for the jth part which is unknown,

〈m|N (j)〉 =
1

εm − εn

(
−〈m|V |N (j−1)〉+

∑
k=1,j

E(k)
n 〈m|N

(j−k)〉
)
. (6.25)
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One can then solve for the first-order correction to the wave function,

|N (1)〉 = −
∑
m 6=n

|m〉
1

εm − εn
〈m|V |n〉 (6.26)

Using the state |N (1)〉, one can then find the expression for E(2)
n ,

E(2)
n = −

∑
m6=n

|〈m|V |n〉|2

εm − εn
. (6.27)

Several important principles can be realized by observing the form of E(2)
n . First, two state’s

energies are pushed apart in 2nd-order perturbation theory, a phenomena known as level repul-
sion. Secondly, if the levels are initially close, the energies are more affected. In fact, if they are
degenerate perturbation theory breaks down, and one must apply degenerate perturbation the-
ory which is the topic of the next sub-section. Of special significance is noticing that the ground
state is always lowered in 2nd order perturbation theory.

Example 6.4: – Harmonic Oscillator with Linear Perturbation
We will find the second-order correction to the ground state energy of the Harmonic oscillator
with a linear perturbation,

H0 = −
~2

2m
∂2
x +

1

2
mω2x2,

V = βx,

Perhaps surprisingly, this gives the exact answer for this case.

Solution: To proceed one can write the perturbation in terms of creation and destruction opera-
tors,

V = β

√
~

2mω
(a+ a†).

The ground state then overlaps with only the first excited state,

〈1|V |0〉 = β

√
~

2mω
,

and the correction to the energy is

E(2) = −
|〈1|V |0〉|2

~ω
= −

β2

2mω2
.

One could have also solved this exactly by completing the square of the potential,

V (x) =
1

2
mω2x2 + βx

=
1

2
mω2

(
x+

β

mω2

)2

−
β2

2mω2
,
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and the last term is a constant correction to the energy, while the rest of the change is simply a
translation of the potential. Given that the exact solution is proportional to β2, it must also equal
the perturbative correction to second order because any other order of correction would involve
β to a higher power.

6.5 Degenerate-State Perturbation Theory

Due to terms of the form
〈m|V |n〉
εm − εn

,

perturbation theory falls apart when the perturbation mixes degenerate states, εm = εn. This
can be corrected by first separating the part of the potential that mixes the degenerate states, Vd,
from the remainder of the potential, V ′, then diagonalizing Vd and using perturbation theory
for V ′.

Formally, this means dividing the potential into parts using projection operators,

V = Vd + V ′ (6.28)
Vd = PdV Pd

V ′ = (I− Pd)V (I− Pd) + PdV (I− Pd) + (I− Pd)V Pd,

where Pd is the projection operator that projects the subset of states that are degenerate

Pd =
∑
m∈d

|m〉〈m| (6.29)

Because 〈m1|V ′|m2〉 = 0 when m1 and m2 are in the degenerate set, there is no longer any
problem. Note that by diagonalizing Vd, Vd essentially becomes part ofH0.

Example 6.5: – Stark Effect
Here, e consider the diagonalization of Vd and forget about the perturbative part entirely. The
Stark effect refers to the placement of a hydrogen atom in an electric field,

V = eEz.

and are interested in calculating the splitting of the 2s and 2p levels. In this case the matrix
elements ofV are zero along the diagonal of the 4×4 matrix that describesV . This arises because
the three p states and the s state have specific parities. However, the s state can be mixed with
the p states by the interaction. Thus there is an off-diagonal matrix element

〈n = 2, ` = 1,m` = 0|V |n = 2, ` = 0〉 6= 0.

All other matrix elements are zero. Using the forms for the wave functions given in a previous
lecture, one can solve for the matrix element,

〈2s|V |2p,m = 0〉 =

∫
dΩr2drR2,0(r)R2,1(r)r cos θY0,0(θ, φ)Y1,0(θ, φ) = 3ea0|E|.
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Because Vd, in the relevant part of the Hamiltonian matrix is a 2× 2 matrix proportional to σx,
the eigenstates of Vd are ±3ea0|E|. One can then apply perturbation theory to find corrections
due to mixing with other shells. When going forward, one must use eigenstates of Vd as the
basis.

6.6 Time-Dependent Interactions, an Exactly Solvable Model

Consider two states |1〉 and |2〉 interacting through the time-dependent potential,

H0 = ~ω1|1〉〈1|+ ~ω2|2〉〈2| =
~
2

(ω1 + ω2)I +
~
2

(ω1 − ω2)σz (6.30)

Vt = γ cos(ωt)σx + γ sin(ωt)σy

or written as a matrix,

H =

(
E1 γe−iωt

γeiωt E2

)
. (6.31)

This is the form of an interaction with a time-dependent magnetic field,

H = H0 + ~µ · ~B(t), B(t) = B0ẑ +B⊥ [x̂ cos(ωt) + ŷ sin(ωt)] . (6.32)

One can make the substitution,

|ψ〉 → e−iω̄t|ψ〉, ω̄ ≡
E1 + E2

2~
(6.33)

to write the new Hamiltonian as

H =

(
ω12/2 γe−iωt

γeiωt −ω12/2

)
, (6.34)

where ω12 ≡ (E1 − E2)/2.

Writing the evolution in the interaction picture for the components ψ1 and ψ2,

∂

∂t
ψ1(t) = i

ω12

2
ψ1(t) + i

γ

~
e−iωtψ2(t) (6.35)

∂

∂t
ψ2(t) = −i

ω12

2
ψ2(t) + i

γ

~
eiωtψ1(t)

Now, by making the substitution,

ψ′1 ≡ e
iωt/2ψ1 (6.36)

ψ′2 ≡ e
−iωt/2ψ2,
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one can derive the evolutions,

∂

∂t
ψ′1(t) = −i

(ω12 − ω)

2
ψ′1(t) +

γ

~
ψ′2(t) (6.37)

∂

∂t
ψ′2(t) = i

(ω12 − ω)

2
ψ′2(t) +

γ

~
ψ′1(t).

The problem now looks like a Hamiltonian without a time dependent interaction,

H ′ =
~(ω12 − ω)

2
σz + γσy. (6.38)

This is the same problem as we worked out for neutrino oscillations. The evolution operator
becomes

e−iH
′t/~ = cos(Ωt) + σn sin(Ωt),

Ω =

√
(ω12 − ω)2

4
+
γ2

~2

σn = cos(θ)σz + sin(θ)σy

tan(θ) =
2γ

~(ω12 − ω)

If the state begins polarized in the z direction, the maximum probability of becoming a spin-
down state is

max |〈↓ |e−iH′t/~| ↑〉|2 =
γ2/~2

γ2/~2 + (ω − ω12)2/4
(6.39)

Note the resonant condition, ω12 = ω. Also note that γ plays the role of the half-width in the
Lorentzian.

The Lorentzian is a common form in time-dependent systems. The resonant form clearly dis-
plays that driving the system at the resonant frequency, ω = ω12, results in the greatest chance
for flipping the spin. NMR works on very similar principles, only in this case the time-dependent
field usually oscillates only in one plane, i.e.

~B(t) = B0ẑ +B⊥x̂ cos(ωt). (6.40)

This is a bit harder to work out as compared to our example but the resonant conditions remain
the same.

6.7 The Interaction Representation (Picture)

Before one can begin time-dependent perturbation theory, we need to consider the interaction
representation, which is an alternative to the Schrödinger and Heisenberg representations. Sum-
marizing the representations,

|ψ(t)〉S = e−iHt/~|ψ(t = 0)〉S (6.41)
|ψ〉H = |ψ(t = 0)〉S (Heisenberg states are fixed in time.)

|ψ(t)〉I = eiH0t/~|ψ(t)〉S,
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where the Hamiltonian is divided into an understood part,H0, and a perturbation V . Note that
if V = 0 that the interaction states become equal to the Heisenberg states.

Because matrix elements 〈φ|ABC|ψ〉 must not depend on the representation, operators in the
Heisenberg and Interaction representations must be re-defined. In terms of AS , the operator in
the Schrödinger representation, the become

AH(t) = eiHt/~ASe
−iHt/~ (6.42)

AI(t) = eiH0t/~ASe
−iH0t/~,

where we have assumed that H is not time dependent. Otherwise e−iHt/~ would be replaced
with an evolution operator.

Solving for the evolution of a state in the interaction representation,

i~
∂

∂t
|ψ(t)〉I = −H0|ψ(t)〉I + eiH0t/~(H0 + V )|ψ(t)〉S (6.43)

= VI(t)|ψ(t)〉I.

The subscript I is omitted in most literature and the knowledge of which representation is being
used is left to the astute reader. If the potential has an explicit time dependence, the explicit time
dependence must be absorbed into VI(t).

VS(t) =
∑
m,n

βm,n(t)|m〉〈n|, (6.44)

then VI becomes,
VI(t) = ei(ωm−ωn)tβm,n(t)|m〉〈n|, (6.45)

where the eigenstates ofH0 are ~ωn.

6.8 Time-Dependent Perturbation Theory

Many problems in quantum problems involve time-dependent interactions. Obvious examples
include spin magnetic resonance problems where the interaction explicitly varies in time. A
less obvious example is a scattering problem where the incoming wave packet slowly enters the
region where it feels the potential then leaves. This problem is treated by considering asymptotic
momentum states with a potential that slowly turns off and on with time, rather than with a fixed
potential with wave packets. Thus, nearly all perturbative scattering (e.g. Feynmann diagrams)
treatments are applications of time-dependent perturbation theory even though the potential is
not actually varying with time.

Consider the evolution operator in the interaction picture defined by

|ψ(t)〉I = UI(t, t0)|ψ(t0)〉I. (6.46)

Using the equations of motion,

i~
d

dt
U(t, t0) = VI(t)U(t, t0), (6.47)
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with the boundary conditions,
U(t = t0, t0) = 1. (6.48)

One can rewrite the differential equation as an integral equation,

U(t, t0) = 1−
i

~

∫ t

t0

dt′VI(t
′)UI(t

′, t0) (6.49)

= 1−
i

~

∫ t

t0

dt′VI(t
′) +

(−i
~

)2 ∫ t

t0

dt′
∫ t′

t0

dt′′VI(t
′)VI(t

′′)

· · ·+
(−i

~

)n ∫ t

t0

dt′
∫ t′

t0

dt′′ · · · ×
∫ t(n−1)

t0

dt(n)VI(t
′)VI(t

′′) · · ·VI(t(n)) + · · · .

One can see that the differential and integral equations are the same by taking the derivative,
d/dt, of the integral equation. The integral equation is known as the Dyson series, named after
Freeman J. Dyson. Keeping only the first term in the expansion in V amounts to first-order
perturbation theory.

Also note the the operator UI is related to the Schrödinger evolution operator by

US = e−iH0t/~UIe
iH0t/~, (6.50)

which means that transition probabilities (which go as the square of matrix elements, |〈n|U |i〉|2,
are the same in both representations because the states are eigenstates ofH0.

To second order perturbation theory, the matrix element becomes

〈n|U(t, t0)|i〉 = −
i

~

∫ t

t0

dt′〈n|VS(t′)|i〉ei(En−Ei)t/~ (6.51)

+

(−i
~

)2∑
m

∫ t

t0

dt′
∫ t′

t0

dt′′〈n|VS(t′)|m〉〈m|VS(t′′)|n〉ei(En−Em)t′/~ei(Em−Ei)t
′′/~.

Higher orders are simple to write down, it just takes space. Note that the this expression was
accomplished by noting that

〈n|VI(t)|m〉 = 〈n|VS(t)|m〉ei(En−Em)t/~, (6.52)

where the VS(t) usually has no time dependence unless the interaction explicitly changes with
time.

6.9 Fermi’s Golden Rule

We will now derive one of the most important expressions derived in the class, Fermi’s Golden
Rule for the transion rate from the state |i〉 to the state |n〉. We will derive the same expression
twice to demonstrate how robust the derivation is.

First we consider the case where we turn on the perturbation slowly,

〈n|VS(t)|n〉 = eηtVnm, η → 0+ (6.53)
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where the times being considered are less than or near zero, meaning the interaction was turned
on slowly from t = −∞. To first order,

〈n|UI(t,−∞)|i〉 = −
i

~
Vni

∫ t

−∞
dt′ei(En−Ei)t

′/~+ηt′ (6.54)

=
Vni

En − Ei − i~η
ei(En−Ei)t/~+ηt

Thus the probability goes as,

Pi→n(t) = |〈n|UI(t,−∞)|i〉|2 (6.55)

=
|Vni|2

(En − Ei)2 + ~2η2
e2ηt,

In obtain Fermi’s Golden Rule, the goal is to find the transition rate,

Ri→n =
d

dt
Pi→n(t) (6.56)

=
2η|Vni|2

(En − Ei)2 + ~2η2
,

where we have made the approximation that ηt is small. From your homework problem, you
can see that the η-dependent terms can be replaced with a δ function as η → 0+,

d

dt
Pi→n(t) =

2π

~
|Vni|2δ(En − Ei) (6.57)

Thus, there is only a transition if the final state has the same energy as the initial state. This
works for scattering or decays, where indeed there are many final states with a given energy.
The δ function looks a bit peculiar, but makes sense when the states n are in a continuum.
For instance, one does not calculate the electromagnetic decay rate of a radioactive nucleus to a
specific state where a photon has a momentum k, but instead to any state within a specific angle.
By summing over all such states, using the density of states and integrating over dEγ , the delta
function is replaced by the density of final states.

6.10 Harmonic Perturbations

Rather than having a potential that turned on slowly, one could envisage a potential with an
explicit time dependence characterized by some frequency ω,

〈n|VS(t)|m〉 = Vnme
ηt cos(ωt) =

1

2
Vnme

ηt
(
eiωt + e−iωt

)
. (6.58)

One can then follow the same derivation by noting that the only two differences are the factor
of 1/2, which get squared to obtain a probability, and the extra phases in the two terms. If we
consider each term separately eiωt and e−iωt, one can write down the answer without much
thought.

d

dt
Pi→n(t) =

2π

~
|Vni|2

4
[δ(En − Ei + ~ω) + δ(En − Ei − ~ω)] (6.59)
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Additionally there would be cross term from squaring the matrix elements, but that term be-
haves as cos(ωt) and is disregarded when averaging over time.

Example 6.6: – Exciting a Particle with a Radiative-Like Interaction

Consider a particle of massm in the ground state of a δ function potential,

V0(x) = −βδ(x) (6.60)

The particle feels a harmonic potential

V (t) = eEx cos(ωt), ~ω > |G.S. energy| (6.61)

Estimate the ionization rate using first-order perturbaton theory. This is a one-dimensional ex-
ample that has much in common with radiative excitation.

To solve this problem,

1. Find the G.S. wave function and G.S energy of the delta function potential.

2. Calculate the matrix element 〈k|V |0〉 using a normalized state 〈x|k〉 = eikx/
√
L where

L is an arbitrarily large size to the box.

3. Sum the probability over states by writing it as a density of states. Notice how the size of
the box falls out of the problem.

(1) The solution to the delta function potential from Example (2.4), and the plane wave functions
are,

ψ0(x) =
√
q/2e−q|x|, q =

mβ

~2
,

ψk(x) =
eikx
√
L
, k =

√
2m(~ω −B)/~2,

whereB = ~2q2/2m is the binding energy.
(2) The matrix element is

Vk0 =

√
q

2L

∫
dx eExeikxe−q|x|

= ieE

√
q

2L

∫
dx x sin(kx)e−q|x|

= −ieE
√
q

2L

d

dk

∫
dx cos(kx)e−q|x|

= −ieE
√
q

2L

d

dk

{
1

q + ik
+

1

q − ik

}
= −ieE

√
1

L

2kq3/2

(q2 + k2)2
.
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(3) Using Fermi’s golden rule, the ionization rate is

R =
π

2~

∫
Ldk

2π
|Vk0|2δ(Ek − ~ω −B)

=
1

~
e2E2k2q3

(q2 + k2)4

2

|dEk/dk|

=
2m

~3

e2E2kq3

(q2 + k2)4
.

A factor of two entered the expression because the delta function picked up contributions from
±k.

6.11 Problems

1. Using the WKB approximation, estimate the lifetime of a particle of massm initially trapped
in the “ground state” of a one-dimensional rectangular well using Eq. (6.7),

V (x) =


∞, x < 0
0, 0 < x < a
α
x
, a < x

Assume the barrier is sufficiently high that the wave function in the well can be approx-
imated as that of an infinite well and that the frequency of tunneling attempts can be
thought of as the rate at which a classical particle would impact the barrier at that energy.

2. A particle of mass m is initially in the ground state of a one-dimensional harmonic oscil-
lator of frequency ω centered at x = 0. Suddenly, at time t = 0, the center of the well is
moved to x = `. Here, you will calculate the probability that the particle will be found in
the state |n〉 of the new well, where |0〉 is the new ground state.

(a) The ground state of the old well can be written as

|φ0〉 = e`(d/dx)|0〉,

where φ0 is the ground state of the old well and |n〉 refers to eigenstates of the newly
positioned well. Writing the operator d/dx in terms of creation and destruction op-
erators of the new well, find an expression for |φ0〉 as a linear combination of |n〉.
HINT: You will probably wish to use the Baker-Campbell-Hausdorff relation.

(b) What is the probability of finding the particle in the state |n〉.
(c) What is the expectation of the energy 〈H〉 after the well is shifted?
(d) If the well were shifted slowly instead of suddenly to its new position, what would be

the probability of finding the particle in the ground state of the new well?

3. Estimate the ground state energy of the hydrogen atom using a three-dimensional har-
monic oscillator ground state wave function as a trial function.
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4. Estimate the ground state energy of the three-dimensional harmonic oscillator using the
hydrogen atom wave function as the trial wave function.

5. Consider a particle in an infinitely deep square well of width a.

V0(x) =


∞, x < −a/2
0, −a/2 < x < a/2
∞, x > a/2

A particle feels a perturbative potential, V1

V1(x) = β sin(πx/a)

(a) What is the change in the ground state energy in lowest (non-zero) order perturbation
theory?

(b) What is the correction to the energy of the first excited state to the same order?
(c) What is the correction to the wave function of the ground state to lowest non-zero

order?

6. Consider the Hamiltonian:
H0 = ασz

and the perturbation
V = βσx

(a) What is the correction to the ground state energy to second order in perturbation
theory?

(b) What is the correction to the excited state’s energy to the same order?
(c) Write down the exact expression for the energy of the first state, and show that it gives

the same answer as part awhen expanded in powers of β.

7. An electron initially in the ground state of a harmonic oscillator potential is placed in a
region with uniform electric field.

(a) By finding corrections to the ground state wave function in first order perturbation
theory, write down an expression for the electric dipole moment induced in the atom.

(b) An alternative method for calculating the dipole moment is to differentiate the energy
with respect to the electric field. Show that this method yields the same expression
found in (a) when one uses second order perturbation theory to find the correction to
the energy.

8. Two electrons whose positions are defined by r1 and r2 relative to the centers of their
confining potentials. The confining potentials are then separated by a distance ~R.

V0(r1, r2) =
1

2
mω2(r2

1 + r2
2).
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Positive charges +e are fixed at the centers of the potentials. The electromagnetic energy
between the two wells is:

V =
e2

R
+

e2

|~R+ ~r1 − ~r2|
−

e2

|~R+ ~r1|
−

e2

|~R− ~r2|
.

Here, the repulsive interaction between the two positive ions is described by the first term,
and the repulsive interaction between the electrons is described by the second term. The
last two terms describe the attractive interaction between the electron and the ion in the
other well. The electromagnetic energy between each electron and its confining ion is as-
sumed to be part of the confining potential, and not part of the perturbation.

Assume that the separationR is much larger than either r1 or r2. In terms of the separation
between the wells,R, the mass of the electronsm, the charge e and ω,

(a) Show that for large R, the interaction may be approximated as a dipole-dipole inter-
action,

V =
e2

R3
(x1x2 + y1y2 − 2z1z2) ,

where the z axis is along the direction of ~R.
(b) Use second-order perturbation theory to find the electromagnetic attraction of the two

wells, V (R). This motivates the form for the London dispersion force, https://en.
wikipedia.org/wiki/London_dispersion_force, which is the long-range attractive
force between neutral molecules.

9. Consider the function
g(ω) ≡ Im

1

ω − iη
=

η

ω2 + η2

where η is a positive real constant that approaches zero.

(a) What is g(ω = 0)?
(b) What is g(ω 6= 0)?
(c) Using trigonometric substitutions, evaluate∫ ∞

−∞
dω g(ω).

(d) Write an expression for a delta function in terms of g(ω).

10. A bob particle is in the ground state of a 3-dimensional harmonic oscillator characterized
by a frequency ω,

V0 =
1

2
mω2r2

A perturbation is added that allows a bob particle to undergo a transformation into amary
particle. Themary particle does not feel the effects of the oscillator potential. The bob and
mary particles have the same massm. The perturbation is of the form,

Vbm = g~εs ·
∫
d3rψ∗bob(r)∇ψmary(r),
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where εs is the unit polarization vector of the mary particle with polarization s, which
refers to any of three directions.

(a) Calculate the lifetime of the bob particle.
(b) What is the angular distribution of mary particles whose polarization is along the z

axis?
(c) Themary particle’s three polarizations can be expressed in terms of three eigenstates

of spin angular momentum s = 1. Sketch the angular distributions for mary parti-
cles that have angular momentum quantum numbers,ms = -1, 0, or 1.

102



PHY 851 7 PERTURBATIVE APPROACHES TO SCATTERING

7 Perturbative Approaches to Scattering

7.1 Definition of Cross Sections

Scattering experiments provide much of the basis from which knowledge of subatomic physics
is extracted. This ranges from investigating the forces between the projectile and target to under-
standing the elementary constituents and substructure of matter. Experiments involve aiming
a beam of projectiles at a target with a given energy, then observing the probability with which
they scatter at given angles. Scattering cross sections, σif , can be thought of as giving the rate
for scattering off a single target particle when multiplied by the particle flux,

R(~ki → ~kf) = σif
vp

V
, (7.1)

where V is the volume per individual projectile, which is assumed to be large, and vp is the
velocity of the projectiles. Because there are multiple target particles, the volume V becomes the
inverse density of scatterers in the target, 1/V = nt. Further the Probability, Pscatt, that one
scatters is the rate multiplied by the time spend traversing the target, where the time is t/vp,
with t being the thickness of the target and vp being the projectile velocity,

Pscatt(~ki → ~kf) = R(~ki → ~kf)
t

vp
= ntσift. (7.2)

Experimentally, one measures the probability that a particle scatters into some set of states f ,
then divides by the thickness and number density of the target to obtain the cross section. If one
considers all scattered states as being in f , σif becomes the total cross section.

σtot =
1

ntt
Pscatt. (7.3)

Theoretical descriptions of scattering mainly fall into two classes. The first is perturbative, the
simplest being the Born approximation. These are typically performed in a plane-wave basis,
with the matrix elements being expressed in the form V~k,~k′ . The second class of treatments
are built around a partial wave basis, where one considers incoming and outgoing spherical
waves, known as partial waves. Using angular momentum conservation, one can divide the
problem into a few one-dimensional problems, which can be solved non-perturbatively, often
by solving Schrödinger’s equation numerically. For lower energies, the latter becomes more
tractable because only a few partial waves contribute, i.e. the momentum multiplied by the
range of the potential sets the scale for what values of angular momentum are relevant. Further,
at low energies, the potential energy is not much smaller than the kinetic energy, which would
invalidate the first class of treatments, which are perturbative in V . For the next several sections
these notes focus on the perturbative picture, then switch to the partial wave treatments in the
next chapter.

If one considers the probability per solid angle, dΩ, that those scattered states in a given direction
into a solid angle element of size dΩ, the expression becomes

dσ

dΩ
=

1

ntt

Pscatt

dΩ
, (7.4)
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which is referred to as the differential cross section, which integrates to the total cross section,∫
dΩ

dσ

dΩ
= σtot.

7.2 The Born approximation

From Eq. (7.1) one can write the cross section for scattering into any state in terms of a rate.
Then, using Fermi’s golden rule to approximate the rate,

σ =
V

v

∑
~kf

R(~ki → ~kf) (7.5)

=
2πV

v~

∑
~kf

|〈~kf |V|~ki〉|2δ(εf − εi).

One may express the sum over states as an integral,

∑
~kf

=
V

(2π)3

∫
d3kf =

V

(2π)3

∫
dΩ

k2

v
dE, (7.6)

and write the matrix element as,

〈~kf |V|~ki〉 =

∫
d3r

e−i
~kf ·~r
√
V
V(~r)

ei
~ki·~r
√
V

(7.7)

to obtain an expression for the cross section where the volume has canceled,

σ =
1

4π2~v

∫
d3kfδ(εf − εi)

∣∣∣∣∫ d3rV(r)ei(
~kf−~ki)·~r

∣∣∣∣2 (7.8)

=
m2

4π2~4

∫
dΩ

∣∣∣∣∫ d3rV(r)ei(
~kf−~ki)·~r

∣∣∣∣2
This then gives the Born approximation for the differential cross section,

dσ

dΩ
=

m2

4π2~4

∣∣∣∣∫ d3rV(r)ei(
~kf−~ki)·~r

∣∣∣∣2 . (7.9)

Thus the differential cross section is determined by the Fourier transform of the potential, where
the momentum transfered to the target, ~ki − ~kf , enters the Fourier transform.

Example 7.1: – Born Approximation for a Spherically Symmetric Gaussian Potential
As a function of the scattering angle θ find the differential cross section for particles scattered off
a spherically symmetric potential,

V (r) = V0e
−r2/(2a2) (7.10)
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First calculate the Fourier transform of the potential which depends only on the magnitude of
~ki − ~kf .

V (q) = V0

∫
d3re−r

2/(2a2)ei~q·~r (7.11)

= V0a
3(2π)3/2e−q

2a2/2

where

q = |~ki − ~kf | (7.12)

= k

√
(1− cos θ)2 + sin2 θ

= k
√

2(1− cos θ)

= 2k sin(θ/2)

Thus the differential cross section is

dσ

dΩ
=

2πm2a6V 2
0

~4
e−4k2 sin2(θ/2) (7.13)

Note that finding the total cross section would require performing a rather difficult integral over
the solid angle, dΩ = 2πd cos θ.

Example 7.2: – Born Approximation for Coulomb Potential
Here we consider Coulomb Scattering in the Born Approximation. In this case the potential is

V (~r) =
e2

r
. (7.14)

Note the cross sections will be the same whether the potential is attractive of repulsive in the
Born approximation.

Performing the Fourier transform,

V (q) = 2π

∫
r2dr

∫ 1

−1

dxeiqrx
e2

r
(7.15)

=
4πe2

q

∫
dr sin qr

= −
4πe2

q2
cos(qr)|∞0

=
4πe2

q2

=
πe2

k2 sin2(θ/2)
,

The limit at r → ∞ can be realized by adding an exponential damping term to the potential
e−ηr, η → 0+, and repeating the integral to see that one gets the same answer with the evalua-
tion at∞ going to zero.
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The expression for the differential cross section is then,

dσ

dΩ
=

m2e4

4(~k)4 sin4(θ/2)
. (7.16)

This answer is identical to the Rutherford cross section in classical mechanics. Note that this
cross section is ill-behaved at θ → 0, meaning that the total cross section is infinite.

7.3 Diffraction and Form Factors

Often scattering is performed within a material for the purpose of learning about the structure
of the material rather than understanding the potential. In that case the Fourier transform of the
potential can be written as,

V (~q) =
∑
a

∫
d3rei~q·~rV (~r − ~a) (7.17)

=
∑
a

ei~q·~a
∫
d3rei~q·(~r−~a)V (~r − ~a)

= v(~q)s(~q),

where s(~q) ≡
∑
a e

i~q·~a.

This allows us to write the differential cross section,

dσ

dΩ
=

1

N

m2

4π2~4
|v(~q)2| |s(~q)|2, (7.18)

whereN is the number of scatterers. The factor 1/N enters because the cross sections are related
to the rate per scatterer. If the potential is understood one may therefore determine s(~q).

The differential cross section is related to the probability that two scattering centers are separated
by a distance ~a,

|s(~q)|2 =
∑
a,a′

ei~q·(~a−~a
′) (7.19)

= N
∑
δ~a

ei~q·δ~a

= NS̃(~q),

dσ

dΩ
=

m2

4π2~4
|v(q)|2S̃(~q).

Here S(~r) is known as the structure function and describes the probability of finding a second
scattering center at a displacement ~r relative to a given scattering center. If the material is a
solid S̃(~q) has spikes for values of ~q which correspond to in-phase contributions from different
sites. For a perfect crystal, these spikes can be infinitely sharp because for certain values of ~q
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because the contributions can stay in phase as ~r → ∞. This coherence is known as https:
//en.wikipedia.org/wiki/Bragg%27s_law. Whereas, if the material is a liquid, the spikes are
greatly muted because there is no long range order. For a liquid S(~r) typically has a hole near
~r = 0 and perhaps a few wiggles before being flat for large ~r. If the scattering centers are
independent of one another, the only term in sums from Eq. (7.19) that contribute are for δ~a = 0.
Thus, the diferential cross section is a product of the cross section of a single scattering center,
multiplied by the structure function.

The momentum transfer in nuclear or particle experiments is typically high compared to the
inverse inter-atomic distance between scatterers. Thus, one often neglects the structure of the
target in those experiments. It comes into play for X-ray scattering or for low-energy neutron
scattering. However, even with a high energy beam, structure can come into play in the limit
that the momentum transfer is small, i.e. the scattering is nearly forward.

The considerations in Eq.s (7.19) include an implicit assumption, that the scattering off one target
particle at ~a cannot be distinguished from the scattering off a different particle at ~a′. If the two
target particles are in a lattice, and if the scattering is elastic, the lattice is unchanged by the
scattering and the assumption is justified.

Even if there is only one scattering center, it can be considered as having contributions from
many individual points within the one target. If the positions of the points are described by a
continuous distribution ρ(δ~a), one can setN = 1 above and replace the sums in Eq. (7.19) with
integrals,

|s(~q)|2 =

∫
d~ad~a′ρ(~a)ρ(~a′)ei~q·(~a−~a

′). (7.20)

Here, ρ is the density of scattering centers such that
∫
d~a ρ(~a) = 1. With this definition, |s(~q =

0)|2 = 1. The differential cross section is again a product of the cross section one would have
if the scattering centers were point-like and the factor |s(~q = 0)|2 = 1, which in the context of
scattering off individual object is known as a form factor, s(~q = 0),

dσ

dΩ
=
dσ

dΩ

∣∣∣∣
point like

|s(~q)|2. (7.21)

For Coulomb scattering of electrons, the point-like differential cross section is simply the Ruther-
ford form. Then, by measuring the true cross section one determines the form factor. The form
factor provides a description of how charge is spread around the scattering object.

Example 7.3: – Form Factor for a Gaussian Distribution of Charge
Assume the charge density of a proton is distributed as a Gaussian,

ρq(~r) =
e

(2πa2)3/2
e−r

2/2a2

.

what is the squared form factor?

Solution: For the form factor define ρ(~r) = ρq/e, because it represents the probability the
charge is found at ~r, i.e., the point-like cross section already has the total charge accounted for,
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just not its distribution. This gives

s̃(~q) =

∫
d3r

e

(2πa2)3/2
e−r

2/2a2

ei~q·~r

= e−q
2a2/2,

|s(~q)|2 = e−q
2a2

.

7.4 Higher Order Expansions

Calculating decays and scattering cross sections are the main instances where one invokes Fermi’s
golden rule. Fermi’s golden rule is based on a first-order perturbative correction to the evolution
matrix. Higher-order perturbative corrections can be included by replacing the potential V with
a more sophisticated operator.

Writing the transition matrix element to second order in time-dependent perturbation theory,

〈n|UI(t,−∞)|i〉|n6=i = −
i

~
Vni

∫ t

−∞
dt′ei(εn−εi)t

′/~+ηt′ (7.22)

+

(−i
~

)2

VnmVmi

∫ t

−∞
dt′
∫ t′

−∞
dt′′ei(εn−εm)t′+ηt′ei(εm−εi)t

′′/~+ηt′′

= −
i

~

∫ t

−∞
ei(εn−εi)/~+ηt

′

·
(
Vni +

−i
~
eηt
′
VnmVmi

∫ t′

−∞
dt′′ei(εi−εm)(t′−t′′)/~+η(t′′−t′)

)
.

By inspection, one can see that by making the substitution,

Vni → Vni −
i

~
VnmVmi

∫ t′=0

−∞
dt′′ei(εi−εm)(t′′−t′)/~−η(t′−t′′) (7.23)

= Vni −
VnmVmi

εi − εm − i~η
,

one sees that the second order solution looks just like the first order solution with T replacing V
in Fermi’s golden rule. (Note that this actually requires assuming η → 0.)

One can thus perform higher order calculations in Fermi’s Golden Rule by replacing V with T ,
which is known as the T-matrix. Sometimes, T refers to some given order in perturbation theory,
but in some contexts it refers to all orders.

7.5 Propagators (Time-Ordered Evolution Operators)

Propagators, also known as a Green’s functions, are the building blocks of perturbative scatter-
ing approaches. A propagator is nothing more than the evolution operator with a theta function
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tacked on,

G(t) ≡ e−iHt/~Θ(t), (7.24)

g(t) ≡ e−iH0t/~Θ(t).

The step function is added to account for the time-orderings involved in the expression for the
evolution operator in the interaction representation. Rembering that the evolution operator in
the interaction representation is

UI(t− t0) = eiH0(t−t0)/~e−iH(t−t0)/~ (7.25)

= 1 +

(−i
~

)∫ t

t0

dt1e
iH0t1/~V e−iH0t1/~

+

(−i
~

)2 ∫ t

0

dt1e
iH0t1V e−iH0t1

∫ t1

0

dt2e
iH0t2/~V e−iH0t2/~ + · · · ,

one can write the propagator as

G(t− t0) = e−iH0(t−t0)/~UI(t)Θ(t− t0) (7.26)

= e−iH0(t−t0)/~Θ(t− t0)

+

(−i
~

)∫ ∞
−∞

dt1 e
−iH0(t−t1)/~Θ(t− t1)V eiH0(t1−t0)/~Θ(t1 − t0)

+

(−i
~

)2 ∫ ∞
−∞

dt1dt2 e
−iH0(t−t1)/~Θ(t− t1)V eiH0(t1−t2)/~Θ(t1 − t2)

· V eiH0(t2−t0)/~Θ(t2 − t0)

+ · · ·

= g(t− t0) +

(−i
~

)∫ ∞
−∞

dt1 g(t− t1)V g(t− t0)

+

(−i
~

)2 ∫ ∞
−∞

dt1dt2 g(t− t1)V g(t1 − t2)V g(t2 − t0)

+

(−i
~

)3 ∫ ∞
−∞

dt1dt2dt3 g(t− t1)V g(t1 − t2)V g(t2 − t3)V g(t3 − t0) + · · ·

This expression has a nearly identical form to that for the evolution operator, the only apparent
benefit being the incorporation of the Θ functions which allows one to more efficiently express
the relations. The real benefits to this formalism comes when one considers the Fourier transform
ofG in frequency.

