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Consider a particle of mass m incident on the following
potential:

V (x) = −αδ(x) (1)

where

δ(x) =

{
0 x 6= o

∞ x = 0
(2)

and where α is a positive constant.

1. How many bounds states are possible?

2. Find an expression for the bound state energy/energies
in terms on m and α.

3. Derive the reflection coefficient for particles incoming
from the left.

4. Using the result from part C, what is the transmis-
sion coefficient?

5. A delta potential can be considered a finite square
well with the height taken to the limit of infinity and
the width taken to the limit of zero. Find the energy
of the bound state of the delta function by treating
it as a finite square well. (Inspired by a problem in
Griffiths)
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Part 1

For this delta potential there is only one bound state.
Proof:
The wave function for x < 0 is given by:

ψ1(x) = Aeκx (3)

and the wave function for x > 0 is given by:

ψ2(x) = Be−κx (4)

where

κ =

√
−2mE

h̄2
. (5)

At x = 0 the boundary conditions are:

1. ψ1(0) = ψ2(0)

2. dψ1(x)
dx x=0 = dψ2(x)

dx x=0, except at infinite discontinu-
ities.

Given these A = B and

∆(
dψ

dx
) = −Bκ−Bκ = −2Bκ. (6)

Also

∆(
dψ

dx
) = −2mα

h̄2
ψ(0). (7)

But since ψ(0) = B, combining Eq. 6 and Eq. 7 yields

κ =
mα

h̄2
. (8)
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Since there is only one possible value of kappa, there
is only one bound energy.

Part 2

The energy of the only bound state, in terms of m and
α is:

E = −mα
2

2h̄2
(9)

Proof:
From the previous problem, κ was found to be:

κ =
mα

h̄2
(10)

Then the energy of the bound state is given by:

E = −h̄
2κ2

2m
= − h̄2

2m
(
mα

h̄2
)2 = −mα

2

2h̄2
(11)

Part 3

For scattering, the wave function for x < 0 is:

ψ1(x) = Aeikx +Be−ikx (12)

and the wave function for x > 0 is:

ψ2(x) = Ceikx +De−ikx (13)

Using boundary condition 1, defined in Part 1, A +
B must equal C + D. The second boundary condition
yields:
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ik(C −D − A+B) = −2mα

h̄2
(A+B) (14)

or

C −D = A(1 + 2iβ)−B(1− 2iβ) (15)

where

β =
mα

h̄2k
. (16)

For a wave incoming from the left, D will be zero.
For the remaining variables, A is the amplitude of the

incident wave, B is the amplitude of the reflected wave,
and C is the amplitude of the transmitted wave.

Using the boundary conditions yields B and C in terms
of A:

B =
iβ

1− iβ
A (17)

C =
1

1− iβ
A. (18)

Finally the reflection coefficient (the fraction of incom-
ing particles that will bounce back from the potential),
R, can be defined as:

R =
|B|2

|A|2
=

β2

1 + β2
(19)

Part 4

Given that R = |B|2
|A|2 = β2

1+β2 from part C, then the trans-
mission coefficient, T, is:
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T = 1−R =
1 + β2

1 + β2
− β2

1 + β2
=

1

1 + β2
(20)

Part 5

Finite Square Well

The finite square well is defined as follows:

V (x) =

{
−V0 −a < x < a
0 |x| > a

(21)

where V0 is a positive constant.
In the region of x < -a, the potential is zero and

Schrodinger’s equation gives:

d2ψ

dx2
= κ2ψ (22)

where κ is defined in the usual way:

κ =

√
−2mE

h̄
. (23)

From these equations, the only physically possible wave
function is ψ = Aeκx.

For the region in the potential well, -a< x< a, Schrodinger’s
equation reads as:

− h̄2

2m

d2ψ

dx2
− V0ψ = Eψ −→ d2ψ

dx2
= −l2ψ (24)

where l is defined to be:

l =

√
2m(E + V0

h̄
(25)
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Note: E must be greater than V0 for a bound state.
The possible wave function in this region is:

ψ(x) = Csin(lx) +Dcos(lx) (26)

And finally the wave function in the region x > a is:

ψ(x) = Be−κx (27)

using the same equations as for x < -a.
Since the square well potential does not have an infi-

nite discontinuity, the function and the slope of the wave
function must be continuous at all points. Solving for
this yields the following equation:

κ = l ∗ tan(la). (28)

From here it is standard to switch notation from κ and
l to z and z0, where z roughly corresponds to the energy
and z0 corresponds to the size of the well.

z = la (29)

z0 =
a

h̄

√
2mV0 (30)

Thus, using this notation:

κ = l ∗ tan(la) −→ tan(z) =

√
(
z0
z

)2 − 1 (31)

The solutions to the above equation are the bound
states of the finite square well potential.

6



Delta Potential from Finite Square Well

From the solution of a finite square well, the following
definition is found:

z0 =
a

h̄

√
2mV0 (32)

where the width of the square well is 2a.
The area of the square well should be held constant,

even as a −→ 0, so the area of the potential is

ω = 2aV0 (33)

Then V0 = ω
2a and

z0 =
a

h̄

√
2mV0 =

a

h̄

√
2m(

ω

2a
) =

1

h̄

√
mωa (34)

The bound state energies of a finite square well can be
found using this equation:

tan(z) =

√
(
z0
z

)2 − 1 (35)

When z approaches zero, tan(z) can be expanded

tan(z) = z =

√
(
z0
z

)2 − 1 =
1

z

√
z20 − z2 (36)

It is also known that from the equations of a finite
square well that

κ2a2 = z20 − z2 (37)

From Eq. 36 and Eq. 37 it can be determined that
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z2 = κa (38)

and that z0 = z. Therefore z20 = κa.
Combining this result with Eq. 34 yields

κa =
1

h̄2
mωa −→ κ =

mω

h̄2
(39)

From the finite square well equations, κ is defined as

κ =

√
−2mE

h̄
(40)

Thus

mω

h̄2
=

√
−2mE

h̄
−→ E = −mω

2

2h̄2
(41)

If ω (the area of the square well) in this problem is
equal to α in the definition of the delta potential, then
the same result is obtain.
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