7.6 The Fourier Transform of the Propagator, G̃(ω)

Let us first consider the Fourier transform of g,

g̃(ω) ≡
∫
dt eiωtg(t), (7.27)

g(t) =

∫
dω

2π
e−iωtg̃(ω).
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Assuming the states |n〉 and |m〉 are eigenstates ofH0,

g̃mn(ω) = δnm

∫
dt ei(ω−iεn/~)t−ηtΘ(t)

=
iδnm

ω − εn/~ + iη
, η → 0.

The infinitesimal η → 0+ represents an extremely slow exponential decay at large time differ-
ences. By using Cauchy’s theorem, one can integrate g̃(ω)e−iωt/(2π) over all ω to see that the
propagator g(t) is recovered. In fact, if one flipped the sign of η to 0−, the result would look the
same except with Θ(−t).

The pole in g̃(ω) tells us at what frequency the particle propagates. In this case one sees that the
pole (where the propagator blows up) is at ω = εn/~ − iη. Note that if η were replaced with
a finite value Γ/(2~), that the square of the propagator would go as e−Γt/~, thus Γ/~ would be
associated with the exponential decay constant.

The advantage to using the operators frequency, rather than as integrals over time, is that the
perturbative expansion becomes simpler,

G̃(ω) =

∫
dteiω(t−t0)g(t− t0) +

(−i
~

)∫
dteiω(t−t0)

∫
dt′g(t− t′)V G(t′ − t0) (7.28)

= g̃(ω) +

(−i
~

)∫
dtdt′dω′dω′′

(2π)2
g̃(ω′)V G̃(ω′′)eiω(t−t0)−iω′(t−t′)−iω′′(t′−t0)

= g̃(ω) +

(−i
~

)
g̃(ω)V G̃(ω)

= g̃(ω) + g̃(ω)
∑
n>0

(−i
~

)n
(V g̃(ω))n .

This is the Dyson series in frequency space, which unlike the one for time, does not involve
integrals. This simplification was made possible by incorporating the term Θ(t − t′) into the
definition of the Green’s function so that the limits of all the integrations over time in Eq. (7.26)
could run over all times. Although one typically chooses a basis so that g(t) and g̃(ω) are
diagonal, V is not usually diagonalized in that basis.

7.7 Propagating to the Same State

The propagator, Gmn(ω), carries information of how one evolves into the state n from the state
m. The diagonal part of that matrix,Gmm(ω), describes how one remains in the same state, even
if the path it involves leaving the statem during intermediate times. By itself,Gmm(ω) provides
information on how a particle’s energy is modified by the interaction, and how it decays. These
considerations form the basis for numerous phenomenological applications of scattering and for
numerous descriptions of how particle are modified in medium.

If V is diagonal in the same basis as H0, one can forego the matrix notation and consider the
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states one-at-a-time. One can then write the expression above for G̃ in a recursive form,

G̃mm(ω) = g̃mm(ω) +
−i
~
g̃mm(ω)VmmG̃mm(ω) (7.29)

=
g̃mm(ω)

1 + (i/~)g̃mm(ω)Vmm

=
i

ω − εm/~− Vmm/~ + iη
.

Thus the only difference between the full propagator G̃ and the original propagator g̃ is that the
energy of the pole is shifted by V , exactly as one would expect from knowing the eigenvalues of
H = H0 + V .

One can not calculateG so easily when V has off-diagonal elements. However, by inspection of
the expansion of G̃ in the Dyson expansion, Eq. (7.28), one can separate out the contributions
from off-diagonal elements in expansion by defining the matrix T .

Tkm(ω) ≡
∑
i′ 6=m

Vkm +

(−i
~

)
Vki′ g̃i′i′(ω)Vi′m (7.30)

+
∑

i′ 6=m,j′ 6=m

(−i
~

)2

Vki′ g̃i′i′(ω)Vi′j′ g̃j′j′(ω)Vj′m + · · · .

Thus, T absorbs all the off-diagonal terms in the expansion ofG,

G̃mm(ω) = g̃mm(ω) +

(−i
~

)
g̃mm(ω)Tmm(ω)g̃mm(ω) (7.31)

+

(−i
~

)2

g̃mm(ω)Tmm(ω)g̃mm(ω)Tmm(ω)g̃mm + · · ·

=
i

ω − εm/~− Tmm/~ + iη
.

This propagator sums over all paths from some initial statem back into the same final state. All
the forays into states other thanm are absorbed into T .

The first order correction to T is simply Tmm = Vmm. The second order correction in the
potential, separated into real and imaginary parts, is

Tmm(ω) =
∑
i′ 6=m

Vmi′
1

~ω − εi′ + i~η
Vi′m (7.32)

=
∑
i′ 6=m

{
Vmi′Vi′m

~ω − εi′
+ πiδ(~ω − εi′)Vmi′Vi′m

}
.

Here we have used

1

ω − E/~ + iη
=

P
ω − E/~

+ πiδ(ω − E/~) as η → 0, (7.33)
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The symbol P simply points to the fact that the denominator is missing the iη, and that when
integrating across the pole one confines the integral to being away from the singularty by some
infinitesimal amount±ε. Because the part of the integrand that explodes as 1/(ω−E/~), which
switches sign as it passes the singularity, the singular part of the integral will not contribute as
ε→ 0. One can now view the expression for G̃mm(ω) for ω = εm to see how the propagator is
affected to second order,

G̃mm(ω) =
i~

~ω − εm −∆εm + i~Γm/2
, (7.34)

∆εm = Vmm −
∑
i′ 6=m

Vmi′Vi′m

εi′ − εm
,

Γm =
2π

~

∑
i′ 6=m

Vmi′Vi′mδ(εm − εi′)

Thus a pole of the propagator is adjusted by the interaction in such a way that the real part
of the pole moves by an amount consistent with stationary state perturbation theory, while the
imaginary part is consistent with Fermi’s golden rule for calculating the rate at which one of the
states decays into the other channel.

7.8 Self-Energy of a Particle in Medium

If the propagator in Eq. (7.34) refers to momentum states, the propagation into the same mo-
mentum state k is

G̃kk(ω) =
i~

~ω − εk −∆εk + i~Γm/2
, (7.35)

∆εk = Vkk −
∑
k′ 6=k

Vkk′Vk′k

εk′ − εk
,

Γk =
2π

~

∑
k′ 6=k

Vkk′Vk′kδ(εk − εk′).

The matrix element Vkk has the form,

Vkk = 〈k|V |k〉 =
1

W

∫
d3r ei

~k·~rV (r)e−i
~k·~r (7.36)

=
1

Ω

∫
d3r V (r).

Here, the volume of the plane wave, W , usually goes to infinity. This kills the contributions
to both ∆εk and Γk, and the position of the propagators pole does not change in a scattering
experiment. In fact, if one calculated higher-order corrections to ∆ε, they would all scale as
1/W .

However, if the particle is traversing a medium, where the density of such scatters in ns, the vol-
ume per scatterer becomes 1/ns, and the factor 1/W becomes ns. In this case the propagator’s
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pole, essentially the energy of the particle, is altered a finite amount,

∆εk = ns

∫
d3rV (r), (7.37)

to first order in perturbation theory. After changing the sum over intermediate states k′ to an
integral, ∑

k′

=
W

(2π)3

∫
k′2dkdΩ′, (7.38)

the decay rate in Eq. (7.35), Γk, becomes

Γk = ns
2π

~(2π)3

∫
k′2dk′dΩ′ δ(εk − εk′)

∣∣∣∣∫ d3r V (~r)ei(
~k−~k′)·~r

∣∣∣∣2 (7.39)

= ns
mk

4π2~3

∫
dΩ′

∣∣∣∣∫ d3r V (~r)ei(
~k−~k′)·~r

∣∣∣∣2 .
Using Eq. (7.9), and replacing v = ~k/m, this becomes

Γk = nsσv, (7.40)

which is the scattering rate in a medium of density ns.

The correction to the particle’s energy, ∆εk, is known as the real part of the particles’ self energy,
and ~Γk/2 is the imaginary part. The change in the pole of the propagator due to the interaction
represents the change in the wave function of a particle of momentum ~p,

e−iε
(0)(p)t/~+i~p·~r/~ → e−i(ε

(0)(p)+∆ε(p))t/~+i~p·~r−Γ(p)t/2. (7.41)

Squaring the wave function results in e−Γ(p)t, illustrating the decaying nature of the wave in
the medium. In addition to the energy changing the velocity also changes in the medium. The
velocity of a wave is given by the expression,

vi =
d(ε(0)(p) + ∆ε(p)

dpi
. (7.42)

For example, if photons of energy ε are traversing a medium where they might excite molecules
into some excited stateE∗, the correction ∆εmight be positive or negative depending on whether
the excited state is above or below ε. This switch of sign results from the denominator of the ex-
pression for ∆ε changing sign if the energy of the intermediate state passes ε. The group velocity
follows suit, and can be significantly altered for ε ≈ E∗. Of course, when ε ≈ E∗, the cross sec-
tion, and thus the decay rate, are also large. This won’t be pursued further in this course, but it
is clear that the self energy and its momentum dependence play a critical role in understanding
how a particle’s properties are altered in medium.
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7.9 Resonant Scattering

Here we consider the problem where an initial state k scatters to a final state k′ through a reso-
nant channel R. For simplicity, we consider the matrix element of the momentum state k with
the resonant stateR to be

〈R|V |k〉 =
α(k)
√
W
, (7.43)

We will assume that one has performed all the necessary integrations to find the matrix element,
and that we call it α aside from the 1/

√
W due to the normalization of the plane wave in the

volume W . To simplify our discussion we will assume that α has no dependence with respect
to the direction of k.

One could calculate the rate of decay of the resonance using Fermi’s golden rule and obtain

ΓR =
2π

~
|α|2

W
ρk(εR), (7.44)

=
k2

πvk~2
|α|2

where ρk(εR) is the density of states of the outgoing particle.

An example of resonant scattering could be a photon scattering off an atom. Here k labels the
momentum of the photon, while R would refer to a specific excited state of the atom that could
be attained due to the interaction with the photon. To simplify our derivation, we will assume
that α is independent of k.

It was shown in the previous lecture that the cross section for scattering could be written to
second order as

σ =
2πV

v~

∑
k′

|Tk′k|2δ(εk′ − εk) (7.45)

Tk′k = Vk′k +
−i
~

∑
m

Vk′m
i

ω − εm/~ + iη
Vmk

∣∣∣∣∣
~ω=εk

.

Using the derivations of the previous section, one could have inserted the full propagator into
the intermediate state, which would then yield

Tk′k = Vk′k +
−i
~

∑
mm′

Vk′mG̃mm′(ω)Vm′k

∣∣∣∣∣
~ω=εk

. (7.46)

By resonant scattering we mean that the only interaction is between the resonant stateR and the
momentum states. The matrix element then becomes

Tk′k =
−i
~
Vk′RG̃RR(ω)VRk

∣∣∣
~ω=εk

, (7.47)

G̃RR(ω) =
i

ω − εR/~ + iΓR/2
,
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where Γ is the decay rate of the resonance.

The cross section is no longer infinite when εk = εR due to the factor ΓR appearing in the
denominator. Plugging the expression for T into the expression for the cross section one obtains

σ =
2πW

v~

∑
k′

|α|4

W 2

1

(εk − εR)2 + ~2Γ2
R/4

δ(εk′ − εk) (7.48)

=
2πW

v~
|α|4

W 2

1

(εk − εR)2 + ~2Γ2
R/4

ρk(E)

=
k2

πv2~2
|α|4

1

(εk − εR)2 + ~2Γ2
R/4

=
4π

k2

(~ΓR/2)2

(εk − εR)2 + (~ΓR/2)2
.

The last line is known as the Breit-Wigner form for scattering through a resonance. Note that the
cross section is determined by two numbers, the width of the resonance and the Energy of the
resonance.

If the resonance has spin SR, then the effect is multiplied by the number of degenerate states
through which one might scatter. If the incoming particles have spins S1 and S2, the effect is
correspondingly reduced due to the fact that many of the states of the resonance would not be
reached with particular combinations of S1 and S2.

The Breit-Wigner form for resonant scattering is then

σ =
(2SR + 1)

(2S1 + 1)(2S2 + 1)

4π

k2

(~ΓR/2)2

(εk − εr)2 + (~ΓR/2)2
. (7.49)

Example 7.4: – Resonant Scattering through the ρMeson
Here, we consider π − π resonant scattering through the ρ meson. Consider a π+ and a π0

which are scalar mesons with masses 140 MeV/c2 and 135 MeV/c2. They scatter through the ρ+

resonance which has spin 1, a mass of 770 MeV/c2 and a width ~Γ = 151 MeV. Find the cross
section at resonance.

Solution: First, one must find the relative momentum ~p in the center of mass frame. In this
frame the particles move with ~p and−~p.

mρ =
√
m2

+ + p2 +
√
m2

0 + p2,

p2 =
m4
ρ +m4

+ +m4
− − 2m2

ρm
2
+ − 2m2

ρm
2
− − 2m2

−m
2
+

4m2
ρ

.

Here, we have neglected the factors of c. The value of p at resonance is then 360 MeV/c.

The cross section at resonance is then

σR =
12π

(360/197.326)2
= 11.3 fm2 = 113 mb. (7.50)

Here, ~c = 197.326MeV·fm and one fm2 equals 10 millibarns. Note that the maximum cross
section depended only on the relative momentum at resonance and not on the width.
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7.10 Problems

1. Using the Born approximation estimate the differential scattering cross section, dσ/dΩ(E)
for particles of massm scattering off the following potentials.

(a) V (~r) = V0Θ(a− r).
(b) V (~r) = a3V0δ

3(~r).
(c) V (~r) = a3V0 [δ3(~r − aẑ) + δ3(~r + aẑ)].
(d) V (~r) = a3V0 [δ3(~r − aẑ)− δ3(~r + aẑ)].
(e) V (~r) = a3V0 [δ3(~r − ax̂)− δ3(~r + ax̂)].
(f) V0e

−r/a/r.

2. Show how taking two derivatives of the form factor at q = 0,

∂

∂qi

∂

∂qj
F (~q)

∣∣∣∣
q=0

,

is related to the moments of the charge distribution,

〈rirj〉 ≡
∫
d3r ρ(~r)rirj.

Test your answer by comparing to the result of Example 7.3.

3. A π+, which is a spin-zero meson, scatters off a proton through a ∆++ resonance(which
is comprised of three up quarks). The ∆++ is spin 3/2 baryon. The masses of the pion,
proton and delta are 139.58 MeV/c2, 938.28 MeV/c2 and 1232 MeV/c2 respectively. The
width of the ∆ is 120 MeV.

(a) Using relativistic dispersion relations, E =
√
p2c2 +m2, what is the relative mo-

mentum, q, of the pion and proton at resonance? επ(q) + εp(q) = M∆.
(b) Estimate the cross section at resonance?

4. Consider a particle of massm that could be confined to a spherical well,

V (r) =


0, r < a
V0, a < r < 2a
0, r > 2a

(a) Use the WKB method to estimate the decay rate of a particle of massm escaping from
a spherical trap defined by the potential. Assume the barrier is sufficiently high to
approximate the energy of the trapped particle with an infinite well.

(b) Find an expression to estimate the cross section for a particle scattering off the po-
tential well with an energy near the ground state energy described above. Give your
answer as a function of the incident energy, E,m, V0 and a.
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8 Scattering at Lower Energies

Perturbative approaches do not work when the potential, which is treated as a perturbation,
is larger than the kinetic term. This then invalidates the approaches of the previous chapter.
Fortunately, when the kinetic energy is small, the angular momenta of interest is also small.
If the range of the potential is a, the angular momenta that contribute to the scattering are in
the range, L . pa. Many experiments work in the regime where only a few units of angular
momenta need to be considered, and in fact, a large amount of information about potentials is
extracted from experiments where one need only consider ` = 0.

Of course, the incoming and outgoing measurements of scattering experiments are plane waves,
eigenstates of momentum, not angular momentum. However, plane waves can be decomposed
into spherical waves (known as partial waves), i.e. waves that are eigenstates of angular mo-
mentum, with quantum numbers ` = 0, 1, 2 · · · . In this chapter, we will treat scattering by
considering a given partial wave. If the potential is spherically symmetric, one need only con-
sider a single value of `, which effectively reduces the problem to one-dimensional problems for
each `.

8.1 Partial Waves and Phase Shifts

If potentials have spherical symmetry, angular momentum is consered and one can solve the
scattering problem through the consideration of spherical waves rather than plane waves. This
effectively reduces the problem to the solution of one-dimensional Schrödinger equations, where
each partial wave is characterized by a specific angular momentum ` and requires a different
centrifugal potential. Because the energies are low, the relative momenta and the angular mo-
menta are small. Thus, for low energy scattering only the lowest few ` need to be considered,
and when the scattering energy approaches zero, scattering is dominated by the ` = 0 contribu-
tions.

First, we consider the kinetic part of the Hamiltonian. The Schrödinger equation can be written
in either Cartesian coordinates or spherical coordinates,

−
~2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
= −

~2

2m

(
1

r

∂2

∂r2
r +

1

r2 sin2 θ

∂2

∂φ2
+

1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ

)
(8.1)

= −
~2

2m

1

r

∂2

∂r2
r +

L2

2mr2

If the potential spherically symmetric, angular momentum is a good quantum number and one
can write solutions corresponding to a specific ` andm.

Hψ`,m(~r) = Eψ`,m(~r), (8.2)

with the wave function being written as a product of a radial part and an angular part,

ψ`,m(~r) = Y`,m(θ, φ)R`(r). (8.3)
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The radial wave function is a solution of the equation

−
~2

2m

1

r

∂2

∂r2
rR`(r) +

~2`(`+ 1)

2mr2
R`(r) + V (r)R`(r) = ER`(r). (8.4)

Remember that the radial wave function depends only on ` and not m because the centrifugal
potential is determined by ` only.

If the potential is zero, the solutions R`(r) are the spherical Bessel functions j`(kr), first pre-
sented in Chapter 4. Plane wave solutions can be expanded in terms of the spherical solutions
through,

ei
~k·~r =

∑
`

(2`+ 1)i`j`(kr)P`(cos θ), (8.5)

where cos θ ≡ k̂ · r̂. This is known as the partial wave expansion. Note that the expansion is in
terms of the Legendre polynomials,

P`(cos θ) =

√
4π

2`+ 1
Y`,m=0(θ, φ).

All angular functions can be expanded in terms of Y`,ms, and because ei~k·~r = eikr cos θ does not
depend onφ, it is not surprising that the expansion contains onlyY`,m=0 terms. The partial wave
expansion can be derived by combining the orthogonality relations of the Legendre polynomials
and spherical Bessel functions with the Rodriquez formula,

P`(x) =
1

2``!

d`(x2 − 1)`

dx`
.

The solutions j` are normalized so that for large x they behave as,

j`(x)|x→∞ =
(−i)`eix − (i`)e−ix

2ix
. (8.6)

They are a linear combination of outgoing and incoming waves, each of which is a solution to the
Schrödinger equation. The relative phase between the incoming and outging waves is chosen so
that the solution goes to zero at x = 0. In fact,

j`(x) ≈
x`

(2`+ 1)!!

∣∣∣∣
x≈0

(8.7)

As an exercise, one can verify the small x expansion by applying Schrödinger’s equation with
the centrifugal potential. There also exist a class of solutions which are orthogonal to the spher-
ical Bessel functions, but do not satisfy the boundary conditions at zero. These are known as
spherical Neumann functions and have the opposite relative phase between the incoming and
outgoing parts, while being quite divergent at the origin.

n`(x) ≈
(2`− 1)!!

x`+1
(8.8)
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Examples of a few spherical functions for low `, repeated from Chapter 4, are

j0(x) =
sinx

x
, n0(x) = −

cosx

x
(8.9)

j1(x) =
sinx

x2
−

cosx

x
, n1(x) = −

cosx

x2
−

sinx

x

j2(x) =

(
3

x3
−

1

x

)
sinx−

3

x2
cosx, n2(x) = −

(
3

x3
−

1

x

)
cosx−

3

x2
sinx

Both j` and n` are real.

The spherical Hankel functions are defined in terms of j` and n`,

h`(x) ≡ j`(x) + in`(x) ≈
(−i)`+1

x
eix|x→∞ (8.10)

h∗`(x) ≡ j`(x)− in`(x) ≈
i`+1

x
e−ix|x→∞

Here h` and h∗` behave as outgoing and incoming waves respectively.

By making combinations, j`± in`, one finds solutions that correspond to incoming or outgoing
waves. When adding a potential of finite range, there still exists solutions which look like h`(kr)
or h∗`(kr) for r beyond the range of the potential, but have modified forms at small r. Just as
in the case with no potential, one can find a linear combination of the incoming and outgoing
solutions which goes to zero at r = 0. However, the relative phase between the incoming and
outgoing phase will be adjusted by a phase e2iδ` due to the existence of the potential. The large
x = kr behavior is then

R`(x)|x>ka =
1

2

(
e2iδ`h`(x) + h∗`(x)

)
, (8.11)

where δ is known as the phase shift. Here a is any distance large enough such that the potential
is zero. We define the overall phase ofR` so that the incoming phase has the same phase as does
the incoming part of j`. For the s−wave, this becomes

R`=0(k, r > a) =
eiδ sin(kr + δ)

kr
. (8.12)

If one scatters a plane wave off a potential, one can consider the solution to be the original plane
wave, expanded in terms of partial waves, plus the correction due to the interaction,

ψ~k(~r) =
∑
`

(2`+ 1)i`R`(kr)P`(cos θ) (8.13)

= ei
~k·~r +

∑
`

(2`+ 1)i` (R`(kr)− j`(kr))P`(cos θ),

where the choice of phases in the definition of R` allows the incoming waves to be identical to
those of the solution with no potential. Expanding the answer at large r, one obtains

ψ~k(~r)|r→∞ = ei
~k·~r +

∑
`

(2`+ 1)
(
e2iδ` − 1

) eikr
2ikr

P`(cos θ) (8.14)

= ei
~k·~r +

∑
`

(2`+ 1)eiδ` sin δ`
eikr

kr
P`(cos θ)
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Only the latter term contributes to scattering as the plane wave continues to travel forward after
the wave packet leaves the region of the scatterer. One defines a quantity f(Ω) as the scattering
amplitude and gives it dimension of length.

f(Ω) ≡
∑
`

(2`+ 1)eiδ` sin δ`
1

k
P`(cos θ) (8.15)

ψ~k(~r)|R→∞ = ei
~k·~r +

eikr

r
f(Ω).

Note that f no longer depends on r. It can also be related to the differential cross section. To see
this, we first relate the differential cross section to the flux of particles per solid angle,

v

V

dσ

dΩ
=

dN

dΩdt
(8.16)

The flux per unit area can be found by multiplying the square of the wave function in Eq. (8.15)
by the velocity and dividing by the volume,

dN

r2dΩdt
=
v

V

|f(Ω)|2

r2
, (8.17)

Comparing the two equations above allows one to see that f(Ω) is directly related to the differ-
ential cross section.

dσ

dΩ
= |f(Ω)|2. (8.18)

One can see that the differential cross section at a given energy is determined solely by the phase
shifts δ`(k).

Integrating over dΩ to obtain the whole cross section eliminates the cross terms involving dif-
ferent `s resulting from squaring f(Ω) due to the orthogonality of the Legendre Polynomials. In
fact, one obtains

σ =
4π

k2

∑
`

(2`+ 1) sin2 δ`. (8.19)

Example 8.1: – Hard Sphere Scattering
Consider a hard sphere of radius a. Find the contribution to the cross section from s and pwave
scattering as a function of the momentum.

The ` = 0 case is simple as the solutions for ingoing and outgoing waves in the region r > a
are the Hankel functions which must go to zero at r = a.

R`=0(a) =
1

2

(
e2iδ0h0(ka) + h∗0(ka)

)
= 0

Plugging in the expressions for h0, one obtains,

0 = e2iδ0
(
−ieika + ie−ika

)
= eiδ0

(
−iei(ka+δ0) + iei(ka−δ0)

)
= 2eiδ0 sin(ka+ δ0).
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which gives the ` = 0 phase shifts,

δ0 = −ka.

The contribution to the cross section from the ` = 0 partial waves is then,

σ0 =
4π

k2
sin2(ka).

As k→ 0, the cross section approaches 4πa2, four times the expected geometric cross section.

Calculating the contribution for the ` = 1 partial waves is a bit more difficult. In this case the
incoming and outgoing waves are

R`=1(a) =
1

2

(
e2iδ1h1(ka) + h∗1(ka)

)
= 0.

Using Eq.s(8.9) and (8.10),

h1(x) = −
eix

x
− i

eix

x2
(8.20)

=

[
−

cos(x)

x
+

sin(x)

x2

]
+ i

[
−

sin(x)

x
−

cos(x)

x2

]
,

which yields the following expression for δ1 when requiring thatR`=1(a) = 0,

e2iδ1h1(ka) + h∗1(ka) = 0,

e2iδ1 = −
h∗1(ka)

h1(ka)

=
i [cos(ka)/ka− sin(ka)/(ka)2] + [sin(ka)/ka+ cos(ka)/(ka)2]

−i [cos(ka)/ka− sin(ka)/(ka)2] + [sin(ka)/ka+ cos(ka)/(ka)2]

This can be solved for δ1,

tan δ1 =
cos(ka)− sin(ka)/(ka)

sin(ka) + cos(ka)/(ka)

The contribution to the cross section is

σ1 =
12π

k2
sin2 δ1.

At low momentum, this becomes

δ1 ≈
[−(ka)2/2 + (ka)2/6]

1/ka
(8.21)

= −
(ka)3

3
,

σ1 ≈
4π

3
k4a6.

In general, for potential scattering, phase shifts tend to behave as k2`+1 as k→ 0, which means
that cross sections behave as k4`. Thus, whereas the cross section for s-wave scattering ap-
proaches a constant as k→ 0, the p-wave contribution rises very slowly.
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8.2 The Optical Theorem

Looking at the expansion of the wave function for large r,

ψ~k(~r)|R→∞ = ei
~k·~r +

eikr

r
f(Ω), (8.22)

one might ask how the scattered flux, v|f(Ω)|2, is balanced by a loss of flux in the plane wave.
When one squares ψ~k, three terms arise. The first is the squared plane wave, which is unity,
regardless of whether scattering occurred. The second part is the flux of the scattered wave,
which behaves as |f(Ω)|2. The third possibility term is the cross term between the plane wave
and the scattered wave, which will be linear in f(Ω). It is this term which must somehow
represent the loss of forward going flux.

The scattering amplitude, f(Ω), defined in Eq. (8.15), is complex. Taking the imaginary part,

= f(Ω) ≡ =
∑
`

(2`+ 1)eiδ` sin δ`
1

k
P`(cos θ) (8.23)

=
∑
`

(2`+ 1) sin2 δ`
1

k
P`(cos θ).

In the forward direction, θ = 0, P` = 1, and

= f(Ω) =
1

k

∑
`

(2`+ 1) sin2 δ, (8.24)

and after comparing to expression for the total cross section in Eq. (8.19) becomes

σ = 4π
k
=f(Ω = 0). (8.25)

This is known as the optical theorem.

The forward scattering amplitude is thus related to the dissipation of the plane wave. This was
not surprising given the considerations of Sec. 7.8 which showed how the propagator in the
forward direction was related to the cross section. To see that this accounts for the missing flux,
one can write a term for the flux,

~F =
1

W

−i~
2m

{
ψ∗~k(~r)∇ψ~k(~r)− (∇ψ∗~k(~r))ψ~k(~r)

}
. (8.26)

whereW is some arbitrarily large volume. The net rate at which particles enter/leave a spherical
surface of radius r enclosing the scattering point is

dN

dt
= r2

∫
d~Ω · ~F (~r) (8.27)

=
~

2m
r2

∫
d~Ω · ~k

Taking the gradient, then keeping only those terms which fall slowest in 1/r,

~F =
i

W

k

mr
(r̂ + ẑ)=f(Ω)eikr(1−cos θ) +

k

W
r̂
|f(Ω)|2

mr2
. (8.28)
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As kr →∞,

eikr(1−cos θ)
∣∣
kr→∞ = i

δ(1− cos θ)

kr
, (8.29)

which means that

~F =
1

mWr2

{
−k(r̂ + ẑ)δ(1− cos θ)=f(Ω) + |f(Ω)|2

}
. (8.30)

The net rate of particles through the enclosing surface is then

r2

∫
d~Ω · ~F =

1

mW

{
4π=f(Ω = 0) + k

∫
dΩ|f(Ω)|2

}
(8.31)

=
1

mW

{
4π=f(Ω = 0) + k

∫
dΩ

dσ

dΩ

}
=

1

mW
{4π=f(Ω = 0) + kσ} .

Thus, if the net flux is to be zero, one must satisfy the optical theorem, Eq. (8.25). This shows
that the optical theorem is equivalent to stating that the forward scattered wave must interfere
with the original plane wave in such a way that the interference term between the plane wave
and the scattered wave results in a contribution to the flux that cancels the net scattered flux.

8.3 Calculating Phase Shifts Numerically

Consider a potential that goes to zero for r > b. Rather than considering a solution for the radial
wave functionR`(r), it is easier to consider a solution for u`(k, r) = krR`(r).

u`(r) ≡ krR`(r), (8.32)
~2k2

2m
u`(r) = −

~2

2m

∂2

∂r2
u`(r) +

~2`(`+ 1)

2mr2
u`(r) + V (r)u`(r).

Thus u` appears to be the solution to a one-dimensional Schrödinger equation with the effective
potential,

Veff(r) = V (r) +
~2`(`+ 1)

2mr2
, (8.33)

and the extra condition that u`(r → 0) = 0.

The solution u` can be considered as the linear combination of an incoming and phase-shifted
outgoing wave.

u`(r) = uin
` (r) + e2iδ`uout

` , (8.34)

where the incoming and outgoing waves are know solutions when r > b,

uin
` (r) = krh∗`(r), (8.35)

uout
` (r) = uin,∗

` (r).
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To find the phase shift numerically, one can discretize space into steps of ∆, then choose two
points rn+1 and rn which are chosen beyond b. One can calculate uin

` (rn+1) and uin
` (rn). One

can then numerically solve the discretized Schrödinger equation,

−
~2

2m∆2

(
uin
` (rn+1)− 2uin

` (rn) + uin
` (rn−1)

)
=

(~2k2

2m
− Veff(rn)

)
uin
` (rn), (8.36)

to find uin
` (rn−1). One can continue iteratively until one finds uin

` (r → 0). The phase shift δ` is
then chosen to make u`(r → 0) = 0. Thus δ` is determined by the phase of uin

` as r → 0.

e2iδ` = −
uin,∗
`

uin
`

∣∣∣∣∣
r→0

. (8.37)

An alternative method is to integrate from r = 0, then match logarithmic derivatives at r = b
to find the phase shifts. However, this method can be troublesome when it comes to larger `
because the wave functions grow as r`+1 near r = 0.

In summary, phase shifts offer a convenient means to express all the information required to de-
scribe scattering. In the presence of a spherically symmetric potential, each partial wave becomes
a linear combination of the original incoming wave and a phase shifted outgoing wave. Because
measurements are made outside the range of the potential the phase shifts, δ`(E), completely
describe all behavior.

One does not usually need to include higher values of ` in a phase shift analysis. This is because
the partial waves tend to sample distances of order r > `/k. As k → 0, s-wave scattering
dominates the picture. Rarely does one see analyses for ` > 3.

Phase shift analyses are common in low-energy nuclear scattering and in atomic physics. They
become rather irrelevant at high energy due to the fact that inelastic channels (A + B → C +
D + E) tend to open at high energy, at which point the phase shift vocabulary is insufficient.
Even when ` is not a good quantum number, e.g. spin-orbit scattering, but where j is a good
quantum number, one can still extract phase shifts using polarized beams, although in these
cases the vocabulary includes mixing terms.

Finally, as an example I present a plot of proton-proton phase shifts to give an impression of the
degree to which these quantities are analyzed. In this figure, the data (circles) are indistinguish-
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able from two well-known models (Nijmegan and Bonn).
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8.4 The Low Energy Limit

At low energy, one can solve the Schrödinger equation for a given partial wave between r = 0
and some point r = b where b is sufficiently large such that the potential is zero. Although the
norm ofR` is arbitrary, the logarithmic derivative is completely determined by the potential, the
energy, and the point b.

α`(k, b) ≡
dR`(k, r)/dr

R`(k, r)

∣∣∣∣
r=b

(8.38)

We will consider k ≈ 0, one can ignore the energy dependence of α`.

For r > b,R`(k, r) must have the form

R`(k, r) ∝
(
h∗`(kr) + e2iδh`(kr)

)
, (8.39)
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which means that the logarithmic derivative at r = b becomes

α(k, b) =
∂/∂r

(
h∗`(kr) + e2iδ`h`(kr))

)
|r=b

h∗`(kb) + e2iδ`h`(kb)
. (8.40)

Using the definition of h` = j` + in` allows one (with some algebra) to write the phase shift in
terms of α, j` and n`,

cot(δ`) =
∂n`/∂r|r=b − αn`(kb)

∂j`(kr)/∂r|r=b − αj`(kb)
. (8.41)

Thus, by finding the logarithmic derivative at r = b, one determines the phase shift. Note that if
the potential is zero,R` would be proportional to j` and the denominator would diverge forcing
the phase shift to zero.

We are now in a position to consider the behavior at low k where j` and n` have the following
behavior,

j`(kr)→
(kr)`

(2`+ 1)!!
(8.42)

n`(kr)→
(`− 1)!!

(kr)`+1
,

where (2` + 1)!! ≡ 1 · 3 · 5 · · · (2` + 1). Inserting these into the expression for the phase shift
above.

cot δ`(k) ≈ (kb)−(2`+1)(2`− 1)!!(2`+ 1)!!
`+ 1 + bα`(k, b)

`− bα`(k, b)
(8.43)

For low k, the kinetic term in Schrödinger’s equation is negligible compared to the potential and
α` approaches a constant. Thus, the momentum dependence of the phase shifts at low relative
momentum is

sin δ`(k) ∝ k2`+1. (8.44)

One can see that all phase shifts tend to an integral multiple of π at k = 0, and that the cross
section is dominated by the s-wave contribution at low energy. In fact the scattering length, a, is
defined as the derivative of the ` = 0 phase shift at k = 0,

a ≡ −
∂

∂k
δ0(k)|k=0. (8.45)

The cross section at very low energy is then,

σ ≈
4π

k2
sin2(ka) = 4πa2. (8.46)

Example 8.2: – Scattering off Spherical “Square-Well” Potential
A simple example that is common on exams is that of s-wave scattering off a square well poten-
tial. Consider the repulsive potential

V (r) =

{
V0, r < b
0, r > b

(8.47)
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Find the scattering length and the cross section at k ≈ 0 for a particle of massm.

We need only consider the s wave in this case. Using the definition u(k, r) ≡ rR`=0(k, r), one
knows that the Schrödinger equation for u(k, r) looks exactly like a one-dimensional Schrödin-
ger equation. Furthermore, the solution has the following form in the two regions,

uI(k, r) = A sinhκr, κ ≡

√
2m(V0 − E)

~2
, (8.48)

uII(k, r) = sin(kr + δ), k ≡

√
2m(E)

~2

Matching logarithmic derivatives at the boundary gives

1

κ
tanhκb =

1

k
tan(kb+ δ). (8.49)

Solving for δ for small k,

δ = −kb+ tan−1

(
k

κ
tanhκb

)
(8.50)

≈ k
(
−b+

1

κ
tanhκb

)
The scattering length and cross section are thus

a = b−
1

κ
tanhκb (8.51)

σ(k = 0) = 4πa2.

Note that in the limit that V0 →∞ that δ → −kb.

8.5 Levinson’s Theorem

As shown in the previous section all phase shifts begin life at multiples of π. If the phase shift
at k = 0 were anything else an infinite cross section would result at small k. As k →∞, phase
shifts all tend to zero. This asymptotic behavior at large k can be understood by realizing that
the in the high-energy limit the phase is changed by V∆t/~, where ∆t is the time spent in the
potential, which goes to zero as the particle moves very quickly.

Levinson’s theorem relates the phase shift at zero energy, which is a multiple of π to the number
of bound states.

δ`(k = 0) = NBπ, (8.52)

whereNB is the number of bound states of angular momentum `.

In order to explain the physical motivation of Levinson’s theorem we digress to consider the
density of states of particles in a large sphere of radius R, which feels a short range potential
V (r), with the origin being located at the center of the sphere. The wave function at large r is

ψ(r →∞) ∝ sin(kr + δ`), (8.53)
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so that the boundary conditions restrict the possible values of k to

kR+ δ`(k) = nπ. (8.54)

Thus, the density of states in momentum is

dn

dk
=
R

π
+

1

π

dδ`

dk
. (8.55)

If one considered ` 6= 0, an additional factor of (2` + 1) would be added. The change of the
density of states due to the non-zero potential is (2`+ 1)(1/π)dδ`/dk. The integrated number
of extra states inserted between k = 0 and k =∞ due to the potential is

∆Ncont. =
δ`(k→∞)− δ`(k = 0)

π
. (8.56)

However, the net number of states under consideration is not affected by the potential. If
∆Ncont. states were pushed out of the continuum, then they must have become bound states.

NB + ∆Ncont. = 0. (8.57)

Combining this constraint with the Eq. (8.56) and with the fact that δ`(k → ∞) = 0 gives
Levinson’s theorem.

Levinson’s theorem is important as it gives one an idea of the general behavior to expect from
phase shifts. Attractive potentials tend to have positive phase shifts. If no bound state exists,
the phase shifts rise near k = 0 indicating that the states in the continuum were pulled down
to k = 0. Then at higher k, the phase shifts fall, indicating that the density of continuum states
was depleted at higher k. If a bound state exists, the phase shift would generally start at π and
usually fall as a function of k. The falling phase shift denotes a negative correction to the density
of states. These are the states from which the bound state was formed.

Phase shifts behave rather peculiarly when the potentials are at the threshold of creating a bound
state. A small change in the potential causes the δ(k = 0) to jump from zero to π. In these
instances scattering lengths can be anomalously long. Such an example is neutron-neutron scat-
tering. The scattering is length is nearly -20 fm. Thus the neutron-neutron cross section at low
momentum is 100 times larger than πR2, whereR is the range of the strong interaction.

8.6 Effective Range Theory for ` = 0

The mathematics of low-energy scattering theory is often referred to as effective range theory,
and goes back to the work of Schwinger and of Hans Bethe in 1949, https://journals.aps.org/
pr/abstract/10.1103/PhysRev.76.38, and was mainly applied to nucleon-nucleon scattering.
As k → 0, scattering is dominated by the ` = 0 partial wave. Phase shifts (modulo integer
numbers of π) at small momentum rise with powers of k`+1, so cross sections, which behave as
(4π sin2 δ)/k2, behave as k2` at low momentum, and for many experiments only the s−waves
contribute. Effective range theory parameterizes how the ` = 0 cross sections are principally
decided by a two properties of the potential, the scattering length and the effective range. Given
that we are interested in the low-momentum limit, and are thus interested in viewing something
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akin to a Taylor expansion of the phase shift with respect to the momentum, it is not surprising
that two properties of the potential, e.g. the width and depth, would determine the first two
terms in the Taylor expansion. However, the effective range expansion, which is an expansion
of cot δ, tends to do remarkably well as the higher-order terms play little role until the momenta
exceed the inverse scale of the potential.

The principal relation of effective range theory is derived as follows. First consider the radial
solution for the ` = 0 partial wave, u(k, r) = rR`=0(k, r). If the potential vanishes for r > R,
the solution for r > R is of the form,

u(k, r > R) = sin(kr + δ(k))/Z(k). (8.58)

We will pick real solutions (which you can do if the potential is real) and leave off the factor
eiδ from Eq. (8.12). We will also consider a solution to the Schroödinger equation without the
potential, w(k, r), that matches u(k, r) for r > R, i.e., w(k, r > R) = u(k, r). This solution
will not satisfy the boundary condition at the origin, i.e.,

w(k, r > 0) = sin(kr + δ(k))/Z(k). (8.59)

Further, we will define the arbitary normalization constant Z(k) = sin(δ(k)). With this def-
inition, w(k = 0) = 1. Now, considering solutions u1 and u2 at two momenta, k1 and k2

respectively, one can consider the Schrödinger equations,

k2
1u1 = −∂2

ru1 + 2m~2V (r)u1, (8.60)
k2

2u2 = −∂2
ru2 + 2m~2V (r)u2,

k2
1w1 = −∂2

rw1,

k2
2w2 = −∂2

rw2.

Then, taking the products, u1u2 and w1w2,

(k2
1 − k

2
2)

∫ R

0

dr (u1u2 − w1w2) (8.61)

=

∫ R

0

dr
[
−(∂2

ru1)u2 + (∂2
ru2)u1 − (∂2

rw1)w2 + (∂2
rw2)w1

]
.

The potentialV (r) has fallen out of the expression, and be recognizing that (∂2
ru1)u2−u1∂

2
ru2 =

∂r[(∂ru1)u2 − u1∂ru2] is a total derivative, one can perform the integration,

(u1∂ru2 − u2∂ru1 + w1∂rw2 − w2∂rw1)r=0 = (k2
1 − k

2
2)

∫ R

0

dr (u1u2 − w1w2). (8.62)

This expression is exact and applies for any momenta k1 and k2. The upper limit of the integra-
tion at R vanished because wi = ui for r > R. Now, because u1(r = 0) = u2(r = 0) and
wi(r = 0) = sin(δi), the expression simplifies further,

(w1∂rw2 − w2∂rw1)r=0 = (k2
1 − k

2
2)

∫ R

0

dr (u1u2 − w1w2),

k2 sin(δ1) cos(δ2)− k1 cos(δ1) sin(δ2)

sin(δ1) sin(δ2)
= (k2

1 − k
2
2)

∫ R

0

dr (u1u2 − w1w2). (8.63)
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This last expression forms the basis for understanding the low-momentum expansion. For ex-
ample, taking the limit k1 → 0, and setting k2 = k,

k cot(δ) = −
1

a
+

1

2
ρk2 (8.64)

ρ ≡ 2

∫ R

0

dr [w(k = 0, r)w(k, r)− u(k = 0, r)u(k, r)] ,

a ≡ −
dδ

dk

∣∣∣∣
k=0

.

This is the effective range formula. The quantity ρ is known as the effective range. Because
u(r = 0) = 0 and w(r = 0) = 1, it provides a characteristic distance over which the u returns
to the asymptotic form, and should be of the length scale of the potential. The scattering length
awas defined earlier. For small momenta, the cross section is

σ =
4π

k2
sin2 δ ≈ 4πa2. (8.65)

The scattering length need not be of the range of the potential. In fact, it can be arbitrarily large
in the limit that the potential is adjusted to very nearly providing a bound state. For higher
momenta terms of higher power of k contribute to the effective range expansion. The scale at
which they become important is given by the effective range ρ, i.e., Eq. (8.64) above should be
accurate for kρ < 1.

8.7 Coulomb Waves and Gamow Factors

The Coulomb potential is not short-range, hence the incoming and outgoing spherical waves are
not Hankel functions but are instead Coulomb waves. At large r the spherical Coulomb waves
behave as

R(r) ∼
1

r
e±i(kr−γ log r), (8.66)

where

γ ≡
µZ1Z2e

2

~2k
= −

1

a0k
. (8.67)

When the potential is attractive, e.g. the Hydrogen atom, γ is negative. The factor γ is known
as the Sommerfeld parameter.

The entire solutions for Coulomb waves are known as confluent hypergeometric functions which
can be found in books of special functions such as https://en.wikipedia.org/wiki/Abramowitz_
and_Stegun. They are also often simply called Coulomb wave functions.

When an extra potential is added to the problem, one can still classify the behavior in terms of
phase shifts, but the problem becomes one of phase-shifted Coulomb waves rather than phase-
shifted Hankel functions. Of course, all the relations for total cross sections are modified because
the Coulomb force produces a scattering all it’s own.

The expression for a plane wave plus it’s scattered portion is written in terms of hypergeometric
functions as

ψk(r) = Γ(1 + iγ)e−πγ/2eikz1F1(−iγ; 1; ik(r − z)). (8.68)
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For small r (r << a0) the hypergeometric function 1F1 goes to unity and the solution is ap-
proximately,

ψk(r << a0) = Γ(1 + iγ)e−πγ/2eikz (8.69)

|ψk(r << a0)|2 = |Γ(1 + iγ)|2e−πγ

=
2πγ

e2πγ − 1
.

This last factor is referred to as the Gamow factor or penetrability.

Note that the Gamow factor is independent of r. For repulsive potentials, it can be thought of
as the penetration probability of reaching the origin, relative to what it would have been if there
were no Coulomb. Of course, in classical physics a charged particle never reaches the origin
when there is a repulsive Coulomb barrier. If the potential is repulsive, gamma is positive. As
k→ 0, γ →∞ and the Gamow factor goes to zero, meaning that low energy waves have great
difficulty penetrating the barrier. As k is increased and approaches (2πa0)−1 the penetrability
rises. For attractive potentials, the Gamow factor is greater than unity. In both the attractive and
repulsive case, the factor approaches unity as k→∞.

The Gamow penetrability plays an important role in astrophysical rates. Fusion reactions would
happen much more quickly if it were not for the Coulomb barrier. Rather than listing cross
sections, reactions are often described by what is known as the astrophysical S factor,

S(E) = Ee2πγσ(E). (8.70)

For large barriers this cancels the most divergent part of the Gamow factor, and the resulting
quantity, S(E) is well behaved as E → 0.

8.8 Interpreting the Scattering Wave Function

The scattered state wave function,ψ(~k, ~r), normalized so the that incoming wave is ei~k·~r, can be
thought of as a measure of the relative probability density for a particle of incoming momentum
~k to be found at ~r. The solution includes outgoing momenta distributed over all directions. If
one takes the complex conjugate of the scattered wave function, one finds a solution that ap-
proaches an outgoing plane wave with momentum ~k, that is composed of an array of incoming
momenta.

One insightful relation is that of the wave function normalization compared to the change in the
density of states in terms of (1/π)dδ/dk. This can be derived in a similar approach to find the
effective range formula above. For a given partial wave,∫

dr
(
|u`(r)|2 − |u(0)

` |2
)

=
1

2

dδ`

dk
, (8.71)

where u`(k, r) = rR`(k, r) and u(0)
` (k, r) = krj`(kr) are the solutions for partial waves with

and without potentials. This provides insight into the meaning of the squared scattered wave
function. It describes the strength with which one can emit a particle into a given outgoing mo-
mentum state. One can equivalently think of the fact that a particle with asymptotic momentum
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~k is more or less likely to be in the region of the potential due to the presence of the potential,
or one can think of being more likely to be in the region of the potential because the density of
states changed.

The classical analog to the squared scattered wave function is in terms of the ratio of the phase
space at the point ~r compared to the the size of the same phase space element in its asymptotic
momentum state. If one emits a particle at position ~r0 into some differential momentum volume
d3p0 centered around ~p0, the potential will alter the momentum into some differential volume
d3pf centered about ~pf . In the limit that the momenta are larger than characteristic inverse sizes
of the potential, p >> ~/R, the wave functions become

|φ(~p, ~r)|2 →
d3p0

d3pf
. (8.72)

This latter ratio is a function of ~r0, and can be found by solving for the classical trajectories,
~p0(~pf , ~r0). For the case of the Coulomb interaction, this ratio can be found analytically, https:
//journals.aps.org/prc/pdf/10.1103/PhysRevC.45.387, using energy conservation, angular
momentum conservation, and conservation of the Lenz vector.

8.9 Problems

1. Show that if the function u`(kr) is defined in terms ofR`(r)

u`(r) ≡ rR`(r),

whereR` is a solution to the radial Schrödinger equation{
−

~2

2m

1

r

∂2

∂r2
r +

~2

2m

`(`+ 1)

r2
+ V (r)

}
R`(r) =

~2k2

2m
R`(r),

that u` satisfies the differential equation,(
d2

dx2
+ 1

)
u`(x) =

`(`+ 1)

x2
u`(x) + β(x)u`(x),

where β is proportional to the potential,

β(x) =
2m

~2k2
V (x/k).

2. Show that in the case of zero potential (β = 0) that the solutions u` satisfy the recursion
relation.

u`+1(x) =
(`+ 1)

x
u`(x)−

d

dx
u`(x).

3. Show that this recursion relation can be equivalently expressed as

f`+1(x) =
`

x
f`(x)−

d

dx
f`(x),

where f` is a solution to the radial Schrödinger equation, f`(kr) ≡ u`(kr)/(kr), which
means that f` might be any linear combination of j` and n`.
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4. One can also show that a second recursion relation is satisfied,

f`−1(x) =
(`+ 1)

x
f`(x) +

d

dx
f`(x).

Given this recursion relation, plus the one from the previous problem, show that

f`−1(x) + f`+1(x) =
(2`+ 1)

x
f`(x)

5. Using expressions for j0, j1, n0 and n1, use recursion relations to find expressions for j2
and n2.

6. Using the recurrence relations show that j`(z) and n`(z) behave as z` and z−(`+1) re-
spectively for z → 0. Begin with the facts that j0(z) and n0(z) behave as z0 and z−1

respectively, and that they are even and odd functions in z.

7. (a) Consider a potential which gives non-zero phase shifts for 0 ≥ ` ≤ `max, where `max

is a large number. Assume these phase shifts can be considered as random numbers,
evenly spaced between zero and 2π. Using the expression for the cross section,

σ =
4π~2

p2

∑
`

(2`+ 1) sin2 δ`,

find the overall cross section by averaging over the expectation of the random phases.
Give your answer in terms of `max and the incoming momentum p.

(b) Consider a problem classically where one scatters off a strong central potential whose
maximum range is Rmax. From classical arguments, what is the maximum angular
momentum of a particle that scatters? Give your answer in terms of Rmax and the
incoming momentum p. What is the total cross section in terms of `max and p?

8. Consider a particle of massm that interacts with a spherically symmetric attractive poten-
tial.

V (r) =

{
−V0, r < b

0, r > b

(a) What is the minimum depth Vmin that allows a bound state?
(b) Assuming the depth is V0 = 0.99 · Vmin, plot the s-wave phase shift for momenta in

the range 0 < p < 5~/b. Use units of ~/b for the momenta.
(c) Repeat the above problem for V0 = 1.01 · Vmin.
(d) What are the scattering lengths for the two potentials?

9. Near a resonance of energy εr, a phase shift behaves as:

tan δ` =
Γ/2

εr − E
,

where E is the c.m. kinetic energy. For the following problems, assume that Γ << εr,
so that the 4π/k2 prefactor in the expression for the cross section can be considered as a
constant.
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(a) Write down the cross section σ`(E).
(b) What is the maximum cross section (asE is varied) for scattering through that partial

wave? (How does it depend on εr, Γ, the reduced mass µ, and `)?
(c) What is the energy integrated cross section (

∫
σ`(E)dE)?

10. Consider a particle of massm interacting with the spherically symmetric attractive poten-
tial,

V (r) = −βδ(r − b)

Find the scattering length as a function of β, b andm.

11. The temperature at the center of the sun is 15 million degrees Kelvin. Consider two protons
with a relative kinetic energy characteristic of the temperature,

~2k2

2µ
=

3

2
kT.

(a) What is the Gamow penetrability factor? Give a numeric value.
(b) If the two particles were a proton and a 12C nucleus, what would the penetrability

factor become?
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9 Second Quantization and Radiation

9.1 Quantum Fields and Second Quantization

Many transitions from one state to another involve not only a particle changing from one state to
another, but the actual creation of a new particle. For example, the radiative decay of an atom or
nucleus results in a system with a photon that did not exist before the decay. Most decays in par-
ticle physics also involve the creation of new particles. In fact, relativistic quantum field theory
considers all interactions, e.g. the Coulomb force, as consisting of the creation and absorption of
particles which are exchanged over a sufficiently short time so as not to contradict the energy-
time uncertainty principle. For this class, we will constrain our goals to understanding simple
decays.

Creation and destruction operators were introduced to describe the creation of energy quanta in
a harmonic oscillator. The operators obeyed the relations,

[ai, a
†
j] = δij, [ai, aj] = 0, [a†i , a

†
j] = 0, (9.1)

where i specifies which oscillator is being affected. If one had N harmonic oscillators, one
would haveN independent creation operators andN independent destruction operators. Note
that the operators corresponding to different operators commute with one another as they are
unrelated.

The essential feature of creation and destruction operators is that they increase/decrease the
number of quanta, where the number of quanta of the oscillator i is found by using the operator
Ni = a†iai. However, instead of counting only energy quanta, as in the case of the harmonic
oscillator, the number operator could also refer to a number of particles in some single-particle
level i. Let us then consider a creation operator for each momentum eigenstate of a system, a†k.
The momentum state |k〉 is created by a†k operating on the vacuum.

|k〉 = a†k|0〉. (9.2)

The state is normalized to unity, just as one would expect for creation operators.

〈k′|k〉 = δk′k. (9.3)

By operating twice with a†k, one creates a state with two particles of momentum k.

Example 9.1: – Coupled Harmonic Oscillators
Here, we consider two coupled harmonic oscillators. The oscillators are described by creation
operators a†1 and a†2. Let the Hamiltonian be

H = H0 + V (9.4)

H0 = ε1a
†
1a1 + ε2a

†
2a2,

V = β
(
a†2a1 + a†1a2

)
.

Consider the operators b†1 and b†2 defined by

b†1 ≡ cos θa†1 + sin θa†2, (9.5)

b†2 ≡ cos θa†2 − sin θa†1.
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a) Show that b1, b2, b†1 and b†2 obey the commutation rules for destruction operators.

b) Find E1, E2 and θ so that
H = E1b

†
1b1 + E2b

†
2b2. (9.6)

Solution: (a) To test that bi and b†i act as creation operators,

[b1, b
†
1] = [(a1 cos θ + a2 sin θ), ((a†1 cos θ + a†1 sin θ)]

= cos2 θ + sin2 θ = 1,

[b1, b
†
2] = [(a1 cos θ + a2 sin θ), ((−a†1 sin θ + a†1 cos θ)]

= − sin θ cos θ + sin θ cos θ = 0,

[b1, b1] = [(a1 cos θ + a2 sin θ), ((a1 cos θ + a2 sin θ)]

= 0

[b2, b2] = [(a2 cos θ − a1 sin θ), ((a2 cos θ − a1 sin θ)]

= 0

[b1, b2] = [(a1 cos θ + a2 sin θ), ((a2 cos θ − a2 sin θ)]

= 0.

Similarly, by taking the complex conjugates, one can see that [b†1, b
†
1] = [b†2, b

†
2] = [b†1, b

†
2] = 0

For (b), first substitute the expressions for b†i and bi and compare to the original expression for
H .

H =
E1 + E2

2

(
a†1a1 + a†2a2

)
+
E1 − E2

2

(
a†1a1 − a†2a2

)
cos 2θ +

E1 − E2

2

(
a†1a2 + a†2a1

)
sin 2θ

(9.7)

=
ε1 + ε2

2

(
a†1a1 + a†2a2

)
+
ε1 − ε2

2

(
a†1a1 − a†2a2

)
+ β

(
a†1a2 + a†2a1

)
By inspection, one sees that the Hamiltonians are equivalent when

tan 2θ =
2β

ε1 − ε2

, (9.8)

E1 + E2 = (ε1 + ε2),(
E1 − E2

2

)2

= β2 +

(
ε1 − ε2

2

)2

.

One can note the algebraic equivalence of this problem to the two-component problem with a
Hamiltonian

H =
ε1 + ε2

2
+
ε1 − ε2

2
σz + βσx . (9.9)

9.2 Field Operators: Creation and Destruction Operators in Coordinate Space

Field operators are the coordinate-space analogs to a†k. They are defined as

Ψ†(~x) =
∑
k

a†~k
e−i

~k·~x
√
V
. (9.10)
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They obey the commutation rules,

[Ψ(~x),Ψ†(~y)] =
1

V

∑
~k,~k′

e−i(
~k·~x−~k′·~y)[a~k, a

†
~k′

] (9.11)

=
1

V

∑
~k

e−i
~k·(~x−~y)

=
1

(2π)3

∫
d3k e−i

~k·(~x−~y)

= δ3(~x− ~y).

These operators create the state |~x〉,

|~x〉 = Ψ†(~x)|0〉, (9.12)

which is a state with one particle at the position ~x, and is normalized as

〈~x|~y〉 = 〈0|Ψ(x)Ψ†(~y)|0〉 = δ3(~x− ~y). (9.13)

One can easily check that

〈~x|~k〉 = 〈0|Ψ(~x)a†~k|0〉 =
ei
~k·~x
√
V
. (9.14)

One should keep in mind the Ψ(~x) is an operator, not a wave function. If φ refers to a one-
particle state, the relation to the wave function φ(x) is given by

|φ〉 =

∫
d3x φ(x)Ψ†(~x)|0〉, (9.15)

Ψ(~x)|φ〉 = φ(~x)|0〉,
〈~x|φ〉 = 〈0|Ψ(~x)|φ〉 = φ(~x).

Charge densities and currents can also be considered as operators

ρ(~x) = Ψ†(~x)Ψ(~x) (9.16)

~j(~x) =
~

2mi

(
(−∇Ψ†(~x))Ψ(~x) + Ψ†(~x)∇Ψ(~x)

)
.

If the state |φ〉 and |χ〉 are one-particle states, one sees that

〈χ|~j(~x)|φ〉 =
~

2mi
[χ∗(~x)∇φ(~x)− (∇χ∗(~x))φ(~x)] . (9.17)

9.3 Energy and the Hamiltonian

One can write the Hamiltonian for freely moving particles:

H0 = −
~2

2m

∫
d3xΨ†(~x)∇2Ψ(~x). (9.18)

=
~2

2mV

∫
d3x

∑
~k,~k′

k2ei(
~k−~k′)·~xa†~ka~k′.
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The integral over ~x gives zero due to the varying phase unless ~k = ~k′, at which point the phase
is unity and the integral over ~x cancels the volume in the denominator,

H0 =
∑
~k

~2k2

2m
a†~ka~k. (9.19)

Thus even though the Hamiltonian, expressed in terms of the field operators Ψ and Ψ†, looks
like the familiar expression for a wave function, it is far more powerful as it correctly expresses
the energy even when many particles are present in the system, and even in those cases where
multiple particles occupy the same single-particle level.

9.4 Interaction with an External Potential

An interaction with an external potential can be written as

Hint =

∫
d3rV(~r)Ψ†(~r)Ψ(~r). (9.20)

This can be written in terms of momentum-space creation and destruction operators by substi-
tuting the expressions for Ψ† from Eq. (9.10),

Hint =
1

V

∫
d3r

∑
~k,~k′

a†~ka~k′e
i(~k−~k′)·~rV(~r) (9.21)

=
1

V

∑
~k,~k′

Ṽ(~k − ~k′)a†~ka~k′,

where Ṽ is the Fourier transform of V . Thus the form of the interaction is similar to that of the
Ex. 9.1.

In fact, one can reduce the solution of the problem (finding the energy eigenvalues) to that of
diagonalizing a matrix.

H =
∑
k,k′

Ak,k′a
†
kak′. (9.22)

The simplified Hamiltonian results by linearly transforming the states to a new basis where
A→ B, andB is diagonalized. In this new basis,

H =
∑
`

B′``b
†
`b`. (9.23)

One should keep in mind that even if there are only a few single-particle levels, one still has an
infinite number of states because each level ` can hold an arbitrary number of particles. The abil-
ity of this formalism to include an arbitrary number of particles makes it the starting point for
any study of many-body physics. It also represents the starting point for the study of relativis-
tic physics due to the fact that even the vacuum might contain an arbitrary number of virtual
particle-antiparticle pairs.
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9.5 Decays Via Emission of a Created Particle, Radiation

The most common example where particles are created or destroyed is in the radiative decay of
atomic or nuclear states. For example, a hydrogen atom in an excited state might decay to the
ground state via the emission of a photon. The photon must be created in the process. Creation of
a photon is surprisingly complicated due to the fact that the photon is a massless spin-1 particle
coupling to the current via the polarization vector. Because the Lorentz structure of such a decay
adds additional complication, we will begin by considering decay through the emission of a
scalar particle.

Consider a hypothetical massive particle, of massm, created by the operator Ψ†, and a massless
particle which is created or destroyed by a field operator Φ. We assume both particles are spin-
less. The massive particle is in the first excited state of a Harmonic oscillator characterized by
frequency ω. We wish to calculate the rate for decaying to the ground state via the emission of
the massless particle. We assume the interaction term is expressed

Hint = g

∫
d3rΨ†(~r)

(
Φ†(~r) + Φ(~r)

)
Ψ(~r). (9.24)

The factor g is typically referred to as a coupling constant.

Using Fermi’s golden rule the decay rate is

Γ =
2π

~

∑
kβ

|〈nx, ny, nz = 0; kβ|Hint|nx, ny = 0, nz = 1〉|2 δ(E0 + E1 − Ekβ). (9.25)

Before proceeding further, note that Hint has both a Φ and a Φ† piece in order to keep the
Hamiltonian Hermitian. Because we are interested in the decay of the atom, which creates a
particle, we can neglect the destruction term. Also, note that the initial state was assumed to
be polarized along the z axis. This choice is arbitrary because we are summing equally over
all directions of k. If we were calculating a differential decay rate, dΓ/dΩk, the answer would
depend on the initial polarization.

One can now calculate the matrix element,

〈nx, ny, nz = 0; k|Hint|nx, ny = 0, nz = 1〉

= g

∫
d3r〈nx, ny, nz = 0; 0|akΨ†(~r)(Φ†(~r) + Φ(~r))Ψ(~r)|0〉,

where the state 〈· · · ; k| was re-expressed as 〈· · · ; 0|ak. Expanding the operator Φ† according
to Eq. (9.10), and using Eq. (9.15) to bring out the wave functions, Ψ†(~r)|φ〉 = φ(~r)|0〉,

〈nx, ny, nz = 0; k|Hint|nx, ny = 0, nz = 1〉 (9.26)

= g

∫
d3rψ∗0(~r)

1
√
V
e−i

~k·~rψnz=1(~r).

Here, the harmonic oscillator wave functions can be written as a product of wave functions of
x, y and z respectively. If the normalized 1-d harmonic oscillator wave functions are denoted
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φn(x),

〈nx, ny, nz = 0; k|Hint|nx, ny = 0, nz = 1〉 (9.27)

=
g
√
V

∫
dx e−ikxxφ2

0(x)

∫
dy e−ikyyφ2

0(y)

∫
dz e−ikzzz

√
2mω

~
φ2

0(z)

=
igkzα√

2V
e−k

2α2/4,

where α is the characteristic size of the ground state,

α2 ≡
~
mω

. (9.28)

Putting all this together

Γ =
4πg2

mωV

∑
k

k2
ze
−k2α2/2δ(~kc− ~ω) (9.29)

=
g2

2mωπ

∫
k4dk cos2 θ d cos θe−k

2α2/2δ(~kc− ~ω)

=
g2k3

3πm~c2
e−k

2α2/2,

where k = ω/c, and ω is determined by energy conservation, ~ω = E1 − E0.

9.6 Electromagnetic Decays

Electromagnetic decays are further complicated by the~j · ~A nature of the coupling. Remember
that minimal substitution, ~p → (~p − e ~A/c), results in a term in the Hamiltonian which looks
like

Hint = −~j · ~A/c+
e2

2mc2
~A2, (9.30)

representing the interaction with the vector potential. The last term will be neglected for now,
but plays a role in the quantum Hall effect. Remember that the current is given by

~j(~x) =
−ie~
2m

(
Ψ†(~x)∇Ψ−∇Ψ†(~x)Ψ(~x)

)
. (9.31)

First we must define the electromagnetic field operator in terms of creation and destruction
operators that make real photons,

~A(~r, t) =

√
2π~2c2

V

∑
k,s

~εs(~k)
1
√
Ek

(
ei
~k·~r−iEkt/~ak,s + e−i

~k·~r+iEkt/~a†k,s

)
. (9.32)

Here s refers to the polarization (or spin) of the photon. For each k there are two polarizations.
Each must be perpendicular to the direction of ~k, and normalized,

~εs(~k) · ~εs′(~k) = δss′. (9.33)
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Aside from the polarization, the expression for ~A looks peculiar for all the prefactors and the
1/
√
Ek term inside the sum. However, all these factors are necessary to ensure that∫

d3r
~E2 + ~B2

8π
=
∑
~k,s

Ek

(
a†~k,sa~k,s +

1

2

)
, (9.34)

where the electromagnetic fields resulting from ~A are

~E = −
1

c

∂ ~A

∂t
,

~B = ∇× ~A.

We are now in position to consider the general problem of electromagnetic decay, where a par-
ticle of charge e changes from state i to state f while emitting a photon of momentum k and
polarization s. Outlining the steps to solving the problem:

1. Write down Fermi’s golden rule,

Γ =
2π

~

∑
~k,s

|
1

c
〈f ;~k, s|

∫
d3x~j(~x) · ~A(~x)|i〉|2δ(Ei − Ef − ~kc) (9.35)

2. Write down the matrix element

〈f ;~k, s|
1

c

∫
d3x~j(~x) · ~A(~x)|i〉 =

√
2π~2

EkV

e~
mi
~ε~k,s ·

∫
d3xe−i

~k·~xψ∗f(~x)∇ψi(~x) (9.36)

=
e~
m

√
2π

EkV
.~ε~k,s · ~M

~M(~k, i, f) ≡
∫
d3x e−i

~k·~xψ∗f(~x)
~
i
∇ψi(~x).

NoteM does not depend on the polarization.

3. Change the sum over ~k to an integral.∑
~k

→
V

(2π)3

∫
d3k =

V

(2π)3

∫
k2dkdΩk (9.37)

Then eliminate the delta function in Fermi’s golden rule,

Γ =
e2k

2π~m2c2

∑
s

∫
dΩk|~εs · ~M|2. (9.38)

One can check the units of the above expression by noting that e2k has dimensions of
energy (as it is the same as e2/r) and thatM has units of momentum which are the same
as the units ofmc, thus the overall expression has units of energy over ~ which is an inverse
time. Remember that in many books and tables Γ often refers to energies rather than rates,
in which case one erases the ~ in the denominator.

4. Finally, perform the integral over the solid angle dΩk, i.e. integrate over directions of the
photon, to find Γ.
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9.7 The Dipole Approximation

For nuclear examples, typical γ energies are on the order of one MeV, which corresponds to
wavelengths of a few hundred fm, approximately 100 times the size of a nucleus. For atomic ex-
amples, emitted photons usually have wavelengths of hundreds of nm, several thousand times
the size of a typical atom. Thus, one might consider approximating the phase factor,

e−i
~k·~x ≈ 1. (9.39)

This approximation is known as the dipole approximation,

~M≈ 〈f |~P |i〉 (9.40)

=
im

~
〈f |[H0, ~r]|i〉

=
im(Ef − Ei)

~
〈f |~r|i〉,

thus resulting in a matrix element where ~r is sandwiched between the initial and final states,
hence the term “dipole”. The second line requires commuting H0 = ~P 2/2m with ~r, using the
fact that

[|~P |2, ri] =
∑
j

[P 2
j , ri] (9.41)

=
∑
j

(P 2
j ri − riP

2
j )

=
∑
j

(Pj(riPj + [Pj, ri])− riP 2
j )

=
∑
j

(Pj(riPj − i~δij)− riP 2
j )

= −i~Pi +
∑
j

(riP
2
j + [Pj, ri]Pj − riP 2

j )

= −2i~Pi,

or [~P 2, ~r] = −2i~~P .

One consequence of dipole radiation is the dipole sum rule. Using the expression for the matrix
element in Eq. (9.40),

|〈f |~r|i〉|2 =
| ~M |2~2

m2(Ef − Ei)2
, (9.42)

and rearranging Eq. (9.38), ∑
s

∫
dΩk|~εs · ~M |2 = Γi→f

2π~m2c2

e2k
, (9.43)

=
8π

3
| ~M |2.

142



PHY 851 9 SECOND QUANTIZATION AND RADIATION

The last step introduced a factor of 2/3 from averaging over the directions of ~k, using the fact
that ~εs(~k) is orthogonal to ~k. Combining these last two expressions, and replacing k with (Ei−
Ef)/~c,

|〈f |~r|i〉|2 =
3~4c3

e2(Ei − Ef)3
Γi→f . (9.44)

Finally, if one sums over all states i, one can use completeness to reduce the l.h.s. to

e〈i|r2|i〉 =
∑
f

3~4c3

e(Ei − Ef)3
Γi→f . (9.45)

This is the dipole sum rule, and it relates the charge radius squared to a weighted sum over
rates. Although the derivation suggests that emission is through a single charge e, it can be
derived more generally so that the l.h.s. is the charge radius squared even for systems with
charge spread over multiple particles with complicated wave functions. For objects composed of
multiple charges, collective states can dominate the sum on the r.h.s. because the many charges
might add to Z, and if those charges move together they emit proportional to Z2e2, as opposed
to single-particle motion which emits proportional to e2. For example, a giant dipole resonance
in 208Pb nuclei involves the 82 protons oscillating together, while the 126 neutrons oscillate in
the opposite direction. Such a state also absorbs photons readily.

9.8 Magnetic Dipole and Electric Quadrupole Radiation

The matrix element may be zero in the dipole approximation due to symmetry considerations,
usually parity constraints. In that case, one should keep the next order term in the expansion of
ei
~k·~x. One then obtains terms in the matrix element that look like

(~k · ~r)(~P · ~ε) =
1

2

{
(~k · ~r)(~P · ~ε)− (~ε · ~r)(~k · ~P )

}
+

1

2

{
(~k · ~r)(~P · ~ε) + (~ε · ~r)(~k · ~P )

}
=

1

2

{
(~k · ~r)(~P · ~ε)− (~ε · ~r)(~k · ~P )

}
+

1

2

{
(~P · ~ε)(~k · ~r) + (~ε · ~r)(~k · ~P )

}
,

Here, the momentum operator ~P acts on the charged particle, and should not be confused with
~~k, the momentum of the photon. The last step, which involved flipping the (~k · ~r) and (~P · ~ε)
factors in the second bracket was justified by the fact that ~P commuting with ~k ·~r yields a result
proportional to ~k which is in turn orthogonal to ~ε.

Using a vector identity the first term can be written

1

2

{
(~k · ~r)(~P · ~ε)− (~ε · ~r)(~k · ~P )

}
= (~r × ~P ) · (~k × ~ε). (9.46)

This operator looks like ~L · (~ε×~k)/2, thus it looks like the magnetic dipole operator multiplied
into ~ε× ~k. Remembering that ~A is defined by the direction of ε, and that ~k× ~A is generated by
∇× ~A, one can think of this term as ~L× ~B, which motivates the term magnetic dipole.
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Using the identity
~P =

m

i~
[~r,H0], (9.47)

the second term can be written as

1

2
〈f |

{
(~k · ~r)(~P · ~ε) + (~ε · ~r)(~k · ~P )

}
|i〉 (9.48)

=
m

i~
(Ei − Ef)〈f |(~ε · ~r) · (~k · ~r)|i〉

=
m

i~
(Ei − Ef)εikjQij,

Qij ≡ 〈f |rirj|i〉 −
1

3
δij〈f |r2|i〉.

The final term in the quadrupole operator Qij which is proportional to the delta function does
not contribute because ~ε and ~k are orthogonal. Radiation through this tThe term quadrupole
comes from the fact that all such operators can be written in terms of Y`=2,ms. Both the magnetic
dipole term and the electric quadrupole term are linear when expanding in ~k. They are smaller
than the electric dipole piece only because kr is small, as they are of the same order in the
coupling constant e.

The symmetry constraints of the radiation pattern will be a major point of discussion later in the
course when we discuss the Wigner-Eckart theorem.

9.9 Problems

1. Consider two oscillator levels described by the creation operators, a†1 and a†2, where the
Hamiltonian is

H = ε1a
†
1a1 + ε2a

†
2a2 + β(a†1a

†
2 + a1a2).

Consider the operators

b†1 ≡ cosh η a†1 + sinh η a2,

b†2 ≡ cosh η a†2 + sinh η a1.

(a) Show that bi and b†i behave like creation/destruction operators.
(b) Find the values of η, E0, E1 and E2 that allowH to be written as

H = E0 + E1b
†
1b1 + E2b

†
2b2.

This is known as a Bogoliubov transformation.

2. Consider b-particles of mass m confined by one-dimensional harmonic oscillator charac-
terized by a frequency ω. The b particles interact with massless and spinless a-particles
through their respective field operators,

Hint = g

∫
dxΨ†(x)Φ(x)Ψ(x),
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where Φ and Ψ are the field operators for the a-particles and b-particles respectively. As-
sume the b particles are sufficiently heavy to ignore their recoil energy.

Φ(x) =
1
√
L

∑
k

1
√
Ek

(
eikxa†k + e−ikxak

)
Ψ†(x) =

1
√
L

∑
k

eikxb†k,

(a) What are the dimensions of g?
(b) What is the decay rate of a b particle in the first excited state.

3. Show that Eq. (9.34) is satisfied by using the electric and magnetic fields defined in Eq.
(9.32). Note: You will ignore those cross terms involving rapid oscillations in time.

4. A proton in a nucleus decays from an excited state to its ground state by emitting a photon
of momentum ~~k and polarization ~εs. The matrix element describing the decay is

〈0, k, s|V |1〉 = β~εs ·
∫
d3r

ei
~k·~r
√
V

(
φ∗0(~r)∇φ1(~r)− [∇φ∗0(~r)]φ1(~r)

)
.

The factor β absorbed all the various factors involved in defining the vector field in Eq.
(9.32). Assume the ground and excited states are modeled with a three-dimensional har-
monic oscillator of frequency ω. If the excited state is in the first level of a harmonic oscilla-
tor and has an angular momentum projection m, what is the angular distribution, dΓ/dΩ
of the decay for each m. Assume that the wavelength of the photon is sufficiently long
that the phase ei~k·~r ≈ 1. Remember that the two polarizations of the photon must be per-
pendicular to ~k. You need only calculate the angular shape of the distribution – ignore the
prefactors.

5. A spinless particle of massM and charge e is in the first excited state of a three-dimensional
harmonic oscillator characterized by a frequency ω. Assume the harmonic oscillator in the
Cartesian state with nz = 1, i.e. m = 0. Using the interaction

Hint = ~j · ~A/c,
(a) Calculate the decay rate of the charged particle into the ground state of the oscillator

in the dipole approximation.
(b) Calculate dΓ/dΩ as a function of the emission angles of the photon, θ and φ.
(c) In terms of the unit vectors k̂, θ̂ and φ̂, the two polarization vectors which are allowed

for emission of a photon at an angle θ, φ are θ̂ and φ̂. For each polarization vector
above, calculate dΓs/dΩ, the probability of decaying via emission of a photon emited
in the θ, φ direction with polarization s.

6. Again consider a spinless particle of mass m and charge e n the first excited state of a
three-dimensional harmonic oscillator characterized by a frequency ω. However, this time
assume the charged particle is originally in a state with angular momentum projection
m = +1 along the z axis. Using the interaction

Hint = ~j · ~A/c,
and applying the dipole approximation,
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(a) Find the decay rate Γ of the first excited state.
(b) Find the differential decay rate dΓ/dΩ.
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10 Advanced Topics in Angular Momentum

10.1 Isospin

The angular momentum algebra developed last semester has a broad range of applications,
many of which have nothing to do with rotating systems but instead deal with symmetries in
some other space. One such example is isospin. In nuclear and particle physics isospin mim-
ics the spin mechanics used to discuss spin 1/2 particles. In quark language, the up quark is an
I = 1/2, Iz = 1/2 particle while the down quark is an I = 1/2, Iz = −1/2 particle. In nuclear
physics the proton and neutron form an iso-doublet with the proton being the Iz = 1/2 particle.
The strong interaction is invariant to “rotations” in isospin space. This means that the symme-
try is analogous to the rotational symmetries discussed with angular momentum. For instance,
composite particles (those made of several quarks) have good isospin, which is determined by
adding the isospin of several particles.

Isospin adds just like angular momentum. If you considered two nucleons (a nucleon is a proton
or a neutron), and assumed perfect isospin symmetry, one would assign the pair a total isospin
of I = 0 or I = 1, with projections Iz = −1, 0, 1 for I = 1. This is the same as listing
all the ways to combine two spin 1/2 particles, which combine into a triplet with S = 1 or a
singlet with S = 0. The state with I = 1 and Iz = 1 is made of two protons, and the state
with I = 1, Iz = −1 is made of two neutrons. The state with I = 1, Iz = 0 is comprised
of one proton and one neutron is a symmetric fashion. By symmetric, the two particle wave
function would look like Ψ(x1, p;x2, n) = Ψ(x1, n;x2, p). One would find this state by taking
the two-proton state, then applying the lowering operator, which would result in a symmetric
state. The I = 0, Iz state would be anti-symmetric. Because of the symmetry, one would expect
the three I = 1 states to behave similarly, while the I = 0 state might be different. Thus,
the deuteron, which is made of a proton and a neutron in an I = 0 state is bound, while the
three I = 1 combinations are all unbound. Because the deutreron’s isospin wave function is
anti-symmetric, and because nucleons are spin-half fermions, the overall wave function must
be anti-symmetric. This means that the deuteron has a symmetric spin wave function, and has
S = 1. The three I = 1 states then have an anti-symmetric spin wave function, with S = 0.
The pn combination thus has a bound state with I = 0, S = 1, and resonant behavior just
above threshold in the S = 0 channel. This resonant state is part of an I = 1 iso-triplet, i.e. the
same resonance appears in the pp and nn systems.

Isospin is an approximate symmetry. The symmetry is broken because the up and down quarks
have slightly different masses, and because of the Coulomb interaction, which is obviously dif-
ferent for up quarks (charge 2/3) and down quarks (charge -1/3).

Example 10.1: – The ρmeson
Consider the ρ+,0,− mesons which form an isotriplet (I = 1) and can decay into two pions.
Pions, π+,0,−, also form an isotriplet. Find the decay branches for each of the three ρ → 2π
decays.

Solution: First, look at the ρ+ or ρ−. The only branchings for each decay are

ρ+ → π+π0, ρ− → π−π0.
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However, the ρ0 might go into one of two branches

ρ0 → π+π− or π0π0.

To solve for the relative strengths of the two branches, find how to add two pion isospins to form
an I = 1, Iz = 0 state. Start by writing the I = 2, Iz = 2 state

|I = 2, Iz = 2〉 = |π+, π+〉,

then use the lowering operator to find the I = 2, Iz = 1 state. The lowering operator behaves
the same as for angular momentum,

I−|I, Iz〉 =
√
I(I + 1)− Iz(Iz − 1)|I, Iz − 1〉.

Thus,

|I = 2, Iz = 1〉 =
1
√

2
|π0, π+〉+

1
√

2
|π+, π0〉.

By orthogonality,

|I = 1, Iz = 1〉 =
1
√

2
|π0, π+〉 −

1
√

2
|π+, π0〉

By applying the lowering operator,

√
1 · (1 + 1)− 1 · (1− 1)|I = 1, Iz = 0〉 =

√
1 · (1 + 1) + 0 · (0− 1)

2
|π−π+〉

−
√

1 · (1 + 1) + 0 · (0− 1)

2
|π+π−〉

|I = 1, Iz = 0〉 =
1
√

2
|π−π+〉 −

1
√

2
|π+π−〉

The I = 1, Iz = 0 combination refers to the ρ0 and has no π0π0 contribution. Thus, the
two pions must both be charged if they are two couple to the ρ0. Also, the fact that the two
terms appear identical, except for the switching of the π+ and π− tells us that the two final
spatial (momentum) states of the pions must be anti-symmetric to cancel the anti-symmetry of
the isospin wave function. This is accomplished by requiring the ρ to decay into a pwave. Note
that the ρ+ and ρ− isospin wave functions were also anti-symmetric.

Angular momentum algebra applies to any system where a “rotation”, e.g. eiσiφ/2, leaves the
Lagrangian unchanged. Isospin is not an “exact” symmetry. Although the strong interaction
conserves isospin, the electromagnetic interaction manifestly violates isospin. Thus the ρ0 does
not decay with 100% probability into two charged pion, but has a very small probability to decay
into π0π0 that is not even listed in the particle data book, http://pdg.lbl.gov).

Conservation of isospin plays a large role in nuclear physics, where the proton and neutron
form the basis. A nucleus like 12C which has Iz = 0 might have states of total isospin, I =
0, 1, 2, · · · 6. The nucleus 12N which has Iz = 1 can not have isospin zero. The ground state of
12C has I = 0 and has no analog in Boron or Nitrogen, but there does exist an excited state of
12C with I = 1 which has very similar properties to the ground states of 12N and 12B.
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Finally, we should mention that sometimes symmetries involve more than just the rotation of
two states into one another. For instance, although the strange quark is much more massive
than the up and down quarks, one can consider the three quarks to form a basis. If one ig-
nored the quark masses, this basis has a greater symmetry as it involves rotations among three
constituents, SU(3), rather than the SU(2) symmetry discussed before. In SU(3) the mechanics
are more complicated compared to the SU(2) mechanics used to study angular momentum or
isospin.

10.2 Combining Three Angular Momenta

When we studied two angular momenta, we described the “addition” as a change of basis where
the state with labels |jj, j1,m1,m2〉 was written as a linear combination of states with labels
|j1, j2, J,M〉. When adding three angular momenta the change of basis is

|j1, j2, j3,m1,m2,m3〉 ↔ |(j1, j2), j3, J12, J,M〉. (10.1)

Again,M is the projection of the total angular momentum J with values from−J to J .

In order to couple the three angular momenta j1 and j2 were coupled to J12 before j3 and J12

were coupled to J . Thus J12 survives as a quantum number, which is necessary as the original
state had six labels, which requires six labels for the final state.

The change of basis can be described in terms of Clebsch-Gordan coefficients. First we describe
an intermediate state with j1 and j2 coupled to J12.

|j1, j2, J12, j3,M12,m3〉 =
∑
m1,m2

|j1, j2, j3,m1,m2,m3〉〈j1, j2, j3,m1,m2,m3| (10.2)

|j1, j2, J12, j3,M12,m3〉

=
∑
m1,m2

Cj1,j2
m2,m2;J12,M12

|j1, j2, j3,m1,m2,m3〉.

One can now consider the states with total angular momentum J created by coupling J12 to j3.

|(j1, j2), j3, J12, J,M〉 =
∑

M12,m3

|j1, j2, j3, J12,M12,m3〉〈j1, j2, j3, J12,M12,m3| (10.3)

|(j1, j2), j3, J12, J,M〉

=
∑

m1,m2,m3,M12

CJ12,j3
M12,m3;J,MC

j1,j2
m1,m2;J12,M12

|j1, j2, j3,m1,m2,m3〉.

The choice of coupling j1 with j2 to J12 was arbitrary, as one might have instead chosen to
couple j1 to j3 or j2 to j3. This choice represents a change of basis which can be represented by
Racah coefficientsW .

〈(j1, j2), j3, J12, J,M |j1, (j2, j3), J23, J,M〉 (10.4)

= δM,M ′

√
(2J12 + 1)(2J23 + 1)W (j1, j2, j3, J ; J12, J23)

= δM,M ′(−1)j1+j2+j3+J
√

(2J12 + 1)(2J23 + 1)

{
j1 j2 J12

j3 J J23

}
,
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where the quantity in brackets is known as the Wigner 6 − j symbol, which is simply another
incarnation of the Racah coefficient. As a homework problem you will be asked to express the
Racah coefficientW in terms of Clebsch-Gordan coefficients.

10.3 Tensor and Rotation Operators, WignerD matrices

Often physics involves calculating transition elements of the form

〈`′,m′|T kq |`,m〉, (10.5)

where the labels in the kets and bras denote the angular momentum of the initial and final
states and T kq is an operator that transforms like spherical harmonics Yk,q under rotation. Such
operators are known as irreducible tensor operators. Examples are

1. Lz which transforms Y1,0

2. L+ which transforms as Y1,1

3. r2 which transforms as Y0,0

4. x or px which transform as−Y1,1 − Y1,−1
...

Operators such as x2 can be written as a sum over Y 2
ms, and the coefficients can be found by

viewing the expressions for the Y `
ms. One can express any analytic function of x, y and z as a

sum of irreducible tensor operators. The term irreducible refers to the fact that under rotations
the operators mix only amongst irreducible subsets,

R(~α)T kqR
−1(~α) = Dk

q,q′(~α)T kq′. (10.6)

The rotations mix only the 2k+1 operators with the same k but different q. The term irreducible
refers to the fact that rotations can mix in any of the different q components.

The rotation matricesDkq,q′(~α) are defined in terms of Euler angles,

R(α1, α2, α3) = e−iα1Jz/~e−iα2Jy/~e−iα3Jz/~, (10.7)

D`m,m′(~α) = 〈`m′|R(~α)|`,m〉.

The order of the rotations might seem odd above. The first Euler rotation is described by α1, yet
it appears to operate last on the ket. To understand why the Euler angles are expressed in the
particular order, one can write

R(φ, θ, ψ) = e−iJz′ψ/~e−iJy′θ/~e−iJzφ/~, (10.8)

where the y′ axis is the y axis after an initial rotation around the original z axis by an angle φ
and z′ is the new z axis formed after the rotation of θ about the y′ axis. Thus,

e−iJy′θ/~ = e−iJzφ/~e−iJyθ/~eiJzφ/~ (10.9)

e−iJz′ψ/~ = e−iJy′θ/~e−iJzψ/~eiJy′θ/~.
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Substituting these into the expression for R allows one to write the rotation matrices with-
out mentioning primed axes. Aside from the primes disappearing, the angles φ and ψ have
swapped their order,

R(φ, θ, ψ) = e−iJzφ/~e−iJyθ/~e−iJzψ/~. (10.10)

TheDmatrices can be written in closed form, https://en.wikipedia.org/wiki/Wigner_D-matrix,

Dj
m′m(α1, α2α3) = e−im

′α1djm′m(α2)e−imα3, (10.11)

djm′m(α2) = (−1)λ
(

2j − k
k + a

)1/2 (
k + b
b

)−1/2

· (sin(α2/2))a (cos(α2/2))b P
(a,b)
k (cosα2),

where

k = min(j +m, j −m, j +m′, j −m′),

k =


j +m : a = m′ −m; λ = m′ −m
j −m : a = m−m′; λ = 0
j +m′ : a = m−m′; λ = 0
j −m′ : a = m′ −m; λ = m′ −m

,

b = 2j − 2k − a.

Here,P a,b
k (cosα2) are Jacobi polynomials, https://en.wikipedia.org/wiki/Jacobi_polynomials.

Fortunately, routines for calculatingD matrices are readily available.

TheD matrices have a variety of properties, many of which are related to those of the spherical
harmonics. For example, the orthogonality property is∫

dω D(j1)∗
m′1,m1

(~ω)D(j2)

m′2,m2
(~ω) =

δj1,j2δm1,m2δm′1,m′2
2j1 + 1

. (10.12)

Here the integral over dω is shorthand for averaging all three Euler angles, i.e. the integration
covers all the 0 < α1, α3 < 2π, and −1 < cosα2 < 1, then divides by the net angle, 8π2 so
that

∫
dω = 1. Note that for half integer spins, the integrals must subtend twice the angular

range.

10.4 The Two-Dimensional Analogy of the Wigner Eckart Theorem

Before launching into the Wigner Eckart theorem, it is much easier to consider the two-dimen-
sional example. Consider bras and kets, which transform as eimφ, and additionally, consider
operators, Tq, which also transform as eiqφ. For example the operator x can be written as a sum
of two pieces, each of which transforms in this manner.

x =
r

2
(eiφ + e−iφ). (10.13)

Each term will be considered separately, or as an irreducible tensor operator. Under rotations,
the states transform as

R(φ)|m〉 = eimφ|m〉, (10.14)

〈m|R−1(φ) = 〈m|e−imφ,
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and the operators transform as

R(φ)TqR−1 = eiqφTq. (10.15)

Thus under rotation,

〈m′|Tq|m〉 → 〈m′|R−1(φ)R(φ)TqR−1(φ)|m〉 (10.16)

= ei(m+q−m′)φ〈m′|Tq|m〉.

The expectation must not depend on the rotation angle φ. This was certainly expected, because
if you rotate both the state and the operator by the same angle, nothing should change. Thus,
the matrix element must be zero unlessm+ q −m′ = 0. One could state this fact by

〈β′,m′|Tq|β,m〉δm′,m+qF (m, q), (10.17)

where finding F (m, q) would typically involve solving for the matrix element for each m and
each q. The labels β and β′ simply encapsulate all other labels needed to describe the states, but
which are not affected by rotation, e.g. the radial wave function.

The proofs of the two-dimensional and three-dimensional versions have much in common, but
the three-dimensional version is more powerful. Jumping ahead, the three-dimensional version
is

〈β̃, J,M |T kq |β, `,m`〉 = Ck`
qm`;JM

F (β̃, J̃ , k, β, J), (10.18)

where F might need to be calculated for each of the five arguments. Like the two-dimensional
version, there is a constraint on summing the projections, m + q = M , and is enforced by
the Clebsch-Gordan coefficient. Unlike the three-dimensional version, the function F does not
depend on the projections,m,M and q. This has to do with the fact that in three dimensions one
can rotate the states and operator about the x or y axis, which results in mixing various values
of m, but does not mix different values of J . Thus, one can calculate F for one combination
of m, q and M , as long as the Clebsch-Gordan coefficient is non-zero, then generate all other
combinations by taking ratios of Clebsch-Gordan coefficients. This proof is detailed below.

Example 10.2: – Expressing a Two-Dimensional Function in Terms of Irreducible Tensor Op-
erators
Express the function, f(x, y) = xy, in terms of irreducible tensor operators. I.e., in polar coor-
dinates where the angular dependences are of the form eiφ.

Solution: First, write

x =
r

2
(eiφ + e−iφ),

y =
r

2i
(eiφ − e−iφ),

xy =
r2

4i

(
e2iφ − e−2iφ

)
.

Thus, xy can be considered as two terms, one which rotates as e2iφ and one which rotates as
e−2iφ. The two terms would be considered separately. If one were to calculate the matrix element
〈β′,m′|xy|β,m〉, the result would be zero unlessm andm′ differed by±2.
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10.5 The Wigner Eckart Theorem

The Wigner-Eckart theorem shows that the matrix element,

〈β̃, J,M |T kq |β, `,m`〉 = Ck`
q,m`;J,M

f(β, β̃, J, k, `).

This is profoundly useful for two reasons, both related to the fact that the function f does not
depend on q,m, orM . First, many matrix elements turn out to be zero because of the vanishing
Clebsch-Gordan coefficient. Secondly, if one needs multiple matrix elements, one need only
calculate one, then obtain the remaining ones by taking ratios of Clebsch-Gordan coefficients.

To prove the Wigner-Eckart theorm, one first defines the state,

|β′, k, `, j,m〉 ≡
∑
q,m

Ck`
qm`;jm

T kq |β, `,m`〉. (10.19)

This must rotate as an object with angular momentum J ′ and projection M ′. Using the com-
pleteness of Clebsch-Gordan coefficients, one can also state that

T kq |β, `,m`〉 =
∑
jm

Ck`
qm`;jm

|β′, k, `, j,m〉. (10.20)

To prove the Wigner Eckart theorem, one must prove that the matrix element
〈β̃, J,M |β′, k, `, j,m〉 is (a) proportional to δMm, (b) proportional to δJj and (c) independent
of M (aside from the delta function). Proving (a) and (b) rely on noting that the overlaps are
independent of rotation if both the bra and ket rotate together,

〈β̃, J,M |β′, k, `, j,m〉 = 〈β̃, J,M |R−1(~α)R(~α)|β′, k, `, j,m〉. (10.21)

Under rotations about the z axis the bra and ket simply pick up a phase under rotation, e.g.
|β̃, J,M〉 → |β̃, J,M〉eiMφ. Thus, if one averages the overlap over all azimuthal angles, the
result will be proportional to δMm. This proves (a). To prove (b), one can consider the average
over all possible rotations of the three Euler angles. If one expresses the rotated states in terms
of theD matrices, e.g. the bra becomes

R(~α)|β̃, J,M〉 =
∑
M ′

(DJMM ′(~α))∗|β̃, J,M ′〉. (10.22)

One then does the same for the ket, one can average over ~α and use the orthogonality relation
of theD matrices, Eq. (10.12), to see that the overlap requires that J = j. Thus,

〈β̃, J,M |β′, k, `, j,m〉 = 〈β̃, J,M |β′, k, `, J,m〉δJjδMm. (10.23)

Finally, to prove (c), one needs to see that, aside from the δMm factor, there is no otherM depen-
dence, or equivalently that 〈β̃, J,M |β′, k, `, j,M〉 is independent of M . To see this consider
the raising and lowering operators. One can see that

|β′, k, `, J,M − 1〉 =
1√

J(J + 1)−M(M − 1)
J−|β′, k, `, J,M〉, (10.24)

|β̃, J,M − 1〉 =
1√

J(J + 1)−M(M − 1)
J−|β̃, J,M〉.
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Thus,

〈β̃, J,M − 1|β′, k, `, J,M − 1〉 (10.25)

=
1

J(J + 1)−M(M − 1)
〈β̃, J,M |J+J−|β′, k, `, J,M〉

=
1

J(J + 1)−M(M − 1)
〈β̃, J,M |J2

x + J2
y + Jz|β′, k, `, J,M〉/~2

=
1

J(J + 1)−M(M − 1)
〈β̃, J,M |J(J + 1)−M(M − 1)|β′, k, `, J,M〉

= 〈β̃, J,M |β′, k, `, J,M〉.
Putting (a), (b) and (c) together, Eq. (10.20) becomes

〈β̃, J,M |T kq |β, `,m`〉 =
∑
jm

Ck`
qm`;jm

〈β̃, J,M |β′, k, `, j,m〉 (10.26)

= Ck`
qm`;JM

〈β̃, J,M ′|β′, k, `, J,M ′〉,
and the final matrix element is independent ofM ′. For no particularly good reason, the Wigner-
Eckart theorem is expressed as

〈β̃, J,M |T kq |β, `,m`〉 = Ck`
qm`;JM

〈β̃, J ||T (k)||β, `, J〉
√

2J + 1
. (10.27)

The odd form with the two vertical bars carries no significance, aside from stating that the matrix
element does not depend on the projection, but can depend on J , β, k and `. The choice of the√

2J + 1 in the denominator is also arbitrary, but conventional. The matrix element with the
double bars is known as the reduced matrix element. It is confusing as it implies that it is an
object that one may calculate directly. This is not true. One must first calculate one of the matrix
elements for a specific value of M , then generate the reduced matrix element. Finally, from the
reduced matrix element one can find all other matrix elements.

The Wigner Eckart theorem is profound for two reasons.

1. An irreducible tensor operator T kq will not link two states of good angular momentum
unless the Clebsch-Gordan coefficient coupling the angular momentum of the ket with the
angular momentum of T to the angular momentum of the bra is not vanishing. Thus a
vector operator can not connect a j = 2 state to a j = 0 state. Also, the projections must
add up zero, q +m = m′.

2. If one needs to calculate 〈β′, k, j, j′,m′|T kq |β, j,m〉 for some given set of m,m′ and q,
one can choose any values of m,m′ and q that might make calculation of the matrix ele-
ment most simple then use the fact that the desired matrix element is the calculated matrix
element multiplied by the ratio of the Clebsch-Gordan coefficients. For example if one
needs to calculate a matrix element with m′ = 1, m = −1 and q = 2, one could simple
calculate the matrix element with all three projections equal to zero, then multiply by the
ratio of Clebsch-Gordan coefficients.

〈β′, k, j, j′,m′ = 1|T kq=2|β, j,m = −1〉 (10.28)

= 〈β′, k, j, j′,m′ = 0|T kq=0|β, j,m = 0〉
〈k, j, j′, 1|k, j, 2,−1〉
〈k, j, j′, 0|k, j, 0, 0〉

.
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This is handy because the integrals required to find the matrix element may be much easier
to perform with the projections all set to zero, and if one needs to find the elements for
many values of the projections, the matrix element must be calculated only once for each
J , as ratios Clebsch-Gordan coefficients may be used to find all other matrix elements.

Example 10.3: – Dipole Operators and the Wigner-Eckart Theorem
Suppose one needed to calculate the matrix elements, 〈β̃, J̃ = 2, M̃ |x|β, J = 1,M〉, for allM
and M̃ .

1. For which values ofM are the elements zero?

2. If one calculated the matrix element for γ ≡ 〈β̃, J̃ = 2,M = 0|z|β, J = 1,M = 0〉,
express all the non-zero matrix elements above in terms of γ and Clebsch-Gordan coeffi-
cients.

Solution:
By inspecting the form of the Y`m for ` = 1,

Y1,1(θ, φ) = −
√

3
√

8π
sin θeiφ, (10.29)

Y1,−1(θ, φ) =

√
3

√
8π

sin θe−iφ,

Y1,0(θ, φ)

√
3

√
4π

cos θ,

one can write x, y and z in terms of irreducible tensor operators,

1
√

2
(x± iy) = ∓T 1

±1, (10.30)

x =
1
√

2
(−T 1

1 + T 1
−1),

y =
i
√

2
(T 1

1 + T 1
−1),

z = T 1
0 .

From this, one can see that from the fact that x either raises or lowers the projection,

〈β̃, J = 2,M = 2|x|β, J = 1,M = 0〉 = 〈β̃, J = 2,M = 2|x|β, J = 1,M = −1〉 = 0,
(10.31)

〈β̃, J = 2,M = 1|x|β, J = 1,M = 1〉 = 〈β̃,M = 1|x|β, J = 1,M = −1〉 = 0,

〈β̃, J = 2,M = 0|x|β, J = 1,M = 0〉 = 0,

〈β̃, J = 2,M = −1|x|β, J = 1,M = 1〉 = 〈β̃,M = −1|x|β, J = 1,M = −1〉 = 0,

〈β̃, J = 2,M = −2|x|β, J = 1,M = 1〉 = 〈β̃, J = 2,M = −2|x|β, J = 1,M = 0〉 = 0.
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The non-zero elements are then

〈β̃, J = 2,M = 2|x|β, J = 1,M = 1〉 = −
γ
√

2

C1,1
1,1;2,2

C1,1
0,0;2,0

, (10.32)

〈β̃, J = 2,M = 1|x|β, J = 1,M = 0〉 = −
γ
√

2

C1,1
1,0;2,1

C1,1
0,0;2,0

,

〈β̃, J = 2,M = 0|x|β, J = 1,M = −1〉 = −
γ
√

2

C1,1
1,−1;2,0

C1,1
0,0;2,0

,

〈β̃, J = 2,M = 0|x|β, J = 1,M = 1〉 =
γ
√

2

C1,1
−1,1;2,0

C1,1
0,0;2,0

,

〈β̃, J = 2,M = −1|x|β, J = 1,M = 0〉 =
γ
√

2

C1,1
−1,0;2,−1

C1,1
0,0;2,0

,

〈β̃, J = 2,M = −2|x|β, J = 1,M = −1〉 =
γ
√

2

C1,1
−1,−1;2,−2

C1,1
0,0;2,0

.

As was done in the above example, the form of the spherical harmonics were used to express
polynomials of x, y and z in terms of irreducible tensor operators. To that end, a list of the
spherical harmonics and associated polynomials to second order is presented here.

Y0,0 =
1
√

4π
, (10.33)

Y1,0 =

√
3

4π
cos θ,

Y1,±1 = ∓
√

3

8π
sin θei±φ,

Y2,0 =

√
5

16π
(3 cos2 θ − 1),

Y2,±1 = ∓
√

15

8π
sin θ cos θe±iφ,

Y2,±2 =

√
15

32π
sin2 θe±2iφ,

Y`−m(θ, φ) = (−1)mY ∗`m(θ, φ).

Defining a set of irreducible tensor operators,

T kq ≡ r
kYk,q

√
4π(2k + 1), (10.34)

allows one to define the following polynomials in terms of irreducible tensor operators, using
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z = r cos θ and (x+ iy) = r sin θeiφ.

T 0
0 = 1, (10.35)

T 1
1 = −

1
√

2
(x+ iy),

T 1
0 = z,

T 1
−1 =

1
√

2
(x− iy),

T 2
2 =

√
3

8
(x2 + 2ixy − y2),

T 2
1 = −

√
3

2
z(x+ iy),

T 2
0 =

1

2
(3z2 − r2),

T 2
−1 =

√
3

2
z(x− iy),

T 2
−2 =

√
3

8
(x2 − 2ixy − y2).

The prefactor r
√

4π(2k + 1) was arbitrary. Any function of k is fine. It is only important that
the ratio of elements within a given k multiplet are unchanged. These expressions can then be
inverted to express the polynomials in terms of the irreducible tensor operators,

1 = T 0
0 , (10.36)

x =
1
√

2
(T 1
−1 − T

1
1 ),

y =
i
√

2
(T 1
−1 + T 1

1 ),

z = T 1
0 ,

x2 =
1

2

√
2

3
(T 2

2 + T 2
−2)−

1

3
T 2

0 +
1

3
T 0

0 r
2,

y2 = −
1

2

√
2

3
(T 2

2 + T 2
−2)−

1

3
T 2

0 +
1

3
T 0

0 r
2,

z2 =
2

3
T 2

0 +
1

3
T 0

0 r
2,

xy = i
1
√

6
(T 2
−2 − T

2
2 ),

xz =
1
√

3
(T 2
−1 − T

2
1 ),

yz =
i
√

3
(T 2
−1 + T 2

1 ).

This procedure could have been used to express other polynomials, e.g. LxLy is the same as xy,
that behave identically under rotation.
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For operators combined from several operators, e.g. PxLz, one need be more careful. As in this
case PxLz does not behave like xz. If one considers PiLj as a 3× 3 matrix, there are 9 indepen-
dent terms. In contrast the combination PiPj would have only 6 terms because it is manifestly
symmetric. For rank-2 tensors combined from two different vector operators ~A and ~B, one can
consider the following combinations, ~A · ~B, AiBj − BiAj and AiBj + BiAj − 2 ~A · ~B/3.
The first combination, ~A · ~B is clearly a scalar, and behaves like an irreducible tensor operator,
T k=0
q=0 . The second is antisymmetric and behaves as part of the three pseudo-vector components,
εijkAjBk, or equivalently ~A× ~B. These can be written in expressed as a linear sum of the three
T k=1q operators as was done above. This leaves the traceless symmetric combination at the end.
These five independent operators can be written in terms of T k=2

q operators. For example, the
operator PxLy would be needed to be expressed as a sum over pieces with some operator T k=2

q

and some different set of irreducible operators with T ′k=1
q .

Example 10.4: – Combining operators to make irreducible tensor operators
Express the operator PxLy as a linear sum over irreducible tensor operators. One can write Px
and Ly as

Px =
1
√

2
(−T 1

1 + T 1
−1,

Ly =
i
√

2
(S1

1 + S1
−1)

This gives

PxLy =
1

2

{
−T 1

1S
1
1 + T 1

−1S
1
−1 − T

1
1S

1
−1 + T 1

−1S
2
1

}
. (10.37)

Each terms behaves the like the product of two states in the mm′ basis, which can be rewritten
in terms of the JM basis. Thus, in terms of irreducible tensor operatorsQk=2

q andRk=1
q ,

PxLy =
1

2
(−Q2

2 +Q2
−2) +

1
√

2
R1

0. (10.38)

Here, the prefactors 1/2 and 1/
√

2 are arbitrary, as what is important is the PxLy will mix
states according to both k = 2 and k = 1 pieces. If the different combination, e.g. P 2

x , had
been proposed, a k = 0 contribution might also have contributed. If we had been considering
the operator PxPy, the last term would have disappeared, and only k = 2 terms would have
been needed. Thus, if one needed to calculated all quadratic combinations for all nine different
matrix elements 〈αJfMf |PiLj|JiMi〉, one would need to calculated three different integrals,
and only then could the Wigner-Eckart theorem be applied to find the remaining six elements.
Similarly, if one needed to find whether some matrix element were zero, one would need to
consider that some Cartesian representation PiLj could have components of tensor operators
T kq with k = 0, 1, 2.

The Wigner Eckart theorem explains many of the selection rules associated with atomic or nu-
clear transitions. In the dipole approximation the transition operator behaves as if it has J = 1.
Thus, there are no transitions with |∆J | > 1 because the Clebsch-Gordan coefficients would
then vanish.
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10.6 Problems

1. The ∆++,+,0,− baryons have isospin 3/2 while the π+,0,− mesons form an isotriplet. Cal-
culate the branching ratios of all four ∆ decays into the corresponding pπ or nπ channels.
(For instance, what fraction of the ∆+s decay into pπ0 vs the nπ+ channels.)

2. TheS(975) meson is an isoscalar, and decays into two pions. What fraction of the two-pion
decays are expected to go into the neutral pion channel?

3. Write the Racah coefficient,W (j1, j2, j3, J ; J12, J23) which is defined by

〈(j1, j2), J12, j3, J,M
′|j1, (j2, j3), J23, J,M〉

= δM,M ′

√
(2J12 + 1)(2J23 + 1)W (j1, j2, j3, J ; J12, J23),

in terms of Clebsch-Gordan coefficients.

4. For each operator, define a set of irreducible tensor operators T kq , then define the operator
as a linear sum of the irreducible operators. (When defining a set, define T kq for all possible
q.)

(a) z
(b) px
(c) x2

(d) LxLy

5. In terms of Pauli matrices, write down the rotation matrix D(j)
mm′(φ, θ, ψ) for the case

where j = 1/2, and φ, θ and ψ are Euler angles.

6. Using Eq.s (10.8) and (10.9) derive Eq. (10.10).

7. Assume one is calculating matrix elements for transitions from a d state to a s state via a
quadrupole type coupling, and that one has performed an integral and found

I ≡ 〈`′ = 0,m′ = 0|(z2 − r2/3)|` = 2,m = 0〉.

Given that one knows I , find

〈`′ = 0,m′ = 0|(x2 − r2/3)|` = 2,m〉

for all five values of m, in terms of I . You can leave your answer in terms of Clebsch-
Gordan coefficients.

8. The matrix element for the electromagnetic decay of an atomic d state withm0 to a p state
withmf is given by the matrix element,

M≡ α~ε · 〈` = 1,mf |~r|` = 2,m0〉

where α~ε · ~r is the interaction responsible for the decay, and ~ε is the polarization vector of
the outgoing photon.

Consider the intensity of RCP light that is emitted from along the z axis. The polarization
vector of such light can be written as (1/

√
2)(x̂ + iŷ). Find the RELATIVE intensities
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of such light for all 15 combinations of m0 and mf . You can get Clebsch-Gordan coef-
ficients from a table, e.g. https://en.wikipedia.org/wiki/Table_of_Clebsch-Gordan_
coefficients, or use an on-line calculator, e.g. https://www.wolframalpha.com/input/
?i=Clebsch-Gordan+calculator.
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11 Fermions

When a single particle is in a system, it does not matter whether it is a fermion or a boson. How-
ever, when multiple particles are present, the behavior can be entirely different. The difference
between fermions and bosons can be explained by a variety of perspectives.

1. When considering populations of single-particle levels, no more than one fermion of a
given type and spin can be assigned to a particular level, while an arbitrary number of
bosons can be placed in a given level. This constraint on fermions is known as the Pauli
exclusion principle.

2. For identical fermions of the same spin, the multi-particle wave function ψabc(x1, x2, x3)
must be completely anti-symmetric, while the wave function for bosons must be symmet-
ric.

3. Creation and destruction operators for fermions obey anti-commutation relations while
those for bosons obey commutation relations.

Examples of fermions are electrons, quarks and neutrinos. Examples of bosons are photons and
gluons. Composite particles made of an odd number of fermions, e.g. a proton which is made
of three quarks, are also fermions. Composite particles made of an even number of fermions
are bosons, e.g. a 12C atom which is made of 6 protons, 6 neutrons and 6 electrons. All bosons
have integral spin while all fermions have half-integral spin. The relation of statistics to spin is
a profound consequence of the time-reversal property in quantum field theories.

First, we will consider consequences of the Pauli exclusion principle. Later sections will presents
discussions from the perspectives of anti-symmetrized wave functions or anti-commuting field
operators.

11.1 The Spin Statistics Theorem

Consider the overlap of a state with N particles, where we refer to this N -particle state as |Φ〉.
One can take the overlap of this state with the state 〈~r1, s1;~r2, s2; · · · ;~rN , sN |Φ〉, where si
is the spin of the ith particle, which is at ~ri. If one writes the same overlap, but with a set
of two indices permuted, e.g. ~r4, s4 ↔ ~r7, ~r7, the new overlap will be the same but with a
relative sign of ±1. The permutation operator P , in this example it permutes the i = 4 and
i = 7 particles, cannot change the physics. Thus, it must commute with the Hamiltonian, and
because P2 must return to the original state, its eigenvalues must be ±1. The spin-statistics
theorem states that for half-integral-spin (s = 1/2, 3/2, 5/2 · · · ) particles the eigenvalue is
-1, and for integral spins the eigenvalue is unity. Thus, the wave functions for integral-spin
particles (bosons) are symmetric and the wave functions for half-integral particles (fermions)
are anti-symmetric under permutation.

To motivate the spin-statistic theorem, one can consider two spin half particles, each with spin
〈Sz〉 = 1/2. The two particles are in the x − y plane at positions at opposite sides of a circle
centered at the origin. If one were to rotate about the z−axis by a phase φ =180 degrees, the
spin wave function for each particle would change by a phase,

eiσzφ/2 = cos(φ/2) + iσz sin(φ/2). (11.1)
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For spin-up particles, this introduces a phase factor of i when the rotation is over 180 degrees.
A second phase factor of i comes from rotating the second particle, resulting in an overall phase
factor of−1. The two particles are now in the same state but permuted. Thus, the permutation
is equivalent to this 180 degree rotation and has a phase factor of −1 relative to the unrotated,
or unpermuted, state, or equivalently the permutation. For bosons, rotating by 180 degrees
yields a factor of −1 for each particle, which gives an overall factor of +1. Thus, half-integral-
spin particles should be anti-symmetric under permutation, while permutation of integral-spin
particles should yield the same overall state, without a sign change.

If the two-particle wave function is anti-symmetric, the two particles cannot be in the same
state. If one uses field operators to create or destroy particles, the operators must obey anti-
commutation relations, rather than the commutation relations used in Sec. 9.2, if the particles
are fermions.

11.2 Fermi Gases

Consider a large numberN of fermions of spin s and massm in a large box of volume V . Here,
the box is defined by a confining potential that is zero inside, and infinite outside, the box. If
the fermions are placed in the lowest levels consistent with the Pauli exclusion principle, the
highest single-particle energy is known as the Fermi energy εf and the momentum of that state
is known as the Fermi momentum pf . The density is a function of the Fermi momentum,

N = (2s+ 1)
V

(2π~)3

∫ p<pf

d3p, (11.2)

n =
N

V
= (2s+ 1)

1

6π2~3
p3
f ,

where s is the intrinsic spin of the fermion, e.g. 1/2, 3/2 · · · . Note that the Fermi momentum
is determined by the density and does not depend on the particle’s mass, whereas the Fermi
energy does depend on the mass, εf = p2

f/(2m). For this course, we use the term “Fermi
energy” to refer to the kinetic energy of a particle at the top of the Fermi surface. Contributions
to the energy from the mass or potential also play a role, but the term “Fermi energy” will refer
to only the kinetic part of the energy. When reading the literature, one needs to be careful in
understanding how the author is using the term.

One example where the Fermi energy plays a pivotal role is in neutron stars. Due to beta decays
neutrons can change into protons through the emission of an electron and a neutrino.

n→ p+ e+ ν̄, p+ e→ n+ ν. (11.3)

Because neutrinos can exit the star due to their negligible masses and small cross-sections, they
need not be considered with respect to conservation laws. However, baryon number (neutrons
plus protons) and electric charge must be conserved, and in fact, the net electric charge density
must be zero. Thus, beta decays, and inverse beta decays, can proceed as long as the following
constraints are met,

nn + np = nB, (11.4)
ne = np,
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where nn, np and ne are the proton, neutron and electron densities respectively and nB is the
baryon density. Beta decays will proceed until the energy is minimized for the given value of
the baryon density nB. Neutrons are more massive than protons by an amount (mn−mp)c

2 =
1.3 MeV which more than accounts for the electron’s mass of 0.511 MeV. When the energy is
minimized, changing a neutron to a proton plus electron must leave the energy unchanged if
the particles are added and removed from the top of the Fermi surfaces. If these energies were
changed, reaction channels would be open to lower the energy. These reactions would emit
either a neutrino or anti-neutrino of vanishing energy to bring the energies into balance. For
example if ε(p)

f + ε
(e)
f + mp + me > ε

(n)
f + mn, one could lower the energy by the reaction

p+ e→ n+ ν. This reaction would proceed until enough protons and electrons were taken off
the top of their Fermi surfaces, and enough neutrons were added to the top of the neutron Fermi
sea that the following condition is met,

εnf + 1.3 MeV = εef + εpf + 0.511 MeV. (11.5)

Combining this equation with the two constraints in Eq. (11.4) allows one to find all three Fermi
momenta in terms of nB.

At very low density, the fact that neutrons are heavier than protons by 1.3 MeV leads to protons
being more populous than neutrons. Therefore, in normal stars, protons are much more nu-
merous than neutrons. At high density the electron’s Fermi momentum plays the pivotal role.
Because electrons and protons have the same density, they have the same Fermi momentum, but
the electron’s Fermi energy is much higher due to its lighter mass. For a proton,

ε
(p)
f =

√
m2
p + p2

f −mp ≈ p2
f/(2mp), (11.6)

which would be smaller if the protons mass were even larger. Electrons are lighter and thus
have a much smaller Fermi energy, and in fact the densities tend to be so high that the Fermi
momenta well exceed the mass and the Fermi energies become,

ε
(e)
f =

√
m2
e + p2

f −me ≈ pf . (11.7)

Because electrons and protons must have the same density, they have the same Fermi momen-
tum. For the same Fermi momentum the electron’s Fermi energy is much higher than that of the
protons. Thus, at high density the system must try to reduce the electron density which in turn
requires a reduction in the proton density in order to maintain charge neutrality, and results in
a large excess of neutrons in order to achieve the required baryon density. This is certainly the
case for the interior of neutron stars where densities are of the order 0.1 baryons per cubic fm.
The resulting electron Fermi energy is on the order of 10 MeV as is the resulting neutron Fermi
energy. At these densities the electrons are extremely relativistic, because the electron Fermi
energy is much higher than the electron mass, while the protons and neutrons remain largely
non-relativistic.

Example 11.1: – Filling the Harmonic Oscillator with Fermions
As a second example we consider the filling of harmonic oscillator energy levels. This simple
picture provides a surprising amount of insight into the structure of light nuclei.
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First, we must understand the degeneracy of single-particle levels in a 3-d harmonic oscillator
with an energy of (N+3/2)~ω. Considering the problem in a Cartesion basis, there areN⊥+1
ways to arrange nx + ny = N⊥ (Here, we consider only spin-up fermions). The number of
ways to arrange nx, ny and nz to add up toN is

d(N) =
N∑

N⊥=0

N⊥ + 1 =
(N + 1)(N + 2)

2
. (11.8)

Thus, there is one combination of nx, ny and nz to getN = 0, three combinations to getN = 1,
six to getN = 2, etc.

Next, we wish to calculate the number of states of a specificN that have a given orbital angular
momentum `. This will come in handy when we consider the spin-orbit coupling on top of
the harmonic oscillator structure. The solution will be that the states with excitation N are
accounted for with one ` = N multiplet, one ` = N − 2 multiplet, one ` = N − 4 multiplet,
etc. To prove that this is the case, we make an inductive proof assuming it is true for N − 2.
For every state with excitation N − 2 there is a state with the same angular momentum with
excitationN which is reached by applying the additional operator (a†xa

†
x+a†ya

†
y+a†za

†
z) which

is a rotational scalar. There are (N −1)N/2 such states. Furthermore, there must be at least one
` = N multiplet because the state (a†x + ia†y)

N |0〉 transforms like part of a ` = N multiplet.
But one ` = N multiplet with degeneracy (2N + 1), and the (N − 1)N/2 states accounted for
by counting the states with excitationN −2 completely account for all the states with excitation
N ,

(N + 1)(N + 2)

2
=

(N − 1)N

2
+ (2N + 1). (11.9)

Thus, increasing the excitation by 2~ω adds one more multiplet with ` = N . As an example, for
N = 4, there are multiplets with ` = 4, 2, 0 with degeneracy 9 + 5 + 1 = 15 = 5 · 6/2.

If no spin-orbit terms were present, adding neutrons to a harmonic oscillator would lead to
shell closures with neutron numbers equal to 2, 8, 20, 40 and 70. We now consider filling all
the N ≤ 3 shells, which requires 40 neutrons. Note that these numbers accounted for both
spin-up and spin-down levels. To calculate this number for N ≤ 3 one would consider that
there is 1 · 2/2 = 1 way to arrange nx, ny, nz for N = 0 or E = 3~ω/2, 2 · 3/2 = 3 ways
to make arrangements for E = 5~ω/2 single-particle levels, 3 · 4/2 = 6 single-particle levels
with E = 7~ω/2 and 4 · 5/2 = 10 single-particle levels with E = 9~ω/2. This sums to
1 + 3 + 6 + 10 = 20 single-particle levels with E ≤ 9~ω/2. Because each single-particle
level can have either spin-up or spin-down, this gives 40 single-particle levels for N ≤ 3, or
equivalently E ≤ 9~ω/2, for spin 1/2 particles. Thus, one could place up t 40 neutrons into the
40 single-particle levels without having any particle’s energy exceed 9~ω/2.

Adding the spin-orbit term adjusts the single-particle energies by an amount

Es.o. = −β~̀ · ~s = −
β~2

2
[j(j + 1)− `(`+ 1)− s(s+ 1)] . (11.10)

For every value of ` there are two values of j, j = `± 1/2. Thus, one finds the energy levels by
first labeling the states byN and `. Then splitting each level into it’s two values of j and finding
its energy,

E = (N + 3/2)~ω −
β~2

2
[j(j + 1)− `(`+ 1)− s(s+ 1)]− α`(`+ 1). (11.11)
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An additional term, proportional toL2, was also added to phenomenologically better reproduce
levels. This is known as the Nilsson model, https://en.wikipedia.org/wiki/Nilsson_model.
The shell structure changes due to the spin-orbit interaction, and the numbers of neutrons re-
quired to reach a condition where there is a large gap are called magic numbers. In nuclei, the
magic numbers are 2, 8, 20, 28, 50, 82 and 126. Nuclei are considered doubly magic if both the
neutron and proton numbers are magic numbers. Examples are 4He, 160, 40

20Ca, 48Ca, 56
28Ni, 48Ni,

78Ni, 100
50 Sn, 132Sn and 208

82 Pb. The magic numbers of nuclei were only explained by assuming an
anomalously large spin-orbit coupling. The reason for this surprisingly large coupling will be
explained later in the semester when the Dirac equation is presented.

Example 11.2: – Zero-Point Surface Energy for Fermions
It costs energy to divide a piece of metal (which approximated here as a non-iteracting electron
gas) into two pieces. The associated surface energy, energy per surface area, has a component
deriving from the penalty associated with the kinetic energies of the particles. To understand
the source of this energy, we first consider the one-dimensional case. Consider a box of length
L, which is divided into two boxes, each of length L/2. The initial energy levels are given by,

En =
~2k2

n

2m
, knL = nπ, n = 1, 2, 3, · · · (11.12)

But after splitting the box the energy levels are given by

En =
~2k2

n

2m
, knL = nπ, n = 2, 4, 6, · · · , (11.13)

with the new levels being able to hold twice as many particles because there are now two boxes.

Thus, in one dimension the energy penalty can be thought of as arising from forcing half the
particles to move up by one rung on the energy diagram ladder. If all the particles had moved
up one rung, the net penalty would be the Fermi energy, but because half the particles moved
up, the penalty is

∆E = εf/2. (11.14)

In three dimensions, there are three quantum numbers, nx, ny and nz, corresponding to kx, ky
and kz.

kxLx = nxπ, kyLy = nyπ, kzLz = nzπ. (11.15)

If the box is divided in two along the x axis, Lx → Lx/2, the penalty for all levels with a fixed
ny and nz is,

δE(ny, nz) =
1

2

~2(k2
f − k2

y − k2
z)

2m
. (11.16)

This result follows from the fact that half the particles moved up a notch on the nx ladder, with
the top energy being such that the overall energy (including the y and z components) adds up
to the Fermi energy.
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One can now find the entire energy cost by summing over ny and nz.

∆E =
LyLz

(2π)2

∫
|k|<kf

dkydkzδE(ny, nz) (11.17)

=
~2LyLz

8mπ

∫ kf

0

kdk(k2
f − k

2)

= LyLz
~2k4

f

32mπ

= LyLz
k2
f

16π
εf .

Dividing by 2LxLz (as extra area is added to both sides of the split) gives the surface energy. Of
course, one would also multiply the result by the spin degeneracy.

∆E

A
=

k2
f

32π
εf . (11.18)

In real systems the surface energy is of this order. It is lessened by the fact that the electron
density is not sharply cut off at the surface, but dies out smoothly. An additional positive con-
tribution can result from finite-range attractive interactions between the particles. In nuclear
physics, the above expression over-predicts the surface energy of nuclear matter by approxi-
mately a factor of two.

11.3 Multi-Particle Symmetrization and Slater Determinants

Consider a multi-particle state |α1, α2 · · · 〉, where the ordering α1, α2, · · · signifies that the
first particle is in the state α1, the second in α2, etc. The permutation operatorPij is defined by

P(12)|α1, α2, α3, · · · 〉 = |α2, α1, α3, · · · 〉 = p|α1, α2, α3, · · · 〉 (11.19)

Any multiparticle state |φ〉should have a good symmetry with respect to permutation because
the particles are identical. This means that all states of the system should be eigenstates of the
permutation operator P(i, j).

P(i, j)|φ〉 = (±1)|φ〉 (11.20)

Only ±1 are possible eigenvalues of the permutation operator because P2(i, j) = 1. In order
for the state to be an eigenstate of all permutations, the N -particle state must be either totally
symmetric or totally anti-symmetric.

φ =
1
√
N !

∑
perm.s p

(±1)npPp|α, β, γ · · · 〉, (11.21)

wherenp is the number of pairwise permutations required to make the desired permutation. For
fermions, no two states, e.g. α and β can be identical. The overlap of such a state in coordinate
space, i.e. the multi-particle wave function,

φα1···αn(~r1 · · ·~rn) = 〈~r1, ~r2, ~r3 · · · |α1, α2, α3 · · · 〉,
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must also be an eigenstate of the permutation operator, and this must be true whether one is
permuting the αi indices or the ~r indices.

For fermions the permutation eigen-values must be -1, whereas for bosons the eigen-values are
+1. If the multi-particle wave function is to be both normalized and anti-symmetric with respect
to permutation, ∫

d3r1 · · · d3rn|φα1···αn(~r1 · · ·~rn)|2 = 1, (11.22)

one can express the multi-particle wave function in terms of normalized single-particle wave
functions, φα(~r),

φα1···αn(~r1 · · ·~rn) =
1
√
N !

∣∣∣∣∣∣∣∣
φα1(~r1) φα1(~r2) · · · φα1(~rn)
φα2(~r1) φα2(~r2) · · · φα2(~rn)
· · · · · · · · · · · ·

φαn(~r1) φαn(~r2) · · · φαn(~rn)

∣∣∣∣∣∣∣∣ . (11.23)

This becomes more complicated when one includes spin, or isospin indices. In fact, one might
have a wave function that is symmetric in coordinate space, but anti-symmetric in spin, or vice
versa. Such cases will be discussed in the next chapter.

The Slater determinant enforces the Pauli-exclusion principle. If any of the indices,α1 · · ·αn are
identical, the multi-particle wave function vanishes. The determinant also vanishes in the limit
that any two positions become equal. It should be emphasized that not all multi-particle wave
functions can be written in terms of a Slater determinant. If one were considering distinguishable
particles, the multi-particle wave function would be generally of the form φα1···αn(~r1 · · ·~rn).
Assuming that φ factorizes into a product of single-partcle wave functions represents a strong
assumption. Similarly, although the Slater determinant is not a simple product wave function,
the assumption that it can be written as a sum of simply permuted product wave functions
represents a strong assumption. In fact, this assumption is the foundation of the Hartree-Fock
approximation, which is discussed in the next chapter.

Example 11.3: – Writing Three-Particle Wave Function with Slater Determinants

Imagine I have 3 electrons in a Coulomb potential. Two of the electrons are in the 1s state. The
radial wave function for this state is noted by φ1s(r). The third electron is in the 2p level and
has spin-up, where the radial wave function is labeled φ2p(r). Write the three-particle wave
function, where particles are at positions ~r1, ~r2 and ~r3 with spin projections s1, s2 =↓ and s3

respectively.
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Solution: Use the Slater Determinant, with the labels being (s, ↑), (s, ↓) and (p, ↑).

Ψ((~r1, s1), (~r2, s2), (~r3, s3))

=
1
√

3!

∣∣∣∣∣∣
φ1s,↑ (~r1, s1) φ1s,↑ (~r2, s2) φ1s,↑ (~r3, s3)
φ1s,↓(~r1, s1) φ1s,↓(~r2, s2) φ1s,↓(~r3, s3)
φ2p,↑ (~r1, s1) φ2p,↑ (~r2, s2) φ2p,↑ (~r3, s3)

∣∣∣∣∣∣
=

1
√

6
{φ1s,↑ (~r1, s1)φ1s,↓(~r2, s2)φ2p,↑ (~r3, s3)− φ1s,↑ (~r1, s1)φ1s,↓(~r3, s3)φ2p,↑ (~r2, s2)

− φ1s,↑ (~r2, s2)φ1s,↓(~r1, s1)φ2p,↑ (~r3, s3) + φ1s,↑ (~r2, s2)φ1s,↓(~r3, s3)φ2p,↑ (~r1, s1)

+ φ1s,↑ (~r3, s3)φ1s,↓(~r1, s1)φ2p,↑ (~r2, s2)− φ1s,↑ (~r3, s3)φ1s,↓(~r2, s2)φ2p,↑ (~r2, s2)} .

The three states, (1s, ↑), (1s, ↓) and (2p, ↑) are chosen to be different. If two of the states were
the same, e.g. replace (1s, ↓) with (1s, ↑) one can see that the resulting three-particle wave
function would vanish. Similarly, if one chooses to evaluate the wave functions with two of the
particles at the same position and the same spin, e.g. (~r1, s1) = (~r2, s2), the three-particle wave
function would also vanish.

11.4 Fermi Creation and Destruction Operators

Writing states as a sum over various permutations is a rather clumsy way to consider the Fermi
nature of the particles as it requires assuming there is a “first” particle, “second” particle, and
so on. The algebra of anti-commuting creation and destruction operators offers a more natural
means to incorporate anti-symmetrization. With this formalism, a state can be noted simply by
their labels with no mention of permutations. Matrix elements are then calculated according to
the algebra of the creation and destruction operators which account for the symmetrization.

The operators obey the algebra

{aα, a†β} = δα,β, (11.24)

{aα, aβ} = {a†α, a
†
β} = 0.

The curly brackets denote “anti”-commutation, i.e. {A,B} = AB+BA. Any time two creation
operators or two destruction operators with the same index are next to one another the result
is zero, aαaα = a†αa

†
α = 0. This enforces the Pauli exclusion principle. Similar to the Bose

example, the vacuum is annihilated by the destruction operator.

aα|0〉 = 0. (11.25)

The commutation rules written above assumed the states α, β, · · · were orthogonal. If the in-
dices refer to states which are from different different bases, the algebra becomes

{aα, a†j} =
∑
k

〈α|k〉{ak, a†j} = 〈α|j〉. (11.26)
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We are now able to calculate arbitrary matrix elements forN particle states,

〈i, j, k, · · · |α, β, γ, · · · 〉 = 〈0|(aiajak · · · )(a†γa
†
βa
†
α · · · )|0〉 (11.27)

=
∑

perm.s of i,j,···

(−1)np〈i|α〉〈j|β〉〈k|γ〉 · · ·

As an example we consider two-particle matrix elements,

〈i, j|α, β〉 = 〈i|α〉〈j|β〉 − 〈j|α〉〈i|β〉. (11.28)

If i and j refered to positions x and y, the result would read

〈x, y|α, β〉 = φα(x)φβ(y)− φα(y)φβ(x), (11.29)

which signifies that the two particles can not be at the same position. Note that the overlap of
an N particle matrix element would yield N ! terms. Thus it seems little has been gained using
field operators rather than writing symmetrized/anti-symmetrized wave functions which also
haveN ! terms. However, when writing the bra and ket with all permutations, both the bra and
ket have N ! terms, with the extra N ! being cancelled by the 1/

√
N !s in the normalization of

the wave functions.

It should also be noted that all the same results are valid for bosons, except that the (−1)np

factors disappear.

11.5 Fermionic Field Operators

The field operators Ψ†s(x) and Ψs(x) create and destroy a particle at position x with spin s.
They obey the anti-commutation relations,

{Ψs(~x),Ψ†s′(~y)} = δ3(~x− ~y)δss′. (11.30)

Just like the non-fermionic operators defined in Sec. 9.2, they can be defined in terms of creation
and destruction operators for momentum states,

Ψ†s(~r) =
1
√
V

∑
~k

e−i
~k·~ra†s(

~k). (11.31)

The field operators commute with other operators as

{Ψs(~x), a†α} = φα,s(~x), (11.32)

where φα,s(~x) = 〈~x, s|α〉 is the single particle wave function of a particle of spin s in the state
α. Thus the field operators are no different than other creation and destruction operators, except
that their dimension is length−3/2 and their anti commutation relations are expressed in terms
of Dirac deltas instead of Kronecker deltas.

The density operator is
ρ(~x) =

∑
s

Ψ†s(~x)Ψs(~x). (11.33)
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The expectation of the density operator in the state |α, β, · · · ...〉 is

〈α, β, γ, · · · |Ψ†s(~x)Ψs(~x)|α, β, γ, · · · 〉 = 〈0|(aαaβaγ · · · )Ψ†s(~x)Ψs(~x)(· · · a†γa
†
βa
†
α)|0〉

(11.34)

=
∑

κ∈α,β···

φ∗κ,s(~x)φκ,s(~x)

Then density operator can also appear in a transition element. Consider the bra and ket to differ
in one label, γ → γ′,∑

s

〈α, β, γ′, · · · |Ψ†s(~x)Ψs(~x)|α, β, γ, · · · 〉 = 〈0|(aαaβaγ′ · · · )Ψ†(~x)Ψ(~x)(· · · a†γa
†
βa
†
α)|0〉

(11.35)

=
∑
s

φ∗γ′,s(~x)φγ,s(~x)

This simple result followed because it was assumed that the final state was described by the
same single particle states, except for a single particle. In more realistic models, the transition
might be between states where many of the wave functions were altered. For instance, in a
many electron atom, the other levels are slightly affected by whether an electron in the state
γ is excited to the state γ′. A second inherent assumption was that the initial state could be
written as a “product” state. A product state is produced by operating with a single string of
orthogonal creation operators on the vacuum. The most general state could be expressed as a
linear combination of product states. Going beyond simple product states requires sophisticated
many-body treatments, which is beyond the scope of this class.

Example 11.4: – Correlations in a Fermi Gas
Here, we calculate correlations in a Fermi gas due to the Fermi nature of the particles. Consider
a one-dimensional gas of fermions moving in a large region of length L.

(a) Find the correlation function, relating the ratio of the probability of finding two particles
separated by r to the probability of finding the two particles at arbitrary locations.

Solution: To do this problem, we first write down the two-particle probability,

ρ2(x1, x2) = 〈φ|Ψ†(x1)Ψ†(x2)Ψ(x2)Ψ(x1)|φ〉.

|φ〉 =
∏
k<kf

a†k|0〉.

Commuting the field operators Ψ(x2) and Ψ(x1) towards the ket yields

Ψ(x2)Ψ(x1)

 ∏
k<kf

a†k

 |0〉 =
∑

k1,k2<kf

eik1x1

√
L

eik2x2

√
L
ak1ak2

 ∏
k<kf

a†k

 |0〉
=

∑
k1,k2<kf

(±)(−)n1+n2
eik1x1

√
L

eik2x2

√
L

 ∏
k<kf ,k 6=k1,k 6=k2

a†k

 |0〉.
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Here, the sign (±) depends on whether a(k1)a(k2) appear in the same/opposite order as
a†(k1)a†(k2) in the product of creation operators. One can find a similar expression for
〈φ|Ψ†(x1)Ψ†(x2)|φ〉,

〈0|

 ∏
k′<kf

ak

Ψ†(x1)Ψ†(x2)

= 〈0|
∑

k′1,k
′
2<kf

 ∏
k′<kf ,k′ 6=k′1,k 6=k′2

ak′

 (±)(−)n
′
1+n′2

e−ik
′
1x1

√
L

e−ik
′
2x2

√
L

.

The overlap of the two states is zero unless k1 and k2 from the ket are matched with k′1
and k′2 in the bra. However, this can happen with either k1 = k′1, k2 = k′2, or with
k1 = k′2, k2 = k′1. For the first ordering, the two phases exactly cancel. The signs of
(−1)n··· are also identical and cancel. For the second ordering, the product of phases yields
ei(k1−k2)(x1−x2), plus there is an extra sign due to the permutation of the creation operators,
ak′1 ↔ ak′2 . This then yields

〈φ|Ψ†(x1)Ψ†(x2)Ψ(x2)Ψ(x1)|φ〉 =
∑

k1,k2<kf

1

L2

(
1− ei(k1−k2)(x1−x2)

)
.

Because for every pair k1, k2, the same pair appears again as k2, k1. Thus, only the real part
of the phase factor ei(k1−k2)(x1−x2) enters, and the matrix element is indeed Hermittian.

Taking the ratio of the two-particle density to the square of the one particle densities gives
the correlation function.

g(r ≡ x2 − x1) ≡
P2(x1, x2)

n2

=

∑
k1,k2<kf

(
1− ei(k1−k2)(x1−x2)

)∑
k1,k2<kf

The sums can be changed into integrals,

g(r) = 1− |I|2

I =

∫
−kf<k<kf

dkeikr∫
−kf<k<kf

dk

=
sin(kfr)

kfr

The two-particle density is thus

ρ2(x1, x2) = n2

{
1−

[
sin(kfr)

kfr

]2
}
, r ≡ |x1 − x2|.

The correlation is displayed in Fig. 11.1.
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kf r
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Figure 11.1: The electron-electron correlation (for electrons of one sign) due to anti-symmetrization in a
one-dimensional system, as derived in Example (11.5).

(b) The particles now feel a mutual interaction,

V (x) = αΘ(a− |x|)

Find the exchange contribution to the energy per unit length due to the interaction in first-
order perturbation theory.

Solution: In first-order perturbation theory the correction to the energy is

〈H〉 =
1

2

∫
dx1dx2〈φ|Ψ†(x1)Ψ†(x2)Ψ(x2)Ψ(x1)|φ〉V (x1 − x2)

= L
1

2

∫
dr〈φ|Ψ†(0)Ψ†(r)Ψ(r)Ψ(0)|φ〉V (r),

where we have used the fact that the two particle density depends only on x1 − x2. By
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using the results of (a) one can find the energy per length,

〈H〉
L

=
1

2
n2

∫ ∞
−∞

dr g(r)V (r)

=
αn2

2

∫ a

−a
dr

{
1−

[
sin(kfr)

kfr

]2
}

= αn2

{
a+

1

k2
fr

sin2(kfr)

∣∣∣∣∣
a

0

−
∫ a

0

dr
2 sin(kfr) cos(kfr)

kfr

}

= αn2

{
a+

sin2(kfa)

k2
fa

−
1

kf
Si(2kfa)

}

= αn2

{
a+

sin2(πna)

π2n2a
−

1

πn
Si(2πna)

}
,

where Si is the sine-integral function, andn is the number of particles per unit length. Note
that the first term describes the potential energy one would expect from particles with a
uniform density interacting through the potential V (x1 − x2). This is called the direct
term, while the remainder is referred to as the exchange term.

11.6 Problems

1. Consider a two-dimensional zero-temperature non-relativistic gas of identical spin-up fermions
whose mass is m. They are confined in a two-dimensional box of dimensions, Lx and Ly.
The quantum numbers characterizing the single-particle eigenstates are nx and ny. The
box is divided in half along the x axis. The eigenstates with odd nx now disappear, while
there are now two solutions (one for each half of the box) for each even value of nx. As-
suming the size of the box is large compared to the inverse Fermi momentum, find the
penalty, expressed as an energy per unit length (∆E/2Ly), for dividing the box. Express
your answer in terms of the Fermi momentum and the mass.

2. In the interior of a neutron star, the neutron-to-proton ratio is very high. This results de-
spite the fact that the proton mass is 1.3 MeV higher than the neutron mass. This occurs
because protons must balanced by an equal number of electrons. Furthermore, protons
and neutrons may be interchanged via the reaction,

p+ e↔ n

(We have neglected the neutrinos in this reaction because they are free to leave the star due
to their massless nature.)

The masses of the particles are:

mpc
2 = 938.27 MeV, mnc

2 = 939.57 MeV, mec
2 = 0.511 MeV
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For the problems below, you may assume the protons and neutrons are non-relativistic,
E = mc2 + (~ck)2/(2mc2), but the electrons must be treated as relativistic particles,
E = [(~ck)2 + (mc2)2]1/2. It is useful to remember that ~c = 197.326 MeV·fm.

(a) If the baryon(neutrons or protons) density equals nB, express the corresponding con-
straint involving the Fermi momenta of the protons and neutrons.

(b) From the constraint that the system is electrically neutral, describe how the proton’s
Fermi momentum is related to the electron’s Fermi momentum.

(c) Describe how minimizing the overall energy results in a constraint involving the three
Fermi momenta.

(d) For 4 cases, nB = 0.0001, 0.001, 0.1, 1.0 baryons per cubic Fermi, solve the expres-
sions above and plot the neutron/proton ratio as a function of nB. Solving the three
equations may involve finding roots numerically.

3. Correlation/anticorrelation in a quantum gas: Consider a uniform gas of non-interacting
spin-half particles in the ground state. The wave function may be written

|φ〉 =
∏

α,|kα|<kf

a†α|0〉,

where the product includes all states α with momentum kα < kf and spin sα. The
density-density correlation function is defined as

Cs1,s2( ~x2 − ~x1) ≡
〈φ|Ψ†s1(~x1)Ψ†s2(~x2)Ψs2(~x2)Ψs1(~x1)|φ〉

〈φ|Ψ†s1(~x1)Ψs1(~x1)|φ〉〈φ|Ψ†s2(~x2)Ψs2(~x2)|φ〉

This function expresses the correlation of two particles with spin s1 and s2 being separated
by ~x2− ~x1. It is defined in such a way that it is unity if the probability of seeing two particles
at ~x1 and ~x2 is the product of the probabilities of observing each particle independently.

(a) Show that the density-density correlation function can be written as

Cs1,s2( ~x2 − ~x1) = 1− δs1s2

∑
kα,kβ

ei(
~kα−~kβ)·(~x2−~x1)∑
kα,kβ

,

where the sums are over all momentum states with kα < kf and kβ < kf .

(b) By changing the sum over states to a three-dimensional integral over ~k, find an an-
alytic expression for the density-density correlation function in terms of the Fermi
momentum kf .

4. Again, consider a non-interacting quantum gas of particles of mass m, with the ground
state being expressed as

|φ〉 =
∏

α,|kα|<kf

a†α|0〉,
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where the product includes all statesαwith momentum kα < kf . For this problem, ignore
the spin indices. Consider an interaction between the particles of the form,

Hint =
1

2

∫
d3r1d

3r2V (~r1 − ~r2)Ψ†(~r1)Ψ†(~r2)Ψ(~r2)Ψ(~r1)

V (~r1 − ~r2) = βδ(~r2 − ~r1)

Find the first-order perturbative correction for the energy, 〈φ|Hint|φ〉, for particles in the
gas in terms of kf , β andm.
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12 Non-Perturbative Phenomena in Many-Fermion Systems

In the previous chapter, interactions between fermions were mainly ignored. A one-body in-
teraction is typically introduced via a spatial potential V (~r), with which one can describe many
phenomena, such as scattering. In this chapter we focus mainly on such treatments, but point out
that more generally, interaction terms simultaneously modify the behavior of more than one par-
ticle. This becomes especially complicated once many fermions simultaneously interact. Such
treatments of more realistic interactions are typically under the moniker of “many-body the-
ory”, which is mainly beyond the scope of this course. Nonetheless, the one-body treatments,
although somewhat crude, provide a great deal of insight and in some cases can be remark-
ably accurate. One example is the Hartree-Fock approximation, which is the focus of the next
sub-section.

12.1 Interacting Fermi Systems – Two and Four-Point Interactions

The simplest sort of interaction is a “two-point” interaction.

H2 =
∑
α,β

Vα,βa
†
αaβ. (12.1)

A two-point interaction has one creation and one destruction operator in each term. The inter-
action alters the momentum of a single particle, which makes it a one-body interaction. The
particles behave independently. To demonstrate what is meant by “independent”, consider the
evolution of the product state

|φ(t)〉 = e−iHt/~a†δ · · · a
†
βa
†
α|0〉 (12.2)

=
(
e−iHt/~a†δe

iHt/~
)
· · ·
(
e−iHt/~a†βe

iHt/~
) (
e−iHt/~a†αe

iHt/~) |0〉.
Here, eiHt/~|0〉 = |0〉 due to the form of H2, which allowed the insertion of the factor eiHt/~

before the ket.

Thus, the evolution in time simply adjusts the creation operators to time-dependent quantities

a†α(t) =
(
e−iHt/~a†αe

iHt/~) (12.3)

i~
∂

∂t
a†α(t) =

[
H,a†α(t)

]
= e−iHt/~

[
H,a†α

]
e−iHt/~

=
∑
β

Vβ,αa
†
β(t).

Therefore, a two-point interaction leaves a product state as a product state, and the evolution
can be reduced to the evolution of independent creation operators.

Unfortunately, physics is not usually so simple. If all interactions were of the two-point type all
problems could be solved by considering the independent motion of independent operators and
there would be no need for many-body theory. Interactions of the type

H =

∫
dx

(
−

~2

2m
Ψ†(x)

∂2

∂x2
Ψ(x) + V (x)Ψ†(x)Ψ(x)

)
, (12.4)
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are of the two-point form and can be solved by considering a single particle in the system, then
creating the many-particle system as a product of many single-particle solutions.

An interaction between particles separated by ~r = ~r1 − ~r2 is written classically as

Hint =
1

2

∫
d3r1d

3r2ρ(~r1)ρ(~r2)V (~r1 − ~r2). (12.5)

The factor of 1/2 corrects for double counting because the integral is without a r1 < r2 qualifier.

Written in terms of field operators, this interaction becomes

Hint =
1

2

∫
d3r1d

3r2V (~r1 − ~r2)ψ†(~r1)ψ†(~r2)ψ(~r2)ψ(~r1). (12.6)

For the moment, we will omit spin indices and assume only particles of a specific spin are in-
volved.

One peculiar aspect of the Hamiltonian is that the two Ψ†s are on the left while the two Ψs are
on the right, whereas the product of densities would suggest a product of Ψ†Ψs. However, such
a product would result in an interaction energy for a one-particle state, as the particle would
interact with itself.

Four-point interactions (or three-point interactions, e.g. the electromagnetic interaction ~J · ~A)
are infinitely more complicated than two-point interactions. For one, if one wishes to calculate
the evolution of a†α(t), one needs to commute the Hamiltonian with a†α. However, commuting
a four-point function which is a product of four creation/destruction operators with a single
creation operator results in a product of three creation/destruction operators. This destroys the
independent-particle nature of the evolution. In fact, the eigenstates of a Hamiltonian with four-
point terms is not a product state, but is instead a complicated linear combination of product
states. In fact, such problems are in general not solvable, forcing one to resort to approximations.
One such approximation is the Hartree-Fock approximation.

12.2 The Thomas-Fermi approximation

A very crude way to find the density of fermions in an external well is the Thomas-Fermi ap-
proximation. This approximation is semiclassical and assumes that the local density is a function
of the local potential only,

n =
2s+ 1

6π2
k3
f ,

~2kf(~r)
2

2m
+ V (~r) = εf (12.7)

The density would extend only in the region where V (~r) < εf . Given the potential and εf it is
straight forward to find the density. For a finite system with a fixed particle number, one would
have to adjust εf to get the correct total number of particles.

The Thomas-Fermi approximation is crude, and gives rather non-sensical results for atoms due
to the small number of electrons in atoms. It is less unreasonable for estimating the electron
density near surfaces. As a general rule it is valid for large systems where the potential changes
slowly.
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Example 12.1: – The Thomas Fermi Approximation for the Harmonic Oscillator

Calculate the Fermi energy (as measured from the bottom of the harmonic oscillator) for N
electrons in a one-dimensional harmonic oscillator characterized by angular frequency ω.

Solution: The density of electrons for a potential V (x) in one dimensions is:

n(x) = (2s+ 1)
1

2π

∫ kf

−kf
dk

=
2

π
kf(x),

=
2

~π

√
2m(Ef − V (x)).

For the harmonic oscillator, this gives

N =

∫ xmax

−xmax

dx

=
2
√

2mEf

~π

∫ xmax

0

dx
√

1− α2x2,

α =

√
mω2

2Ef
, xmax =

√
2Ef

mω2
.

Substituting u = αx,

N =
4Ef

~ωπ

∫ 1

0

du
√

1− u2

=
Ef

~ω
.

This is half the number of particles you would expect to fit into states with energies below Ef
given that there are two spins with energy levels separated by ~ω. This suggests that a significant
part of the wave functions extend to the regions where E < V , and emphasizes how poor the
approximation can be. The conditions under which this method becomes accurate is similar to
the conditions discussed for the WKB approximation in Sec. 6.1.

12.3 The Hartree-Fock Approximation

The Hartree-Fock approximation yields an expression for the ground state of a many-particle
system. It is variational in nature, though it is the wave-function at each point that is being
treated varitationally. One assumes that the solution is in some sort of product state,

|φ〉 = a†δ · · · a
†
βa
†
α|0〉, (12.8)
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The many-particle wave function, 〈~r1 · · ·~rn|a†n · · · a
†
1|0〉, will not be expressed as a product of

single-particle wave functions. But that is only a matter of anti-symmetrization. Given one of
the simple product terms, the other terms of the many-particle wave-function can be generated
by permuting the labels of the first term.

To proceed, one writes down the expectation of the Hamiltonian,

〈φ|H|φ〉 = 〈φ|
∫
d3rΨ†(~r)

(
−

~2

2m
∇2

)
Ψ(~r) +

∫
d3rU(r)Ψ†(~r)Ψ(~r)|φ〉 (12.9)

+ 〈φ|
1

2

∫
d3r1d

3r2V (~r2 − ~r1)Ψ†(~r1)Ψ†(~r2)Ψ(~r2)Ψ(~r1)|φ〉,

where the spin indices have been omitted temporarily.

One can now write down the energy in terms of the wave functions of the occupied states α.

〈φ|H|φ〉 =
∑
α

∫
d3r φ∗α(~r)

(
−

~2

2m
∇2 + U(~r)

)
φα(~r) (12.10)

+
1

2

∑
α,α′

∫
d3rd3r′ V (~r − ~r′)

{
φ∗α(~r)φ∗α′(~r

′)φα′(~r
′)φα(~r)± φ∗α(~r)φ∗α′(~r

′)φα(~r′)φα′(~r)
}
.

The second term in the two-body interaction, where the± refers to bosons/fermions, is known
as the exchange term, with the name coming from the exchange of the α and α′ indices.

The next step in the variational procedure is to minimize 〈φ|H|φ〉with respect to changes in the
wave functions subject to the constraint that each wave function is properly normalized. One
accounts for the constraint by multiplying the constraint by a Lagrange multiplier λ then adding
it to the function one wishes to minimize,

δ

δφγ(~r)

{
〈φ|H|φ〉 − λγ

∫
d3rφ∗γ(~r)φγ(~r)

}
= 0. (12.11)

More correctly, one would vary both the real and imaginary parts of φγ which is equivalent to
varying either φγ or φ∗γ . The resulting expression is

λγφγ(~r) =

(
−

~2

2m
∇2 + U(~r)

)
φγ(~r) (12.12)

+
∑
α′

∫
d3r′V (~r − ~r′)

{
φ∗α′(~r

′)φα′(~r
′)φγ(~r)± φ∗α′(~r

′)φγ(~r
′)φα′(~r)

}
.

The two terms involving V (~r − ~r′) are known as the Hartree and Fock terms respectively. The
Hartree term looks like a potential felt by the particles due to the presence of the other particles.
Thus, the Hartree equation can be solved by self-consistently finding the solutions to the effective
potential

VHartree(~r) =
∑
α′

∫
d3r′V (~r − ~r′)φ∗α′(~r

′)φα′(~r
′) (12.13)

The Hartree equations are often solved iteratively. One guesses at the wave functions, finds the
Hartree-potential, solves the Schrödinger equation for the single-particle wave functions, then
iterates the procedure until the wave functions converge.
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The Fock term presents a different challenge because φγ(~r) cannot be factored out of the differ-
ential equation. The Fock term is non-local in that φγ(~r′) appears in its place.

The Lagrange multiplier λγ plays the role of a single-particle energy. However, one should
remember that because the interaction energy between two states is contained in the single-
particle energy for both states, the total energy is not the sum of the λγs. The Hartree-Fock
approximation is especially useful for finding density distributions or even changes in energies
(e.g. separation energies), but is not particularly accurate at calculating total binding energies.

Finally, we return to the problem of including the spin indices. When spin indices are included
the Fock term disappears unless the two states are the same species and the same spin. Hence a
factor δs,s′ accompanies the Fock term.

12.4 Hartree-Fock for Atoms

The principle difficulty in handling multi-electron atoms comes from the fact that the electrons
interact with one another. If it were not for the mutual interactions of the electrons, one could
treat the electrons independently. Of course, this would yield horribly unphysical results. For
instance, one could place an infinite number of electrons into the the hydrogen atom, where in
reality no more than two electrons can be bound to hydrogen.

The Hartree approximation is the first method one might consider for treating such atoms. One
then solves the Schrödinger equation with the potential,

Vi(~r) = −
Ze2

r
+
∑
j 6=i

∫
d3r′|φj(~r′)|2

e2

|~r − ~r′|
(12.14)

If there are n electrons, one must solve n coupled equations.

One can go one step further and solve the Hartree-Fock equations,(
−
~2∇2

2m
−
Ze2

r

)
φi(~r)+

∑
j

∫
d3r′

e2

|~r − ~r′|
φ∗j(~r

′) [φj(~r
′)φi(~r)− δs,s′φj(~r)φi(~r′)] = λiφi(~r)

(12.15)
to find the wave functions. One can then find the energy by calculating 〈φ|H|φ〉. Again, this
requires solving coupled differential equations, but the Fock term also makes the equations non-
local which brings along an added computational difficulty.

The difference of the energy found by solving the Hartree-Fock equations and the Hartree equa-
tions is the exchange energy. Because the Hartree-Fock wave functions force the electrons to stay
away from one another due to anti-symmetrization, the repulsive Coulomb interaction between
electrons is weakened which means that the exchange energy is negative.

The Hartree-Fock equations were derived with the assumption that the solution is a product
state. As that is a variational assumption, the true ground state energies are about 1 eV lower
than Hartree-Fock solutions. This difference is referred to as “correlation” energy. It can be cal-
culated perturbatively by considering the mixing of one-particle-one-hole and two-particle-two-
hole states into the wave functions. This is done perturbatively by considering the n-electron
Hartree-Fock ground state as the ground state. Then one considers excited states as being those
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n-particle n-hole states formed by considering n of the single-particle solutions of the Hartree-
Fock ground state to be replaced by n single-particle solutions from the set of single-particle
states left unfilled in the Hartree-Fock ground state.

12.5 The Periodic Table

Single-electron wave functions are labeled by n, `, s, j and mj . In an atom with only one elec-
tron, the energy depends principally on n as states with same n but different ` = 0, 1, · · ·n− 1
are degenerate aside from the spin-orbit interaction. Of course, s always equals 1/2 and j can
be either `+ 1/2 or `− 1/2.

The existence of the other electrons destroys the “accidental” degeneracy of the hydrogen atom
and allows states with different ` and the same n to have significantly different energy. This
is due to the screening of the positive charge. The “accidental” degeneracy allowed states with
fewer nodes in the radial wave function but larger angular momentum to have the same en-
ergy as states with smaller angular momentum but more nodes in the radial wave function. By
screening the charge, an advantage is created for states that have a relatively greater probability
of being near the origin. Because radial wave functions behave as r` near the origin, a state with
a lower ` but the same n will have lower energy due to screening. This difference can be large
enough at times to allow a state to move lower than states of higher n but higher angular mo-
mentum. For instance, in some cases the 4s states can move below the 3d states, and similarly
the 4d and 5s shells compete as well. The 5s shell is always well below the 4f shell. When shells
compete, e.g. the 4s and 3d electrons, the choice of orbitals is non trivial. In these cases the con-
figuration can vary from one element to the next, and in fact, solutions might contain a mixture
of configurations. Chemical properties are determined largely by the outermost electrons. When
shells are filled, the elements are less reactive. The rare gases (also know as inert or noble gases)
all have filled p shells with the exception of Helium.

The set of orbitals with a specific n and ` is known as a “shell”. The degeneracy of a shell is
4`+ 2. Electronic “configurations” are labeled by the shells and the filling, e.g.,

(1s)2(2s)2(2p)3,

with the superscript labeling the number of electrons in the shell.

12.6 Configuration Splitting and Hund’s Rules

Different configurations are generally split by a few electron volts. Within a configuration, the
splitting is complicated. Although there are 4` + 2 single-particle orbitals, the number of ways
to arrange several electrons among these levels can be rather large. Ignoring the spin-orbit in-
teraction, the total angular momentum ~L and total spin ~S of the electrons commute with the
Hamiltonian. The (2L + 1)(2S + 1) states of an LS multiplet are then further split by the
spin-orbit interaction. Thus the spin-orbit interaction invalidatesML andMS as good quantum
numbers, and replaces them with J andMJ .

Hund’s rules determine which LSJ combination has the lowest energy:
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1. The largest S is most favorable as it has the most symmetric spin wave functions, there-
fore totally anti-symmetric spatial wave functions, which minimizes the probability that
electrons are close to one another, and therefore minimizing their repulsive interaction.

2. For a givenS, theLS multiplet with the largestL has the lowest energy. This can be under-
stood by considering two electrons rotating about a nucleus. If L is large, both electrons
are moving about with essentially the same orbit as m1 and m2 can be large and of the
same sign. As such electrons spend less time crossing one another’s path they miminize
their repulsive interaction.

3. Different LS multiplets are typically split by tenths of electron volts. A given LS mul-
tiplet is again split by the spin-orbit interaction but only by a few hundredths or a few
thousandths of an electron volt. The spin-orbit interaction gives preference to states with
the minimum J when the shells are less than half filled and behaves in the opposite way
when the shells are more than half filled.

Configurations are labeled by S,L and J , which should not be confused with the ` of the single-
particle orbitals. The notation is

2S+1LJ .

For instance, the state 3D3 would have the spins coupled to S = 1, L = 2 and J = 3. Note the
upper-case angular momentum labels S, P,D, F · · · .

12.7 Constructing States According to Total ~L and Total ~S

The overall wave function for a many-electron state described by L, S and J can be written as
the sum over products of angular and spin wave functions.

|L, S, J,MJ〉 =
∑

ML,MS

〈L, S, J,ML|ML,MS〉|L,ML〉|S,MS〉 (12.16)

The angular/spin wave functions |L,ML〉|S,MS〉must first be written in terms of products of
singular particle wave functions summed over with the help of Clebsch-Gordan technology.

As an example we consider a two-electron state with orbital/spin wave functions in a shell of
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angular momentum `.

ΨL,S,J,MJ
(Ω,Ω′;ms,m

′
s) = 〈Ω,Ω′;ms,m

′
s|L, S, J,MJ〉 (12.17)

=
∑

ML,MS

〈L, S, J,MJ |ML,MS〉〈Ω,Ω′|L,ML〉〈ms,m
′
s|S,MS〉

=
∑

ML,MS

〈L, S, J,MJ |ML,MS〉

·

 ∑
m`,m

′
`

〈`, `, L,ML|m`,m
′
`〉Y`,m`

(Ω)Y`,m′`(Ω
′)


·

 ∑
m′′s ,m

′′′
s

〈1/2, 1/2, S,MS|m′′s ,m
′′′
s 〉〈ms|m′′s 〉〈m

′
s|m

′′′
s 〉


=

∑
ML,Ms,m`,m

′
`

〈L, S, J,MJ |ML,MS〉〈`, `, L,ML|m`,m
′
`〉

〈1/2, 1/2, S,MS|ms,m
′
s〉Y`,m`

(Ω)Y`,m′`(Ω
′).

The expression would be even more complicated if there were three electrons in the shell.

Example 12.2: – Electrons in Carbon
Here we construct the 1S0 state in Carbon. The two electrons in the p shell of Carbon can be in
any number of configurations. Using the expression above,

ΨL=0,S=0,J=0,MJ=0(Ω,Ω′,ms,m
′
s) (12.18)

=
∑
m`,m

′
`

〈L, S, J,MJ |ML,MS〉〈` = 1, ` = 1, L = 0,ML = 0|m`,m
′
`〉

· 〈1/2, 1/2, S = 0,MS = 0|ms,m
′
s〉Y`=1,m`

(Ω)Y`=1,m′`
(Ω′)

=
∑
m`,m

′
`

〈` = 1, ` = 1, L = 0,ML = 0|m`,m
′
`〉Y`=1,m`

(Ω)Y`=1,m′`
(Ω′)

·
1
√

2

(
δms,1/2δm′s,−1/2 − δms,−1/2δm′s,1/2

)
=

1
√

6
{Y1,1(Ω)Y1,−1(Ω′) + Y1,−1(Ω)Y1,1(Ω′)− Y1,0(Ω)Y1,0(Ω′)}

·
(
δms,1/2δm′s,−1/2 − δms,−1/2δm′s,1/2

)
Note that the wave function is symmetric with respect to interchange of Ω with Ω′ and anti-
symmetric with respect to interchange of ms and m′s, making the overall wave function anti-
symmetric.
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12.8 Permutation Symmetry

When coupling two particles together the permutation symmetry goes as (−1)L for the spatial
part, while the interchange of spins is symmetric/anti-symmetric for S = 1/0. For this reason
one can notice that for two electrons in the (2p) shell (carbon) the orbital states must be L = 0
or L = 2 if the the spin state is S = 0 and must be L = 1 if S = 1. Thus the possible states in
carbon are 1S0, 1D2, 3P0, 3P1 and 3P2.

Coupling a higher number of particles together can lead to “mixed” symmetries. In this case the
angular wave functions may be neither symmetric or anti-symmetric, while the spin wave func-
tions might be mixed as well. However, the overall wave function needs to be anti-symmetric.
For example, the flavor and spin wave functions of the three quarks that constitute a proton or
neutron are in states of mixed symmetry.

12.9 Zeeman Effect and the Landé g Factor

A particle in a magnetic field feels the interaction,

Hmag = −
eB

2mc
(Lz + 2Sz), (12.19)

where the magnetic field is assumed to point in the z direction. We wish to calculate the change
in energy for an atom in a state of good J,MJ due to the interaction.

∆ELSJMJ
= −

eB

2mc
〈L, S, J,MJ |Lz + 2Sz|L, S, J,MJ〉 (12.20)

= −
eB

2mc
(MJ + 〈L, S, J,MJ |Sz|L, S, J,MJ〉) .

The challenge in calculating the splitting comes from finding 〈Sz〉. We expect this to be propor-
tional to MJ as it is the only label available. The Wigner Eckart theorem and Clebsch-Gordan
technology come to the rescue.

〈L, S, J,MJ |Sz|L, S, J,MJ〉
〈L, S, J,MJ |Jz|L, S, J,MJ〉

=
〈L, S, J ||S||L, S, J〉
〈L, S, J ||J ||L, S, J〉

. (12.21)

This follows by applying the Wigner Eckart theorem to both 〈Sz〉 and 〈Jz〉 and noticing that the
same Clebsch-Gordan coefficients appear in both terms.

Thus if we can find the ratio of the reduced matrix elements we will have fulfilled our mission.
To do this, we first step aside to perform a proof. Consider a vector operator ~A.

〈JM | ~A · ~J |JM〉 =
∑

−1≤m′≤1

〈JM |Am′J−m′|JM〉 (12.22)

=
∑

−1≤m′≤1,−J≤M ′′≤J

〈JM |Am′|JM ′′〉〈JM ′′|J−m′|JM〉,
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Note that the inserted states were only those within the same JM multiplet. This is valid be-
cause Jm does not mix different multplets. Now, by applying the Wigner Eckart theorem, one
can write the matrix element 〈 ~A · ~J〉 as

〈JM | ~A · ~J |JM〉 = f(J,M)〈J ||A||J〉〈J ||J ||J〉 (12.23)

f(J,M) =
∑

−1≤m′≤1,−J≤M ′′≤J

· 〈1, J, J,M |m′,M ′′〉〈1, J, J,M | −m′,M ′′〉
1

2J + 1

Because f is determined solely by Clebsch-Gordan coefficients, one can see that

〈JM | ~A · ~J |JM〉
〈JM | ~J · ~J |JM〉

=
〈J ||A||J〉
〈J ||J ||J〉

(12.24)

Now that our proof is finished we can see that

〈L, S, J ||S||L, S, J〉
〈L, S, J ||J ||L, S, J〉

=
〈L, S, J,MJ | ~J · ~S|L, S, J,MJ〉
〈L, S, J,MJ | ~J · ~J |L, S, J,MJ〉

(12.25)

=
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
,

where we have taken advantage of the fact that

~J · ~S =
1

2

[
−( ~J − ~S)2 − ~J2 − ~S2

]
(12.26)

=
1

2
[J(J + 1)− S(S + 1)− L(L+ 1)]

Finally, we are able to insert our result for the ratio of the reduced matrix elements into our
expression for the splitting to get

∆E = −g
e~B
2mc

MJ (12.27)

g = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
.

The factor g is known as the Landé g factor, with the g referring to gyration.

In some undergraduate modern physics books the Landé g factor is derived from simple ge-
ometric arguments. If one considers the vector J precessing about the z axis and the vector
S precessing about ~J , one would expect that the expectation of ~S for a given orientation of ~J
would be

〈~S〉 = ~J
~S · ~J
|J |2

, (12.28)

because as ~S precesses about ~J the component of ~S perpendicular to ~J averages to zero. Finally,
averaging over the direction of ~J gives the result we expected.
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12.10 Molecules and the Adiabatic Approximation

The force felt between atoms largely derives from the distortion of the electronic wave functions
due to the proximity of a second potential. Because atoms move slowly with respect to the elec-
tronic motion, electronic wave functions largely adjust in such a way as to remain in the ground
state for a given atomic separation. This was referred to as the adiabatic or Born-Oppenheimer
approximation. Examples where the adiabatic approximation were applied included a particle
in a slowly expanding box. If a box were slowly expanded or contracted, a particle would re-
main in the ground state of the box. Of course, this implies that the energy of the particle is not
kept constant. For the example of an expanding box, the ground state energy falls as the volume
expands, and the lost energy appears in the kinetic energy of the piston. In fact, that energy is
equal to the work, PdV , done by the expansion.

In the case of atoms, the gain or loss of the electronic energy appears as a loss or gain of the
heavy ion’s kinetic energy. The electronic energy, calculated as a function of the ion’s separation
r, serves as a potential for the atoms. In a previous problem set, we worked out the energy felt
by two electrons in harmonic oscillator potentials situated far apart, such that they felt a dipole-
dipole interaction. Calculating the correction to the energy, it was found that the energy went as
1/r6.

Example 12.3: – Interacting with Distant Ion
For this example we consider an electron in a well interacting with a distant positive ion, where
we assume the states available to the electron are described as those of a harmonic oscillator
with frequency ω. An ion of charge Ze is placed a distance R from the atom. The perturbative
potential between the ion and the atom is

V = Ze2

{
1

R
−
∫
d3rρ(~r)

1

|~R− ~r|

}
(12.29)

≈ −Ze2

∫
d3rρ(~r)

z

R2

= −
Ze2

R2
zop.

One can then calculate the energy to second order perturbation theory,

∆E = −
Z2e4

R4

|〈nz = 1|zop|0〉|2

~ω
(12.30)

= −
Z2e4

2R4mω2
.

This energy serves as the potential between the atom and the ion. Note that if one were to
consider an induced dipole moment proportion to the electric field, multiplied by the electric
field which falls off as 1/R2, one would have expected the 1/R4 behavior.

Example 12.4: – 2H positive ion
Here, we consider the +H2 ion, where two protons are separated by a distanceR, with the addi-
tion of a single electron. In the adiabatic approximation the binding energy of the electron, ε(R)
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serves as the potential between the protons when combined with the proton-proton interaction.
At large distances the binding energy is one Rydberg, while one would expect an increase in the
magnitude of the binding energy as R is shortened. At very short distances, one expects the
interaction to become repulsive when one penetrates the electronic cloud and the interaction is
dominated by the Coulomb interaction between the protons.

Calculating the binding energy as a function ofR can be crudely accomplished with a variational
calculation assuming a trivial form of the wave function,

ψ(~r) = C± [ψA(~r)± ψB(~r)] , (12.31)

where ψA and ψB are the bound state wave functions of an electron to each of the protons,

ψA(~r) = (πa3
0)−1/2e−|~r−

~RA|/a0. (12.32)

The factor C± is merely a normalization constant,

C± =
1√

2± 2S(R)
(12.33)

S(R) =

∫
d3rψA(~r)ψB~r)

=

(
1 +

R

a0

+
R2

3a2
0

)
e−R/a0

This can be considered as a variatonal calculation with zero variational parameters.

This integral S(R) is most easily calculated in elliptic coordinates, where the three components
of ~r are replaced by

u ≡
|~r − ~RA|+ |~r − ~RB|

R
, (12.34)

v ≡
|~r − ~RA| − |~r − ~RB|

R
,

φ ≡ arctan y/x.

Thus u is the scaled sum of the distances to the two protons, v is the scaled difference of the two
distances and φ is the usual azimuthal angle with respect to the axis defined by the two protons.
Some Jacobian manipulations would reveal,∫

d3rf(~r) =

∫ ∞
1

du

∫ 1

−1

dv

∫ 2π

0

dφ
R3

8
(u2 − v2)f(~r). (12.35)

Once one has made a transformation into these coordinates the integral becomes rather trivial
because

ψA(~r)ψB(~r) = (πa3
0)−1e−uR/a0 (12.36)

If you have not worked with elliptic coordinates before, you can understand the name “ellipti-
cal” because the set of points with a fixed sum of distances, |~r − ~RA| + |~r − ~RB|, defines an
ellipse.
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One is now in the position to calculate the expectation of the energy,

〈H〉± = ε±(R) =
〈A|H|A〉+ 〈B|H|B〉 ± 2〈A|H|B〉

2± 2S
(12.37)

=
〈A|H|A〉 ± 〈A|H|B〉

1± S
,

where

〈A|H|A〉 = ε1 +
e2

R
−
∫
ψ2
A(~r)

e2

|~r − ~RB|
d3r (12.38)

= ε1 +
e2

R

(
1 +

R

a0

)
e−2R/a0,

and

〈A|H|B〉 =

(
ε1 +

e2

R

)
S −

∫
d3rψA(~r)ψB(~r)

e2

|~r − ~RB|
(12.39)

=

(
ε1 +

e2

R

)
S −

e2

a0

(
1 +

R

a0

)
e−R/a0.

The term ε1 is merely the electronic binding energy of one electron with a proton, -1.0 Rydbergs.
The integrals were calculated with the help of the tranformation into elliptic coordinates.

The potential between the atoms is effectively

V±(R) = 〈H〉± − ε1. (12.40)

When plotted againstR the resulting curves looks like,
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In the adiabatic approximation, where the mass of the proton is considered to be very large, the
binding energy should simply be the minimum of the potential. In reality the binding energy is
deeper by an entire eV. However, one could improve the calculation by considering a variational
calculation.

The difference between V+ and V− comes from the fact that the parities of the two wave func-
tions were positive and negative respectfully. The positive-parity solution has lower energy
because the probability density is larger in the region between the protons where the interac-
tion with the protons is maximized, and because the negative-parity solution has an extra node,
which increases the kinetic energy.

12.11 The Hydrogen Molecule and Pairing

The neutral Hydrogen molecule has two electrons. One can pursue a variational calculation
as performed in the previous problem; only in this instance the variational wave function is a
two-electron wave function. When we discussed multi-electron atoms, Hund’s first rule stated
that the prime criteria for multi-electon states to minimize the energy is to form states of largest
S so that the spatial wave function will be maximally anti-symmetrized thus minimizing the
electron-electron repulsive interaction. However, in the case of the H2 molecule, the driving
determination is that both electrons should be in the even-parity ψ+ state, which through the
Pauli exclusion principle requires that the electrons be in a spin singlet with S = 0.

When two electrons form a spin-singlet they are called a pair. Much of the systematics of molecu-
lar binding can be understood by considering pairing. Pairing that involves p states is somewhat
more complicated. Of the three p states, them` = 0 state extends along the z axis and thus more
strongly samples the attractive interaction with the other proton. Pairing between them` = ±1
states can also take place but is usually weaker. The two pairings are refered to as σ and π
bondings. The π label refers to the fact that the transverse pairing allows an angular momentum
about the molecular axis.

For atoms where p and s states are nearly degenerate, pairing with neighboring atoms can be
especially strong. In these cases the wave function can be a linear combination of an s state
and a p state with m` = 0. Separately, both states have equal weight on the z-positive and
z-negative sides of the atom. However, linear combination of an even-parity and an odd-parity
state will result in a wave function with higher probability on one side. Given the presence
of a neighboring atom, this can lead to an energetically favorable situation. By taking a linear
combination of such a “hybrid” state with a hybrid state using the opposing atom as it’s center,
one can make states with overall good reflection symmetry about the half-way point between
the atoms.

12.12 Superconductivity

Pairing of electrons is responsible for the phenomena known as superconductivity. The connec-
tion between forming pairs and reducing the conductivity to zero is actually rather subtle. The
formed pairs, which can have zero net momentum, can coalesce and move as a coherent unit
through the material.
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One could imagine resistance, or dissipation, coming from three sources:

1. As we will see, a gap energy will be associated with the pairs. In order for the moving pairs
to de-excite one must excite the pairs by at least the gap energy. If one imagines a current
moving through a circular loop at a temperature near zero, there is not enough thermal
energy available to break a pair. Because the pairs are bosons they can condense into a
single zero-momentum state. The pairs join together into a condensate in such a way that
not only is there an energy penalty to break a pair, but there is a penalty to remove a pair
from the condensate. At small temperature, it is thus extremely difficult to de-excite the
condensate by breaking pairs or removing pairs from the condensate.

2. One could imagine a drag force acting on the condensate due to moving the condensate
through the background of non-condensate particles. If the condensate is treated as a
macroscopic object, the drag force would then behave as

Fdrag ∝ u2, P = Fv ∝ u3, (12.41)

where u is the condensate velocity. Because the power scales as u3 and because the resis-
tance is defined as

P = I2R,R = P/I2, (12.42)
I ∝ u, P ∝ u3

R =
P

I2
∝ u→ 0.

Thus, drag can be neglected with respect to its contribution to the resistance. Because the
coalesced pairs move as a unit, they can carry a large current with a very small velocity
and thus vanishingly small drag.

3. The pairs condense into a coherent unit, and one could imagine exciting a pair, while leav-
ing it bound. However, because of attractive inter-pair interactions, the pairs in the con-
densate also require energy to be dislodged. This energy tends to exceed that required to
break a pair.

The best way to dissipate movement of the condensate is to break a pair. This requires an amount
of energy 2∆, where ∆ is known as the gap energy. Only those electrons with energies greater
than the gap can contribute to the dissipation. The conductivity then behaves as e−2∆/T

The phenomena of superconductivity has much in common with superfluidity. In both cases,
it is rather easy to motivate why one forms a condensate, but explaining why the condensate
moves without dissipation is subtle. Both an electron pair and a 4He atom are bosonic, but
formed of an even number of fermions. Superconductivity might occur in any Fermi system,
and is thought to occur in astrophysical environments. Protons and neutrons are thought to pair
at high density, when nuclear matter behaves more like a macroscopic Fermi gas.

12.13 Cooper Pairs

Our goal in this section will not be to understand the correlated structure of the pairs, but only
to show that the existence of pairs lowers the energy compared to a Fermi gas. In order for
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electrons to pair there must exist an attractive interaction between two electrons with momenta
near the Fermi surface. The idea of two electrons interacting attractively is most peculiar because
electrons have the same charge. The excuse for assuming an attractive interaction is that the
electrons interact with one another via the lattice. An electron might exchange momentum with
an ion, which then translates that momentum into a sound wave, or phonon, which travels
through the lattice. The phonon then interacts with the other electron through its interaction
with some other ion. Intuitively, one might expect such an interaction to provide an effective
polarizability that reduces the electric repulsion, but does not reverse it. However, electrons are
free to move and screen the repulsive elctric interaction, as in Debye screening. This allows the
attractive interaction through phonons to overwhelm the electromagnetic interaction.

For our purposes, we follow the work of Bardeen, Cooper and Schraefer (BCS) and assume a
simplified interaction between electrons,

〈~k1
~k2|V|~k′1~k

′
2〉 =

{
−v0
V
δk1+k2,k′1+k′2

, kf < k1, k2, k
′
1, k
′
2 < ka

0, otherwise
(12.43)

where v0 sets the scale of the interaction, V is the volume, and ka is close to kf . Thus, the model
assumes the attractive interaction is confined to particles within the neighborhood of the Fermi
surface.

Because total momentum is a good quantum number, eigenstates can have the form,

| ~K paired〉 =
∑
~k′

′
a~k′(

~K)|~k′1 = ~K/2 + ~k′, ~k′2 = ~K/2− ~k′〉, (12.44)

where the primed sum is over all relative momenta ~k′ ≡ (~k′1 − ~k′2)/2 such that both ~k′1 and ~k′2
are inside the region between kf and ka.

Solving for the eigenstates,

H| ~K paired〉 = E| ~K paired〉, (12.45)

−
v0

V

∑
~k′

′
a~k′(

~K) = (E − ε~k1 − ε~k2)a~k( ~K)

Dividing both sides by (E − ε~k2), and summing both sides over ~k,

′∑
~k

a~k(
~K)−

v0

V

′∑
~k

1

E − ε~k1 − ε ~k2

′∑
~k′

a~k′(
~K) = 0. (12.46)

Now, one can see how the simplifying assumption that the matrix element vk,i′ was independent
of k and k′ in the subspace simplifies the problem. It allows the sum over amplitudes to be
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canceled from both sides of the equation above and result in,

−
1

v0

=
1

V

∑
~k′

1

E − ε~k1 − ε~k2
(12.47)

=
1

V

′∑
~k

1

E − ε ~K+~k − ε ~K−~k

=
1

V

∑
~k

1

E − ~2K2/(4m)− ~2k2/m
,

where the last step involved writing the energy as a center-of-mass energy plus an energy-of-
relative-motion.

One can solver for E in the equation above graphically. To illustrate the solutions, we consider
the function

ΦK(E) ≡
1

V

′∑
~k

1

E − ~2K2/(4m)− ~2k2/m
, (12.48)

and graph the function to see for what energies, E, the function Φ(E) equals−1/v0.

E

(E)Φ

-1/v
0

Every timeE passes an energy, ~2K2/(4m) + ~2k2/m, Φ changes from−∞ to +∞. Thus, for
every value of ~k there exists a solution with E < ~2K2/(4m) + ~2k2/m where Φ = −1/v0.
The vertical dashed lines in the figure represent the energies ~2K2/(4m) + ~2k2/m, which
would be the eigenenergies if v0 were to be zero. The intersections of the blue curves with the
horizontal dashed line represent the solutions.

If ~K = 0, the first value of~k that enters the primed sum is |~k| = kf . Thus, there exists a solution
with energy E < 2εf , even though the solution was formed from momentum states above kf .
The paired is energetically favorable compared to being a momentum state at the Fermi surface.
Note that as v0 is increased the solution for the energy becomes lower.
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12.14 The Gap

The expression for Φ in Eq. (12.48) can be integrated analytically for the case withK = 0 if one
approximates the sum over states as

′∑
~k

→ ρ(εf)

∫ εa

εf

dεk. (12.49)

This amounts to assuming the density of states, ρ(εk), is constant in the region of integration.
The expression for Φ then becomes

Φ(E) = ρ(εf)

∫ εa

εf

dEk
1

E − 2εk
(12.50)

= −
ρ(2εf)

2
log

∣∣∣∣2εa − E2εf − E

∣∣∣∣ ,
where

ρ(εf) =
mkf

2π2~3
. (12.51)

Solving for E,

E =
−2εa + 2εfe

2/(ρv0)

e2/(ρv0) − 1
. (12.52)

The difference between this energy and 2εf is known as the gap energy, ∆.

∆ ≡
2εf − E

2
(12.53)

=
εa − εf

e2/[ρ(εf )v0] − 1
.

One can do a similar calculation for K 6= 0, but the binding energy would be smaller because
the interaction links fewer pairs as both electrons in the pair, with momenta k± = K/2 ± k,
must lie within the shell in momentum space.

One can see that the energy required to break the pair is 2∆, because in order to break the pair
one must move the electrons outside the Fermi sea, that is, increase their energy beyond 2εf .

12.15 Landau Levels and the Integer Quantum Hall Effect

Consider particles of mass m and charge e moving in a two-dimensional world, the x-y plane.
A magnetic field is present, ~B = Bẑ. The Hamiltonian for such particles is

H =
(
~p− e ~A/c

)2

/(2m). (12.54)

If one chooses as a vector potential,
~A = Bxŷ, (12.55)
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one obtains the desired magnetic field. Because there is no y dependence in the Hamiltonian,
solutions can be chosen as eigenstates of the operator Py with eigenvalue py. One can then
rewrite the Hamiltonian,

H =
P 2
x

2m
+

(py − eBx/c)2

2m
, (12.56)

where py is simply a number and Px is an operator. Because py is a number, one can consider
the second term as an offset harmonic oscillator potential,

H =
P 2
x

2m
+

1

2
mω2

(
x−

pyc

eB

)2

, (12.57)

ω ≡
eB

mc
.

Thus, the Hamiltonian looks like a one-dimensional Harmonic oscillator with a frequency equal
to the Larmor frequency. The harmonic oscillator is centered at x = pyc/(eB).

Note that the eigenenergies, (n+ 1/2)~ω, do not depend on py. Thus, there are many solutions
with different py that have identical energies. The energy levels are referred to as Landau levels.

Each level has a degeneracy equal to the number of values of py for which there exist solutions.
The density of such states is

dN

dpy
=

Ly

2π~
, (12.58)

where Ly is the size of the sample in the y direction. The limits on py are determined by the x
dimension. Because py is related to the offset of the center of the Harmonic oscillator in the x
direction,

0 <
pyc

eB
< Lx, (12.59)

0 < py < py,max =
eBLx

c
.

The number of such states is then

N =
dN

dpy
py,max =

eBLyLx

2π~c
. (12.60)

Assume the sample has a number of free electrons per unit area n. If the number of free elec-
trons exactly fits an integer number of Landau levels, the levels will be exactly filled and the
conductance changes. Thus, varying the magnetic field one sees changes in the conductance
when

m =
2π~cn
eB

= integer, (12.61)

B =
2π~cn
em

.

This is known as the integer quantum Hall effect. It corresponds to an integral number of levels
being exactly filled. From the constraint on magnetic flux given in the discussion of the Aha-
ranov Bohm effect in Eq. (3.30) one can see that these dips in the conductivity happen when
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takes on a plateau value, the Hall conductivity is simply given by the inverse, namely
�xy = e2

2⇡~⌫. In general, there would be a caveat to this: In an experiment, one measures
resistance and not resistivity! The two are related via the dimensions of the sample, so
the precision of measuring the resistivity is dictated by the precision of the measurement
of the sample’s dimensions. In 2D however, the transverse Resistance and the transverse
resistivity are exactly the same and do not depend on the dimensions of the sample:

Rxy =
Vy

Ix
=

LEy

LJx
=

Ey

Jx
= �⇢xy (Jy = Ex = 0) (9)

Comparing the results from the integer quantum hall e↵ect (figure 2) to the results from
the classical model (figure 1), one quickly sees that classical physics does not give us the
right answer. We are therefore going to use a quantum mechanical approach to describe
the system.

Figure 2: Resistivities of the integer quantum Hall system, as functions of the magnetic
field. The red line shows the longitudinal resistivity ⇢xx, it is zero as long as ⇢xy sits
on a plateau level and spikes whenever ⇢xx changes from one plateau to the next. The
green line denotes the Hall resistivity ⇢xy, it takes on a plateau form, i.e. it is constant
over a range of magnetic fields. Image reproduced from [6].

1.5 Quantum Treatment

1.5.1 Eigenstates and Eigenvalues

The Hamiltonian for one electron in a 2D system subject to a perpendicular magnetic
field Bẑ is

H =
1

2m
(p + eA)2 (10)

where A is the vector potential describing the magnetic field: r⇥ A = Bẑ. Note that
the momentum operator p is the canonical momentum operator and di↵ers from the

5

Figure 12.1: Experimental measurements of the diagonal(red) and off-diagonal resistivities in the quan-
tum Hall effect. The off-diagonal resistivity appears at quantized values of 2π~/e2. Figure from
http://oer.physics.manchester.ac.uk/AQM2/Notes/Notes-4.4.html.

the area per electron multiplied by the magnetic field give a magnetic flux correspond to some
integer factor of the relevant quantized units of flux.

A remarkable aspect of the quantum Hall effect is that the value of the conductance, or resistivity,
when one is filling a particular shellm. The conductance is a property of the material described
by a tensor, σij ,

Ji = σijEj. (12.62)

This describes the current per unit length in the i direction, as this is a two-dimensional system,
in response to a small electric field in the j direction. It should depend on the strength of the
magnetic field, which is in the z direction. For free particles in a constant magnetic field Bẑ,
the addition of an electric field Ex̂ induced a charge to move with an average velocity Ec/B
in the y direction as derived in Eq. (3.20). Thus, we expect an off-diagonal component in the
conductivity tensor, σxy 6= 0, if a magnetic field is present. Additionally, one expects diagonal
elements given the presence of scattering in the medium.

It is not too surprising that there are dips in the diagonal components, σxx, when the applied
magnetic field corresponds to an exactly filled shell. This explains the peaks in the longitudinal
resistivity, ρ = σ−1, seen in Fig. 12.1. Indeed, the sharp peaks are located at points when
the magnetic field is adjusted to exactly fill a shell. But it is surprising to see the longitudinal
resistivity vanish between thresholds.

The plateaus in the experimental measurement of the off-diagonal elements in Fig. 12.1 are what
are truly surprising. The values of the conductivity at the thresholds can be motivated by simple
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arguments. If one assumes that the velocity of the electrons correspond to that of freely moving
charges,

Jy = envy = en
Exc

B
, (12.63)

then assigns magnetic field to correspond to the thresholdm defined in Eq. (??),

Jy =
e2

2π~
Ex, (12.64)

σxy =
e2

2π~
m,

ρxy =
2π~
me2

.

Although these arguments motivate the off-diagonal resistivity at threshold, they fail to describe
why the value stays constant between thresholds. The explanations are beyond the scope of this
course, and can involve topology.

The fractional quantum Hall effect refers to conductance minima for fractional, e.g. one third,
values of m. This is much more difficult to explain, but is related to the sharing of electrons
between adjacent orbitals, similar to the sharing of electrons in the covalent bonds in solids.

12.16 Problems

1. Consider the two electron holes in the p-shell of a neutral oxygen atom.

(a) What is the L− S − J of the ground state.
(b) If the atom is in a magnetic field of 0.01 Tesla, find the magnetic energies of the origi-

nally degenerate 2J + 1 states.

2. One electron moves in a one-dimensional system and feel the interaction of two atoms.
Approximate the interaction between the electrons and the atoms with the potential

V (x−R) = −βδ(x−R),

whereR is the position of an atom. Use the adiabatic approximation to

(a) Given the two atoms are separated by a distance r, find a transcendental equation
relating k and r where the electronic binding energy is ~2k2/(2m).

(b) Find the potential between the two atoms at small r,

V (r → 0) ∼ V (r = 0)− αr,

that is, find V (r = 0) and α. Do this by expanding the transcendental equation in
terms of r. Hint: First, find V (r = 0) by solving the transcendental equation with
r = 0. Take derivatives of the transcendental equation with respect to r, then solve
for dk/dr at r = 0, and finally find dE/dr to obtain α.
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(c) Find the potential between the two atoms at large r,

V (r →∞) = −γ exp(−2k∞r),

that is, find γ. Hint: Use first order perturbation theory, assuming the unperturbed
wave function is the bound state of one well, and the perturbation is the interaction
with the second well.

3. Problem deleted.

4. Consider a particle of massM and charge emoving in the x−y plane under the influence
of a magnetic field in the z direction. Ignore motion in the z direction.

(a) Show that the vector potential,

~A =
B

2
(xŷ − yx̂) ,

describes a magnetic field in the z direction.
(b) Express the vector potential in cylindrical coordinates, that is in terms of r, φ, r̂ and

φ̂.
(c) Write the Schrödinger equation,(

~p− e ~A/c
)2

2m
ψ(r, φ) = Eψ(r, φ),

in cylindrical coordinates.
(d) Show that Lz commutes with the Hamiltonian.
(e) Assuming the solution is an eigenstate of Lz with eigenvaluem~,

ψ(r, φ) = eimφξm(r),

rewrite the Schrödinger equation for ξm(r).
(f) Extra Credit: Solve for the ξm(r) and the eigenenergies for the case wherem = 0.

5. Consider a surface with 10 electrons per µm2. At what magnetic field (in Tesla) do you
find the first dip in conductivity due to the quantum Hall effect?
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13 Relativistic Quantum Mechanics

13.1 The Klein-Gordon Equation

In relativistic kinematics energy and momentum appear on an equal footing, as do position and
time. For instance,

E2 − p2c2 = m2c4. (13.1)

Rewriting energy and momentum as operators, one obtains the Klein-Gordon equation,(
−~2

∂2

∂t2
+ ~2c2∇2 −m2c4

)
ψ(~r, t) = 0. (13.2)

In this version, the wave function ψ can be a complex number. There are instances where one
uses a real field, but here we use a complex field so that we can solutions that are plane waves.
It differs from the Schrödinger equation in that time appears in a second derivative.

The complex Klein-Gordon equation has plane wave solutions,

ψp(~r) ∼ eip·~r/~−iE±(p)t/~, (13.3)

E±(p) = ±
√
p2c2 +m2c4

If one expands the energy for small p,

E+(p) ≈ mc2 + p2/2m. (13.4)

Thus, in the non-relativistic limit, the energy appears identical to the that of the Schrödinger
equation aside from the inclusion of the rest mass energy. If mass were conserved this would
merely add a constant to the energy along with an unobservable phase, eiMc2t/~. However, for
cases where particles are generated, the phase can play an important role.

Perhaps the most unusual feature in the solutions is the appearance of negative-energy solutions.
The negative-energy solutions can only be understood when one writes field operators in second
quantization. The field operators (remember the case for photons) will then be written as

Φ(~r, t) =

√
~c
V

∑
p

1√
Ep

(
eip·r/~b†p + e−ip·r/~ap

)
(13.5)

=

√
~c
V

∑
p

1√
Ep
e−ip·~r/~

(
eiEt/~b†p + e−iEt/~a−p

)
.

where p · r ≡ Ept− p ·~r. Thus, in the language of field operators, the negative-energy solution
is associated with the destruction of antiparticles moving with opposite momentum. We note
that if the field were a real field, rather than a complex field, b† would be replaced by a†. It only
seems natural that a relativistic theory should require the consideration of field operators to
make sense, because the creation and destruction of particles is an inherent feature of relativistic
treatments.
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For non-relativistic field operators we had defined field operators as,

Ψ(~r, t) =
1
√
V

∑
k

e−iEkt+ik·~rak, (13.6)

Ψ†(~r, t) =
1
√
V

∑
k

eiEkt−ik·~ra†k.

If the field operators refer to electrons, one can think of Ψ†(~r) as creating a negative particle at ~r,
while Ψ(~r) would destroy a negative particle. With relativistic fields, the operator that creates
a negative particle also has a piece that destroys the positive antiparticle, and the operator that
destroys an electron can also create a positron. This can be considered a particle-antiparticle
symmetry that derives from the existence of negative-energy solutions. The same symmetry
will result from the Dirac equation, which is the topic of the next lecture.

13.2 Current Conservation

The current density should have the form of a relativistic four-vector. Furthermore, the current
density should be conserved,

∂µj
µ(~r, t) = 0. (13.7)

Non-relativistically, the charge density j0 appeared in the form

ρ = ψ∗(~r, t)ψ(~r, t), (13.8)

whereas a derivative appeared in the form for the current density

~j(~r, t) =
−i~
2m

(
ψ∗(~r, t)~∂ψ(~r, t)− ~∂ψ∗(~r, t)ψ(~r, t)

)
. (13.9)

This clearly violates the relativistic spirit where the time and space components of a four vector
should appear with similar forms.

As an ansatz, we guess a form for the current density,

j0(~r, t) =
−i
2c

(
φ∗(~r, t)

∂

∂t
φ(~r, t)−

∂

∂t
φ∗(~r, t)φ(~r, t)

)
(13.10)

~j(~r, t) =
−ic

2

(
φ∗(~r, t)~∂φ(~r, t)− ~∂φ∗(~r, t)φ(~r, t)

)
.

It is now straight-forward to see that

∂µj
µ(~r, t) = 0, (13.11)

by taking the four divergence of jµ and then applying the Klein-Gordon equation.

Aside: Covariant-Contravariant Notation: Four vectors, e.g. time and position or energy and
momentum, are usually referenced by Greek indices numbering from zero to three. The zeroth

component refers to the component which rotate and boost like time, e.g. time or energy, and the
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other three refer to the components that behave like spatial vectors, e.g. position or momentum.
Contravariant vectors are labeled with superscripts, e.g. Aµ, and the values are the actual values
of the vectors. Covariant vectors are labeled by subscripts and have their spatial components
reversed. The components of pµ are E,−pxc,−pyc,−pzc. Derivatives behave oppositely,

∂µ =
∂

∂xµ
, ∂µ =

∂

∂xµ
. (13.12)

Here, the factors of c are neglected. Once c is included one must worry about whether the posi-
tion xµ refers to (t, x, y, z) or to (ct, x, y, z) or to (t, x/c, y/c, z/c). The best way to proceed is
to ignore factors of c and treat time and position as if they are measured in the same units. This
only makes sense, because boosts behave like rotations that mix time and position. Maintaining
a different set of units for time and position (or for energy and momentum) makes as much sense
as using one set of units for the x-component of the position and another for the y-component.
For the remainder of the chapter factors of c will appear or disappear from expressions. Typ-
ically, one ignores factors of c until the final expressions are determined. Then, when actual
numbers are needed one makes sure that the various quantities are consistent. For instance, in
high-energy nuclear physics distance is often measured in fm, and time is measured in fm/c. In
this set of units c = 1, so all the factors can be ignored. If one ultimately requires knowing time
in seconds, one first calculates a numerical value for the time in fm/c, then converts to seconds.

The use of Greek indices for four-vectors, and Roman indices for three-vectors, helps alleviate
some of the confusion with covariant and contravariant notation. For instance,

Ai=2 = Aµ=2 = −Aµ=2. (13.13)

Thus, the termA2 is ambiguous, unless one one knows whether one is referring to a four-vector
or a three-vector. Dot-products of four vectors,

A ·B = AµBµ = A0B0 −AxBx −AyBy −AzBz, (13.14)

are invariant to both boosts and rotations. To distinguish these from the dot products of three-
vectors, ~A · ~B = AxBx +AyBy +AzBz, the vector (or in other text bold face) are not invoked,
i.e. the dot-product of a four-vector isA ·B, not ~A · B or ~A · ~B.

Furthermore, one can see that the look at the form of jµ in terms of field operators. One then
obtains, after integrating over space,∫

d3r j0(~r, t) =
∑
p

(
a†pap − bpb

†
p

)
(13.15)

∫
d3r ~j(~r, t) =

∑
p

c2p

Ep

(
a†pap − bpb

†
p

)
Of course, one would also multiply by the charge e to get a charge density or current density,
but current does have the term one would expect for the velocity, c2p/Ep. Further, particles and
antiparticles contribute with opposite signs.
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A peculiar aspect of the expression is that the contribution from antiparticles has the creation
and destruction operators reversed, i.e. bb† rather than the number operator b†b. This implies
that an extra charge of -1 is associated with each momentum mode after making the substitution,

a†a− bb† = a†a− b†b− 1. (13.16)

This suggests that the vacuum has a charge of -1 associated with each mode, which translates
into an infinite negative charge because there are an infinite number of modes. If one wrote
down an expression for the Hamiltonian in terms of field operators one would find,

H =
∑
p

Ep

(
a†pap + bpb

†
p

)
(13.17)

=
∑
p

Ep

(
a†pap + b†pbp + 1

)
.

Thus, the vacuum has an infinite positve energy associated with it. When we consider the Dirac
equation, which is applicable for fermions, the same problem will appear, but with opposite
signs. That is, the energy of the vaccum will be−Ep for each mode. This result serves as one of
the motivations for super-symmetry, where every bosonic mode has a corresponding fermionic
mode.

13.3 Coupling to the Electromagnetic Field

In the Schrödinger equation, incorporating the electromagnetic field could be accomplished by
minimal substition,

−i~~∂ → −i~~∂ − e ~A/c (13.18)

i~
∂

∂t
→ i~

∂

∂t
− eΦ,

where Φ is the “scalar” field. However, in relativistic electromagnetism, Φ is the zeroth compo-
nent of the four vectorAµ.

In relativistic treatments, coupling to the electromagnetic field is also incorporated with the same
minimal substitution. One result of coupling to an electromagnetic field is that the charge and
current densities are modified,

j0(~r, t) =
−i
2c

(
φ∗(~r, t)

∂

∂t
φ(~r, t)−

∂

∂t
φ∗(~r, t)φ(~r, t)

)
−
eΦ(~r, t)

~c
φ∗(~r, t)φ(~r, t) (13.19)

~j(~r, t) =
−ic

2

(
φ∗(~r, t)~∂φ(~r, t)− ~∂φ∗(~r, t)φ(~r, t)

)
+
e ~A

~
φ∗(~r, t)φ(~r, t).

Example 13.1: – Reflecting off a Potential Step
A seemingly simple example that becomes surprisingly difficult is the reflection off a potential
step, where the potential step is due to jump in A0. Consider the one-dimensional problem,
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E-mc
I. II. eΦ

2

Φ(x) =
0, x < 0
Φ, x > 0

(13.20)

Consider a wave incident from the left, with a reflected and transmitted wave,

ψI(x) = eikx −Be−ikx (13.21)

ψII(x) = Ceik
′x,

where the energy of the particle is

E =
√

~2k2c2 +m2c4. (13.22)

Before solving forB and C, one must find k′. Applying the Klein-Gordon equation,

(E − eΦ)2 = ~2k′2c2 +m2c4, (13.23)

k′2 =
(E − eΦ)2 −m2c4

~2c2
.

One may then find the ranges for which k′2 is positive or negative,

1. k′2 > 0 when 0 < eΦ < E −mc2, (13.24)
2. k′2 < 0 when E −m < eΦ < E +mc2,

3. k′2 > 0 when eΦ > E +mc2.

The first two ranges for Φ correspond to the usual case for non-relativistic physics. That is, when
the barrier is small the particle propagates as a plane wave with a reduced velocity. For larger
barriers, the particle is confined to region I and the wave function exponentially dies in region
II.

However, the surprise here is that for very large Φ, there again appears to be a solution with
the particle moving through the barrier. This surprising result can be understood by calculating
the charge and current densities in region II. One finds that the charge density in region II is
opposite to that of region I. The solution describes an incoming wave that splits into two outgo-
ing waves, one of particles moving to the left and one of antiparticles moving to the right. This
behavior owes itself to the large field. When the voltage difference exceeds twice the mass, it
becomes possible to create pairs of particles. Because the antiparticle feels a potential of−eΦ, it
is perfectly willing to go to into region II, and many do so spontaneously if the step has enough
energy to overcome the mass penalty, 2mc2. This behavior does not exist should one consider a
problem where the regions have different masses rather than different values of eΦ.
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13.4 The Dirac Equation

The Dirac equation is another example of a relativistic wave equation. However, the Dirac equa-
tion differs in that it describes spin 1/2 particles whereas the Klein-Gordon equation applies to
spinless particles.

Dirac was motivated by finding a linear equation that was consistent with the relativistic con-
straintH2 = P 2c2 +m2c4. By linear, Dirac was looking for and equation that was linear in the
derivatives. In order to accomplish this Dirac suggested a matrix equation,

H = αxcpx + αycpy + αzcpz + βmc2 (13.25)
= c~α · ~p+ βmc2,

where αi and β are matrices. Given that one needs to satisfy our knowledge of relativity,

H2 = p2c2 +m2c4, (13.26)

there are constraints on the matrices,

{αi, αj} = 2δij, β
2 = 1, {αi, β} = 0. (13.27)

Two-by-two matrices are insufficient, as one can only comprise three anti-commuting matrices
(the Pauli matrices), but four are needed. Three-by-three matrices are also insufficient, but four-
by-four matrices are sufficient. The following four-by-four matrices satisfy the conditions,

~α =

(
0 ~σ
~σ 0

)
, β =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 (13.28)

Actually, there exist an infinite number of choices as one can transform the matrices by a unitary
transformation,

U~αU †, (13.29)

and find a new choice of matrices. The choice above is known as the Dirac representation, which
is convenient for massive particles. For highly relativistic particles, it is sometimes convenient
to employ the chiral representation,

~α =

(
~σ 0
0 −~σ

)
, β = −


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 . (13.30)

We will mainly employ the Dirac representation.

It should be stressed that the four components of the wave function are not a relativistic four
vector. They correspond to spin-up, spin-down, and the two corresponding anti-particle solu-
tions. Like any wave function, the components of the wave functions mean nothing in isolation.
Only expectations have a physical meaning, and those involve overlaps of vectors. By changing
the arbitrarily chosen representation, the physical meaning of the solutions is unchanged.
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13.5 Conserved Quantities

The particle current,

j0(~r, t) ≡ ψ†(~r, t)ψ(~r, t), ~j(~r, t) ≡ cψ†(~r, t)~αψ(~r, t), (13.31)

is conserved. One can demonstrate the conservation of the current by taking the four divergence,
∂µj

µ, and by applying the Dirac equation,

Hψ = i~
∂

∂t
ψ, (13.32)

i~
∂

∂t
ψ + i~c~α · ~∇ψ = mc2βψ,

−i~
∂

∂t
ψ† − i~c~α · ~∇ψ† = mc2βψ†,

to see that

∂

∂t
j0 +∇ · j = [(∂t +∇ · ~α)ψ(~r, t)]†ψ(~r, t) + ψ†(~r, t)(∂t +∇ · ~α)ψ(~r, t) (13.33)

=
imc2

~
[
−(βψ(~r, t)†ψ(~r, t) + ψ†(~r, t)βψ(~r, t)

]
= 0.

The properties that ~α and β are Hermitian were used.

This contrasts with the Klein-Gordon equation in that no derivatives are used to construct with
the current-density or the charge-density operators. In the Klein-Gordon equation both quanti-
ties had derivatives, and in the Schrödinger equation the current density involves derivatives,
but not the charge density.

Now, we consider conservation of angular momentum. Unlike the Schrödinger equation, the
Dirac Hamiltonian does not commute with the orbital angular momentum.

[H,~r × ~p]i = c[
∑
`

α`p`,
∑
jk

εijkrjpk] +mc2[β,
∑
jk

εijkrjpk] (13.34)

= −i~c
∑
jk

εijkαjpk,

[H,~r × ~p] = −i~c~α× ~p.

One can also define a spin operator, S = ~~Σ/2, where

Σi = −
i

2
εijkαiαj (13.35)

~Σ =

(
~σ 0
0 ~σ

)
in the Dirac representation.
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The spin is also not conserved.

[H,Si] =
∑
j

~cpj
2

[αj,Σi] (13.36)

=
∑
jkl

−i~cpj
4

εikl[αi, αkαl]

=
∑
jk

−i~cpj
2

(εijkαk − εikjαk)

= i~c
∑
jk

εijkαjpk,

[H, ~S] = i~c~α× ~p.

However, the combination ~J = ~r × ~p+ ~S is conserved,

[H, ~J ] = 0. (13.37)

13.6 Solutions for Free Particles

In analogy to the Klein-Gordon equation, the Dirac equation will have both positive-energy
and negative-energy solutions. The positive-energy solutions with a given momentum, ~p, are
referred to as us(~p) while the negative-energy solutions are referred to as vs(~p). The label s
refers to the spin.

Epu(~p) = ~α · ~pcu(~p) + βmc2u(~p) (13.38)
−Epv(−~p) = ~α · ~pcv(−~p) + βmc2v(−~p).

The momentum labels on the negative-energy solutions were labeled with the opposite mo-
menta because they would correspond to the destruction of anti-particles with momentum −~p
rather than the creation of particles of momentum ~p.
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To find the solutions, first find the solutions for p = 0. The solutions are then

u↑ (p = 0) =


1
0
0
0

 , (13.39)

u↓(p = 0) =


0
1
0
0

 ,

v↓(p = 0) =


0
0
1
0

 ,

v↑ (p = 0) =


0
0
0
1

 .
Note that the solutions v are labeled with a spin index opposite to the eigenvalue of Σz. Again,
this is because the solution will correspond to the destruction of an antiparticle. It is easy to
check that these solutions are eigenstates of the Dirac equation with eigenvalues±mc2.

Finding solutions for non-zero momentum can be accomplished by multiplying the zero-momentum
solutions by the operator mc2β + ~α · ~pc ± Ep. This results in a solution to the Dirac equation
because

(E − ~α · ~pc− βmc2)(E + ~α · ~pc+ βmc2) = 0. (13.40)

We define the solution us(~p) to be

us(~p) =
Ep + ~α · ~pc+ βmc2√

2mc2(mc2 + Ep)
us(p = 0), (13.41)

which will also be a solution to the Dirac equation.

(E − ~α · ~pc− βmc2)u(~p) = 0. (13.42)

The square root in the denominator was chosen to result in the normalization

u†s(p)us(p) =
Ep

mc2
. (13.43)

The choice of normalization is motivated by the fact that u†u turns out to be related to the zeroth
component of the current, which must transform like the zeroth part of a four vector (E, ~pc)/m.
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As an example, we find u↑ (~p) where ~p is along the z axis. For instance,

u↑ (pz) =
1√

2mc2(Ep +mc2)


Ep +mc2 0 pzc 0

0 Ep +mc2 0 −pzc
pzc 0 Ep −mc2 0
0 −pzc 0 Ep −mc2




1
0
0
0


(13.44)

=
1√

2mc2(Ep +mc2)


Ep +mc2

0
pzc
0


At non-zero momentum the positive-energy solutions have a mixture of upper (top two) and
lower (bottom two) components, with the upper components dwarfing the lower components
when the motion is non-relativistic.

Example 13.2: – The Infinite Square Well with a Scalar Potential
One can consider a binding potential as having a position dependent mass, i.e. a scalar field
Φ(x). Consider a spin-1/2 particle moving in one dimension with zero mass inside the well, but
infinite mass outside the well. The Dirac equation and well are

Eψ(x) = i~cαx∂xψ(x) + Φ(x)βψ(x), (13.45)

Φ(x) =


Mc2, x < 0

0, 0 < x < L
Mc2, x > L

M →∞.

1. For x < 0 and x > L show that the solution behaves as e−Mc|x|/~ and e−Mc|x−L|/~

respectively.

2. Show that the boundary condition at the surface is

iβ~α · n̂ψ = ψ.

Note this means that the wave functions are not vanishing at the boundary.

3. Using these boundary conditions find the ground state energy.

Solution:
(1.) Outside the well one can ignore the term in the Dirac equation proportional to E as that is
finite, and one must cancel the infinite terms. The equation thus becomes

(−i~cαx∂x −Mc2β)2ψ(x) = 0,

c2~2∂2
xψ(x) +M2c4ψ(x) = 0.

Here, the facts thatα2
x = β2 = 1 and {αxβ} = 0 were invoked. The solution must then behave

as e−Mc|x|/~.
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(2.) One can integrate the Dirac equation above,∫ 0

−∞
dx[−i~cαx∂xψ(x)] = −Mc2β

∫ 0

−∞
dx ψ(x) (13.46)

−i~cαxψ(x = 0) = −Mc2β

∫ 0

−∞
dx ψ(x = 0)e−Mc|x|/~,

iαxψ(x = 0) = βψ(x = 0).

Or more generally, iβ~α · n̂ψ = ψ where n̂ is the unit surface vector point outside the well.
Thus, on the l.h.s. of the well iβαxψ(x = 0) = ψ(x = 0) and on the r.h.s. iβαxψ(x = L) =
−ψ(x = L).

(3.) Inside the well the particles are massless and it is easiest to consider the problem in the chiral
representation. In that case

αx =

(
σx 0
0 −σx

)

ψ+,k(x) =
1
√

2


1
1
0
0

 eikx, ψ+,−k(x) =
1
√

2


0
0
1
1

 e−ikx.
These are two positive-energy solutions for particles with spins in the x direction moving to the
left and right respectively. These solutions are also eigenstates of the spin operator Σx, with
eigenvalue +1. There are also another two solutions that are eigenstates of Σx with eigenvalues
−1. Because Σx commutes with the one-dimensional Hamiltonian (both inside and outside the
well), we can choose one set of solutions.

To solve the B.C. one consider a linear combination,

ψ(x) = Aψ+,k(x) +Bψ+,−k(x). (13.47)

To consider the B.C. one can write the matrix

−iβαx = i

(
0 σx
−σx 0

)
, (13.48)

using the definitions of the Dirac matrices from the chiral representation in Eq. (13.30). At x = 0,
the B.C. can be applied,

iβαx {Aψ+,k(x = 0) +Bψ+,−k(x = 0)} = Aψ+,k(x = 0) +Bψ+,−k(x = 0), (13.49)
iAψ+,−k(x = 0)− iBψ+,k(x = 0) = Aψ+,k(x = 0) +Bψ+,−k(x = 0).

This will be a solution of the B.C. if

B/A = i. (13.50)

Repeating the considerations at x = L gives

B/A = −ie2ikL.
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The negative sign appeared due to the fact that the unit surface vector switched directions at the
other end of the well. The conditions on k are thus

e2ikL = −1 (13.51)
kL = (n+ 1/2)π, n = 0, 1, 2 · · ·

This differs from the Schrödinger equation result, kL = nπ. The ground state momentum is
half the value of the Schrödinger case, but the separation of the values of k are the same. One
consequence of this is that if one considers a macroscopic Fermi gas of such particles, there is no
penalty is splitting the well into two wells, and in three dimensions there is no surface energy
penalty.

13.7 Non-Relativistic Limit and the g Factor

Interaction with the electromagnetic field can be incorporated by replacing ~pwith ~p−e ~A/c and
i~∂/∂twith i~∂/∂t− eΦ, where Φ is the electric potential.

Using the Dirac representation, one can write the four components in terms of two two-component
vectors φ and χ, where φ and χ refer to the upper/lower components.

ψ =

(
φ
χ

)
. (13.52)

One can now write the Dirac equation as two equations for φ and χ.

i~
∂φ

∂t
= c

(~
i
∇−

e

c
~A

)
· ~σχ+ (eΦ +mc2)φ, (13.53)

i~
∂χ

∂t
= c

(~
i
∇−

e

c
~A

)
· ~σφ+ (eΦ−mc2)χ. (13.54)

In the non-relativistic limit the lower components will be small. Given that the energy is domi-
nated by the mass, can make the approximation

i~
∂

∂t
χ ≈ mc2χ, (13.55)

which results in a simple substitution for χ using Eq. (13.54).

2mc2χ ≈ c
(~
i
∇−

e

c
~A

)
· ~σφ. (13.56)

Substituting this expression into Eq. (13.53),

i~
∂

∂t
φ =

1

2m

[(~
i
∇−

e

c
~A

)
· ~σ
]2

φ+ (eΦ +mc2)φ. (13.57)

If the gradient and vector potential operators commuted with one another, one would use the
anti-commutation relations to obtain the usual kinetic energy piece in the Schrödinger equation
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from squaring the p − e ~A/c term and employing the anti-commutation relation. However,
taking account of such terms yields an extra term.

i~
∂

∂t
φ =

1

2m

[(~
i
∇−

e

c
~A

)]2

φ+ (eΦ +mc2)φ+
e~

2mci

∑
i 6=j

σiσj(∂iAj +Ai∂j)φ

(13.58)

=
1

2m

[(~
i
∇−

e

c
~A

)]2

φ+ (eΦ +mc2)φ+
e~

2mci

∑
i 6=j

σiσj(∂iAj −Aj∂i)φ

=
1

2m

[(~
i
∇−

e

c
~A

)]2

φ+ (eΦ +mc2)φ−
e~

2mc
~Σ · ~Bφ.

Because ~~Σ = 2~S, the last term explains why the g factor of the electron is 2. Previously, this
had been inserted by hand. However, the Dirac equation requires that the g factor be exactly
two. Note that the g factor of the proton and neutron are not equal to two, because they are com-
posite particles. Being composite particles, the spin of the proton is composed of contributions
of internal orbital angular momenta of the quarks and gluons.

The only difference between the expression above and the usual Schrödinger equation is in the
additional termmc2. However, this merely adds a constant to the energy as long as mass is con-
served, and does not affect any observable in the non-relativistic limit. This rapid oscillation was
referred to as “zitterbewegung” (trembling motion) by Schrödinger, https://en.wikipedia.
org/wiki/Zitterbewegung.

13.8 The Spin-Orbit Interaction

One can make a rigorous expansion of Eq.s (13.53) and (13.54) by iterating Eq. (13.54),

χ =
1

2mc

(~
i
∇−

e

c
A

)
· ~σφ−

1

2mc2

(
i~
∂

∂t
−mc2 − eΦ

)
χ (13.59)

=
1

2mc

(~
i
∇−

e

c
A

)
· ~σφ−

1

2mc2

(
i~
∂

∂t
−mc2 − eΦ

)
{

1

2mc

(~
i
∇−

e

c
A

)
· ~σφ −

1

2mc2

(
i~
∂

∂t
−mc2 − eΦ

)
χ

}
.

One can repeat the iterative substitution and find an expression for χ to arbitrary power in 1/m.
Once a satisfactory level for χ has been found, it may be substituted into Eq. (13.53) to obtain a
wave equation for φ.

If one pursues the expansion one step beyond what was done previously with the magnetic
field to find the g factor of the electron, one finds (with a substantial amount of algebra) that the
approximate Hamiltonian for the upper components φ has the extra terms,

δH = −
p4

8m3c2
−

e~
4m2c2

~σ · (~E × ~p) +
e~2

8m2c2
∇2Φ. (13.60)

Here, we have kept terms that are of order 1/m2 of the usual non-relativistic terms, noting
that p2/2m is one of the non-relativistic terms. The first term above is merely the next-order
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expansion of E =
√
p2c2 +m2c4, while the second term is the spin-orbit term. To show that

the second term is the spin-orbit term, we note that

~E × ~p =
E(r)

r
~r × ~p, (13.61)

for a radial electric field ~E. The final term in Eq. (13.60) is known as the Darwin term (derived
by Charles Galton Darwin, the grandson of the more famous Charles Darwin). For the Coulomb
potential, Φ = −Ze/r, it can be re-expressed as

HDarwin =
Z~2e2

8m2c2
δ3(~r), (13.62)

and thus appears mainly for s−wave terms.

Finally, it is noted that one may go through the same exercise without any electromagnetic field,
but instead with a position dependent massm(r). One then finds that the spin-orbit term looks
identical except that

e~E →
∂m(r)c2

∂r
. (13.63)

This has the opposite contribution for an attractive interaction. This is important for understand-
ing nuclear physics where the spin-orbit interaction is surprisingly large. It can be explained by
an attractive scalar interaction (like a position dependent mass) and a repulsive vector interac-
tion (similar to a Hydrogen atom, but with opposite sign because it is repulsive). The interac-
tions cancel each other out to a large degree as far as the binding energies are concerned but the
contributions from the spin-orbit terms add together.

The Dirac equation is one of the great triumphs of twentieth century physics. Motivated by
aeshetic considerations, several previously ad-hoc assumptions fall out naturally: the g factor,
particle-antiparticle symmetry, the spin-orbit coupling, etc. When combined with the relativistic
coupling to the quantum electromagnetic field, incredibly accurate calculations can be made of
g − 2 using perturbation theory. But, this is material for another course.

13.9 More Notation: γ Matrices

To more clearly demonstrate the covariant nature of the equations, it is common to define the
Dirac γ matrices.

γ0 ≡ β, ~γ ≡ β~α. (13.64)

The three space-like γ matrices are anti-Hermitian, while γ0 is Hermitian. The convenient co-
variant behavior of the γ matrices comes from the property,

{γµ, γν} = 2gµν, (13.65)

where gµν is the metric tensor

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (13.66)
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This property means that the γ matrices transform like four vectors.

A very common notation is

/p ≡ pµγµ, (13.67)

which means that the Dirac equation (multiplied by γ0) can be expressed as

(/p+m)ψ = 0. (13.68)

This has the attraction that /p is a scalar.

One can write the current as

jµ = ψ̄γµψ, (13.69)

where

ψ̄ ≡ ψ†γ0. (13.70)

This seems a bit peculiar, but ψ̄ψ is a scalar rather than ψ†ψ which transforms like the zeroth
component of the four current. To see that ψ̄ψ is a scalar under boosts, we recall Eq. (13.41)
where the operator used to boost the solution from ~p = 0 to ~pwas

B =
E + ~α · ~p+ βm√

2m(m+ Ep)
, (13.71)

which is Hermitian. Next, we consider the boosted value of ψ̄ψ where the boosted wave func-
tion is ψ and the p = 0 solution is ψ0,

ψ̄ψ = ψ†0B
†βBψ0 (13.72)

= ψ†0
E + ~α · ~p+ βm√

2m(m+ Ep)
β
E~α · ~p+ βm√
2m(m+ Ep)

ψ0

=
1

2m(m+ Ep)
ψ†0β(E − ~α · ~p+ βm)(E~α · ~p+ βm)ψ0

= ψ†0β(E2 − p2 +m2 + 2mEβ − 2mβ~α · ~p)ψ0.

For the at-rest solution ψ†0βαiψ0 = 0 because α mixes upper and lower components, and
ψ̄0ψ = ψ†0ψ. Substituting E2 = p2 +m2 then gives

ψ̄ψ = ψ̄0ψ0. (13.73)

Though this is not a proof, it certainly shows that ψ̄ψ a Lorentz invariant. Similarly from our
study of the currents, ψ̄γµψ behaves as a four vector.

To more rigorously see the Lorentz structure of all the terms and more consistently derive the
expressions for the currents, it is best to start with the Lagrangian density,

L = ψ̄(/p+m)ψ, (13.74)

then use Noether’s theorem to derive the equations of motion and conserved currents. The
Lagrangian density above is manifestly boost-invariant, as it should be. To build a scalar, one
need only require that ψ̄ and ψ surround operators constructed from four-vectors where all
the Lorentz indices are contracted. The four matrices γµ indeed behave like four vectors under
boosts.
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13.10 Dirac Field Operators

For the non-relativistic case field operators were defined as

Ψi(~r, t) =
1
√
V

∑
~p

∑
s

us,i(~p)e−iEpt/~+i~p·~r/~bs,~p. (13.75)

Here, the two-component vector ui(s) describes how the spin s is projected onto the chosen
basis. For example i = 1 might refer to spin-up along the z axis and i = 2 to spin-down. The
spin label s might refer to some other basis, such as along the direction of ~p, or perhaps along
another axis. The field operator Ψi(~r) lowers the charge at position ~r by destroying a particle
of spin projection i, whereas Ψ†(~r) creates a particle at ~r. The operators bs,~k destroy particles of
momentum ~p with spin s. Because the basis for the spins when referencing momentum states,
labeled s, might differ from the basis used for coordite space, labeled i, the two-by-two ma-
trix us,i(~p) is simply the representation of a basis transformation which might differ for each
momentum value ~p.

For the Dirac case, the field operator will have four components, with i = 1 · · · 4. The extra
components account for the existence of anti-particles.

Ψi(~r, t) =
1
√
V

∑
~p

√
m

Ep

∑
s

(
us,i(~p)e−iEpt/~+i~p·~r/~bs,~p + vs,i(~p)eiEpt/~−i~p·~r/~d†s,~p

)
. (13.76)

The vectors us,i(~p) are normalized as

u†s(~p)us′(~p) = v†s(~p)vs′(~p) = (Ep/m)δss′, (13.77)

u†s(~p)vs(−~p) = v†s(~p)us(−~p) = 0.∑
i u
†
s,i(~p)us′,i(~p) = (Ep/m)δss′ . Here the operator d†s(~p) creates an anti-particle, which is

the same as destroying the negative-energy state of momentum −~p. Note that the overlaps
of us with vs are evaluated at opposite momenta. This is to ensure that any two operators
that are solutions of a given momentum ~p, i.e. the coordinate-space dependence is e+i~p·~r are
orthonormal.

The charge density operator Ψ†i(~r, t)Ψi(~r, t) can be integrated to yield the total charge,∫
d3r Ψ†i(~r, t)Ψi(~r, t) =

∫
d3r

∑
~p,s,~p′,s′

m

EpV
(13.78){

u†s,i(~p)us′,i(~p
′)ei(~p−~p

′)·~r/~b†s,~p)bs′,~p′ + v†s,i(~p)vs′,i(~p
′)ei(~p

′−~p)·~r/~ds,~pd
†
s′,~p′

+u†s,i(~p)vs′,i(~p
′)ei(~p+~p′)·~r/~b†s,~pd

†
s′,~p′ + v†s,i(~p)us′,i(~p

′)e−i(~p+~p′)·~r/~ds,~pbs′,~p′
}

=
∑
~p,s

{
b†s,~pbs,~p + ds,~pd

†
s,~p

}
=
∑
~p,s

{
b†s,~pbs,~p − d

†
s,~pds,~p + 1

}
.

The vacuum thus has a contribution to the charge density from each spin and for each value of
the momentum.
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13.11 The Dirac Equation and the Mass Term

The Hamiltonian for the Dirac equation for massless particles can be written in terms of creation
and destruction operators,

H0 =
∑

k

~kc(b†kbk + d†−kd−k), (13.79)

where b† and d† correspond to creation and destruction operators for particles and antiparticles
respectively. For this discussion we ignore the sums over spin or the vacuum energy.

If the mass term is treated like a perturbation, it can also be written in terms of the same cre-
ation/destruction operators,

V =
∑

k

mc2(b†kd
†
−k + d−kbk). (13.80)

For each momentum mode we can define two new operators,

α†k ≡ cos θkb
†
k + sin θkd−k, (13.81)

β†k ≡ cos θkd
†
−k − sin θkbk.

These operators satisfy the commutation relations,

{αk, α†q} = {βk, β†q} = δk,q, (13.82)

{αk, βq} = {βk, α†q} = {αk, β†q} = {α†k, β†q} = 0.

If one considers the Hamiltonian,

H =
∑
k

Ek(α
†
kαk + β†kβk) (13.83)

=
∑
k

Ek

{
cos 2θk

[
b†kbk + d†−kd−k

]
+ 2 sin2 θk + sin 2θk

[
b†kd
†
−k + d−kbk

]}
,

one may see that theH will equalH0 + V to within a constant if

Ek cos 2θk = ~ck, (13.84)
Ek sin 2θk = mc2,

or equivalently,

Ek =
√

~2k2c2 +m2c4, (13.85)

tan 2θk =
mc

~k
.
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Thus,

H = H0 + V + 2
∑
k

Ek sin2 θk (13.86)

= H0 + V +
∑
k

Ek(1− cos 2θk)

= H0 + V +
∑
k

Ek

(
1−

√
1

1 + tan2 2θk

)
= H0 + V +

∑
k

(√
(~ck)2 +m2c4 − ~ck

)
.

The last term is a correction to the vacuum energy which is simply the difference between the
vacuum energies with and without the mass. This can be thought of as an correction to the
energy of the Dirac sea.

13.12 Problems

1. To show why derivatives are defined as shown in Eq. (13.12), show that

∂µx
2 = 2xµ, and ∂µx2 = 2xµ,

where x2 = x2
0 − x2

1 − x2
2 − x2

3.

2. Consider a charged relativistic particle interacting with the electromagnetic field, and de-
scribed by the Klein-Gordon equation.[

(i~∂t − eΦ)2 + c2~2∂2
x −m

2c4
]
ψ(x, t) = 0

The electrostatic potential Φ is illustrated in the diagram below.

E-mc
I. II. eΦ

2

Consider a solution for a particle incident from the left,

ψI(x, t) = e(−iEt+ikx)/~ +Be(−iEt−ikx)/~

ψII(x, t) = Ce(−iEt+ik′x)/~,

where E =
√
m2c4 + k2.

Calculate the charge and current densities (include direction) in regions I and II for each of
the following three cases.

(a) eΦ < E −mc2.
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(b) E −mc2 < eΦ < E +mc2.
(c) eΦ > E +mc2.

3. Consider the same case as above, except with no electrostatic potential. Instead, consider
a different mass in region I and region II, with mII > mI . For each of the following two
cases, calculate the charge and current densities in regions I and II.

(a) E > mIIc
2

(b) E < mIIc
2

4. Consider the Dirac representation,

β =

(
1 0
0 −1

)
~α =

(
0 ~σ
~σ 0

)
and the chiral representation,

β =

(
0 −1
−1 0

)
~α =

(
~σ 0
0 −~σ

)
The spinors, u↑ and u↓, represent positve-energy eigenvalues of the Dirac equation as-
suming the momentum is along the z axis.

(mβ + pzαz)u(pz) = Eu(pz) ,

The spin labels, ↑ and ↓ refer to the positive and negative values of the spin operator,

Σz =

(
σz 0
0 σz

)
Write the four-component spinors u↑ and u↓ in terms of p, E andm :

(a) in the Dirac representation.
(b) in the chiral representation.
(c) in the limit pz → 0 for both representations.
(d) in the limit pz →∞ for both representations.

5. Consider a solution to the Dirac equation for massless particles, u+(~p), where the + de-
notes the fact that the solution is an eigenstate of the spin operator in the p̂ directions,

(~Σ · p̂)u+(~p, x) = u+(~p, x).

Show that the operator β operating on u+(p) gives a negative energy solution but is still
an eigenstate of ~Σ · p̂with eigenvalue +1.

6. Consider a massless spin half particle of charge e in a magnetic field in the ẑ direction
described by the vector potential

~A = Bxŷ.

The Hamiltonian is then

H = αx(−i~∂x) + αy(−i~∂y − eBx).
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(a) Show that the Hamiltonian commutes with−i~∂y and i~∂z.

(b) The wave function can then be written as

ψky,kz(x, y, z) = eikyy+ikzzφky,kz(x),

After setting kz = kz = 0, show that the energy can be found by solving the equation

E2φ±(x) = (−~2∂2
x + e2B2x2 − e~BΣz)φ±(x).

(c) Show that the eigen-values of the operatorH2 are

E2
± = (2n+ 1∓ 1)e~B, n = 0, 1, 2·,

where the ± refers to eigenvalues of Σz. You can do this mapping to the harmonic
oscillator and then using the solutions to the harmonic oscillator from Chapter 3. Note
that when the the eigenvalue of Σz is +1, there exists a solution with E = 0.

7. Using the definition of field operators in Eq. (13.76), show that the Hamiltonian

H =

∫
d3r Ψ†(~r, t)(−i~~α · ∇+ βm)Ψ(~r, t) (13.87)

=
∑
s,~p

Ep(b
†
s,~pbs,~p + d†s,~pds,~p − 1).

I.e. the vacuum energy for each mode is negative.

8. Using the definitions for αk and βk in Eq. (13.81),

(a) show that

b†kbk − d†−kd−k = α†αk − β†βk.

This demonstrates that the eigenstates of the new Hamiltonian are still eigenstates of
the charge operator written in the old basis.

(b) Show that the state
|0̃〉 ≡ cos θ|0〉+ sin θd†−kb

†
k|0〉

is destroyed by both αk and βk, where |0〉 is the vacuum in the old basis. Effectively,
this shows that |0̃〉 is the vacuum in the new basis.
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14 States Without Conserved Particle Number

Thus far, the initial and final states that we have considered all have a fixed number of particles.
That number might have changed between the initial and final state, e.g. an excited state emit-
ting a photon, but the basis being used was purely one where the n particles were well defined,
typically by their momentum. However, there are numerous applications where the basis being
used is not one of fixed particle number. This is even the case when the particles carry charge. In
the next section the Bogoliubov treatment of pairing is presented. In this treatment a variational
wave function involving a mixture of states with charge zero (zero electrons) and charge−2e (2
electrons) is proposed. The subsequent section introduces the idea of coherent state for bosons.
This basis was applied by Roy Glauber to describe the photon pulse from a laser. It is also serves
as a basis for lattice gauge theory. These topics will not be pursued in great detail, but a student
should get a decent knowledge of such bases, and perhaps gain some level of comfort with this
peculiar choice of states.

14.1 Bogoliubov Operators and Cooper Pairs

The pairing term in BCS theory can be written in terms of creation and destruction operators as

V = −
v0

Ω

∑
k,k′

′
b†~kd
†
−~kd−~k′b~k′. (14.1)

Here, we have only considered pairs that sum to total momentum zero. The b† and d† operators
refer to electron spin-up and spin-down creation operators. We do this rather than fouling the
formalism with more subscripts. The interaction represents the scattering of particles of opposite
momenta ~k′ and−~k′ into states ~k and−~k. The primed sum limits the sum to a region near the
Fermi surface.

Now, we consider as a variational wave function a state where each momentum mode is defined
as

|Ψ〉 =
∏
k

′ (
cos θk + sin θkb

†
−~kd

†
~k

)
|0〉 (14.2)

When θk becomes non-zero, this state is no longer an eigenstate of the number operator, or
electric charge. The expectations of the relevant creation/destruction operator combinations are

〈Ψ|b†~kb~k + d†−~kd−~k|Ψ〉 = 2 sin2 θk, (14.3)

〈Ψ|b~kd−~k|Ψ〉 =
1

2
sin 2θk.

Next, we consider the energy of particles in the primed region,

〈Ψ|H0 + V |Ψ〉 =
∑
k

′
εk〈Ψ|b†~kb~k + d†−~kd−~k|Ψ〉 −

v0

Ω

∑
k

′
〈Ψ|b†~kd

†
−~k|Ψ〉

∑
k′

′
〈Ψ|b~k′d−~k′|Ψ〉

(14.4)

=
∑
k

′
(

2εk sin2 θk −
∆

2
sin 2θk

)
,
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where

∆ ≡
v0

2Ω

∑
k′

′
sin 2θk′ (14.5)

The important step here is in writing 〈Ψ|b†~kd
†
−~kd−~k′b~k′|Ψ〉 = 〈Ψ|b†~kd

†
−~k|Ψ〉〈Ψ|b~k′d−~k′|Ψ〉. This

follow from the ansatz for the product form of the state, Eq. (14.2), and from ignoring terms
where ~k = ~k′. These terms are ignored because they are an infinitesimal fraction of the terms in
the continuum limit where many states are included in the sum.

Now, one must choose the angles θk so that the energy is minimized compared to the extra
particles coming from a reservoir with chemical potential µ. (Usually µ is the Fermi energy).

∂

∂θk

∑
k

′
(

2(εk − µ) sin2 θk −
v0

4Ω
sin 2θk

∑
k′

′
sin 2θ~k′

)
= 0. (14.6)

This leads to the solution

tan 2θk =
∆

εk − µ
. (14.7)

After finding the angles θk, one must find the new ∆ using Eq. (14.5), then iterate until a consis-
tent solution is found.

One can find the probability that a state ~k is occupied by a particle,

〈b†~kb~k〉 = sin2 θ~k =
1

2
−

1

2

(εk − µ)√
(εk − µ)2 + ∆2

.

The occupation is 1/2 when εk = µ, is zero for εk >> µ and is unity for εk << µ. Pairing
smooths the step function one expects for non-interacting particles with a scale ∆.

We also note the difference of this solution with the relativistic Dirac problem above. In that
case the ground state was a mixture of the old vacuum and a particle/anti-particle pair, |0〉 and
b†kd
†
−k|0〉. However, in this approach the solution is a mixture of zero-electron and two-electron

states, thus not even electric charge is fixed. The analogy between superconductivity and par-
ticle/nuclear physics is reflected in the jargon, as the generation of masses due to spontaneous
symmetry breaking is referred to as the creation of a gap.

Example 14.1: – Show that same-spin particles don’t pair

If we had considered particles of the same spin,

|Ψ〉 =
∏
k

′ (
cos θk + sin θkb

†
kb
†
−~k

)
|0k〉,

the resulting expectation for the pairing would be zero. This follows because

(b~kb−~k + b−~kb~k)
(
cos θk + sin θkb

†
~k′
b†−~k′

)
|0〉 = 0.
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The cancelation results from the fact that ~k could equal either ~k′ or−~k′. There is only one possi-
ble connection for the case where the product of b~kb−k is replaced by b~kd−k. One way of stating
this result is that an s-wave coupling must combine with an anti-symmetric spin combination
because the overall pair wave function must be anti-symmetric. If the original potential had
odd-parity, e.g. it was proportional to k, then one could form a pwave like state with symmetric
spin. The wave function might have a form

|Ψ〉 =
∏
k

′ (
cos θk + f(~k) sin θkb

†
~k
b†−~k

)
|0k〉,

where f is an odd-parity function of ~k.

14.2 Coherent States

Our last example of a state which is not an eigenstate of particle number is referred to as a
“coherent” state.

|η〉 = e−η
∗η/2eηa

†|0〉 (14.8)

= e−η
∗η/2

∑
n

(ηa†)n

n!
|0〉,

where η is a complex number. One can check to see that this state is properly normalized by
calculating the overlap,

〈0|eη∗aeηa†|0〉 = 〈0|
∑
m

(η∗a)m

m!

∑
n

(ηa†)n

n!
|0〉 (14.9)

=
∑
n

〈0|
(η∗η)n

(n!)2
an(a†)n|0〉

=
∑
n

(η∗η)n

n!
= eη

∗η.

A coherent state is an eigenstate of the destruction operator.

a|η〉 = e−η
∗η/2a

∑
n

(ηa†)n

n!
|0〉 (14.10)

=
∑
n

nηn(a†)n−1

n!
|0〉

= η
∑
n

ηn−1(a†)n−1

(n− 1)!
|0〉

= η|η〉.

Thus, it is simple to calculate matrix elements of coherent states. For example,

〈γ|(a†)3a2|η〉 = (γ∗)3η2〈γ|η〉. (14.11)

220



PHY 851 14 STATES WITHOUT CONSERVED PARTICLE NUMBER

14.3 Emission Via Coupling to a Classical Current

The physical importance of coherent states comes from the fact that they are the solution to the
following Hamiltonian.

H(t) = H0 + V (t). (14.12)

H0 = εa†a,

V (t) = j(t)[a† + a].

Here j(t) plays the role of an external classical current that couples to a quantum field, e.g. j ·A.

As a solution of the Hamiltonian, one can propose a state |η(t)〉I in the interaction representa-
tion,

|η(t)〉I = e−η
∗(t)η(t)/2eη(t)a†|0〉 = eη(t)a†−η∗(t)a|0〉, (14.13)

where η(t) ≡
−i
~

∫ t

−∞
dt′eiεt

′/~j(t′).

This state is manifestly normalized because the argument of the exponential is anti-Hermittian.
Viewing the evolution of |η〉I with time,

i~
∂

∂t
|η(t)〉I =

(
j(t)eiεt/~a† + j(t)e−iεt/~a

)
|η(t)〉I (14.14)

j(t)
(
a†(t) + a(t))

)
|η(t)〉I.

Here, a(t) is the destruction operator in the interaction representation,

a(t) = e−iH0t/~aeiH0t/~ = e−iεt/~a, (14.15)

a†(t) = e−iH0t/~a†eiH0t/~ = eiεt/~a†.

This then gives

i~
∂

∂t
|η(t)〉 = VI(t)|η(t)〉, (14.16)

which demonstrates that our guess at a form for |η(t)〉I was successful.

Coupling to an external current is a common consideration in a wide variety of physical prob-
lems. Even when spatial degrees of freedom are considered, e.g. j ·A, one finds simple analytic
solutions. They then often have the form

|η〉 ∼ exp

{
−i
∫
d3p j(~p)a†~p

}
|0〉, j(~p) ∼

∫
d4x eip·xj(x). (14.17)

Any classical current that couples linearly to the field will radiate particles in a coherent state.
Some lasers are described with coherent states, when one can justify that the current behaves
classically. A classical current is one that is unaffected by the emission. When an atom emits a
photon the atom then changes to a new state. For a classical current, no such change occurs. To
justify treating a current as classical, one typically considers macroscopic emitters. For a laser,
one can think of a crystal which is coupled to the field as providing the classical current.
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14.4 Completeness Relations for Coherent States

A useful property of any basis is completeness,∑
α

〈m|α〉〈α|n〉 = δmn. (14.18)

Coherent states provide a complete basis when all values of η in the complex plane are consid-
ered.

1

π

∫
dηRdηI〈m|η〉〈η|n〉 = δmn (14.19)

To prove this, we expand the matrix elements.

〈m|η〉〈η|n〉 = e−|η|
2 ηm(η∗)n
√
n!m!

. (14.20)

Writing the integral over the real and imaginary parts of η as∫
dηRdηI →

∫
dφ|η|d|η|, (14.21)

where φ is the complex phase of η, allows one to see that the integral over φ will eliminate all
terms withm 6= n because

〈m|η〉〈η|n〉 = e−|η|
2

ei(m−n)φ
|η|m+n

√
n!m!

. (14.22)

One may now rewrite the expression using the fact that integrating over φ constrains the result
to be proportional to δmn.

1

π

∫
dηRdηI〈m|η〉〈η|n〉 = 2δmn

∫
|η|d|η| e−|η|2

|η|2n

n!
. (14.23)

By making the substitution u ≡ |η|2, one can perform the integral and see that

1

π

∫
dηRdηI〈m|η〉〈η|n〉 = δmn. (14.24)

Completeness, combined with the fact that the coherent states are eigenstates of the destruction
operator, allows one to calculate all matrix elements

〈αf |e−iHt|αi〉 =
∑
αi

〈αf |e−iH(t−t1)|α1〉〈α1|e−iH(t1−t2)|α2〉 (14.25)

〈α2|e−iH(t2−t3)|α3〉 · · · 〈αn|e−iH(tn−ti)|αi〉

as an integral over complex fields ηi rather than a sum over discrete states αi. Furthermore, if
the Hamiltonian is normal ordered, that is each term has all creation operators pushed to the
left,

〈ηn|e−iH(a†,a)δt/~|ηn+1〉 =
{
1− iH(η∗n, ηn+1)δt/~

}
〈ηn|ηn+1〉. (14.26)
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Going further,

〈ηn|ηn+1〉 = e−η
∗η/2〈0|eηa|η + δη〉 (14.27)

= e−η
∗η/2eη

∗(η+δη)〈0|η + δη〉
= e−η

∗η/2eη
∗(η+δη)e(η+δη)∗(η+δη)/2

= e(η∗δη−δη∗η)/2

= e(η∗η̇−η̇∗η)δt/2.

This gives

〈ηn|e−iH(a†,a)δt/~|ηn+1〉 = 1 +
[
−iH(η∗n, ηn+1)/~ + (η∗η̇ − η̇∗η)/2

]
δ. (14.28)

Thus the matrix element is transformed into a purely numerical function of the complex number
η. The process of breaking up the evolution operator into the product of many individual pieces
e−iHδt, inserting a complete set of states between each piece, expressing them in terms of some
variables at each point (η) and integrating over all η is known as a path integral. In addition
to being useful for calculating evolution operators, they also can be applied to thermodynam-
ics partition functions which require calculating the trace of e−βH . Lattice gauge theory is the
numeric enterprise of calculating such path integrals for QCD.

Finally, we point out that rather than thinking of the variable η, one can also write the integral
in terms of the real variables p and q, where η = (p+ iq)/

√
2~. In that case

1

π
dηRdηI →

1

2π~
dpdq , (14.29)

and

〈ηn|e−iH(a†,a)δt/~|ηn+1〉 = {1 + i(pq̇/2− qṗ/2−H(p, q))δt} . (14.30)

Because one integrates over all t, a total derivative in the phase, ei(pq̇+qṗ) is independent of the
intermediate values of p and q, as long as one is looking at specific initial and final states. Thus,
it leads to a path-independent phase and can be neglected. One can thus rewrite this as

〈ηn|e−iH(a†,a)δt/~|ηn+1〉 = 1 + i[pq̇ −H(p, q)]δt/~ (14.31)

= ei[pq̇−H(p,q)]δt/~

The final matrix element becomes

〈η(tf)|η(t0)〉 = Πi

dp(ti)dq(ti)

2π~
exp

{
i

∫
dt[pq̇ −H(p, q)]/~

}
. (14.32)

Lo, and behold, this phase looks like the Lagrangian. Thus, quantum physics can be re-expressed
as a path integral over coordinates p and q. In quantum field theory, every point in space is
reduced to a state, using such coordinates. This is how Lagrangian field theory, which is the
theoretical backbone of the standard model, and is described in terms of fields at each point in
space encapsulated by numbers, can be translated into quantum mechanics.
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14.5 Problems

1. Consider an electron in a constant external magnetic field B directed along the z axis and
a constant electric field E in the y direction.

(a) Choosing the vector potential to lie along the y axis and describe both the electric and
magnetic fields, show that the Hamiltonian may be written in the form,

H =
P 2
z

2m
+
P 2
x

2m
+

1

2
mω2(x− x0 − v0t)

2 ,

and find ω, and v0 in terms of E, B, e, m, ky and c, where ~ky is the eigenvalue of
Py. Hint: Choose a gauge such that ~E = −(1/c)∂t ~A.

(b) Show that Schrödinger’s equation, i(∂/∂t)Ψ = HΨ is satisfied by the form

Ψ(x, y, z, t) = e−iεnt/~+imv0x/~+ikzz+ikyyφn(x− x0 − v0t) ,

whereφn refers to a harmonic-oscillator wave function characterized by the frequency
ω and εn = (n+ 1/2)~ω +mv2

0/2.

2. Consider the coherent state |η〉 defined by,

|η〉 = e−η
∗η/2 exp (ηa†)|0〉

(a) Show that the overlap of two states is given by,

〈η′|η〉 = e−|η
′|2/2−|η|2/2+η′∗η

(b) Show that the normalized coherent state |η〉may be rewritten in the following form

e−|η|
2/2eηa

†|0〉 = eηa
†−η∗a|0〉.

Hint: You may wish to use the Baker-Campbell-Hausdorff lemma.

3. Consider bosonic creation and destruction operators, a† and a. Consider a linear combi-
nation,

b = αa+ βa†

What is the constraint on the complex numbers α and β if one is to demand that [b, b†] =
1?

4. Consider a coherent state
|η〉 = e−η

∗η/2eηa
†|0〉.

(a) Show that N̄ = 〈η|Nop|η〉 = η∗η, whereNop = a†a is the number operator.

(b) Show that the variance equals the mean, i.e.,

〈η|(Nop − N̄)2|η〉 = N̄.

This is characteristic of a Poissonian distribution.
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