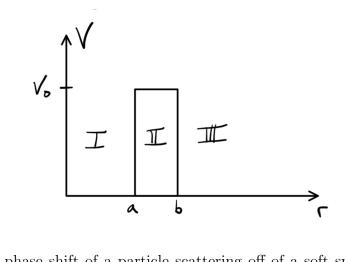
Problem

Consider the potential of what we call a soft shell:



a. Find the s-wave phase shift of a particle scattering off of a soft spherical shell of inner radius a, and outer radius b. The potential of the shell is V_0 . Assume that this potential is greater than the energy of the incoming particle.

b. Check that your answer makes sense by sending a to 0 to retrieve the phase shift associated with scatting off a soft sphere. This phase shift is solved for in chapter 8 of the notes.

c. Find the cross section in the low-energy limit for the soft spherical shell.

d. Check that this answer makes sense by sending a to 0 again to retrieve the cross section of scattering off a soft sphere. This is also in the notes.

Strategy

Step 0: Freak out because this looks hard. Then take in a deep breath and tell yourself that you can do this! :) The question states that a problem like this is in the notes, so that is a good place to start. Find the problem in the notes and think about the steps involved.

Step 1: First find the wavefunction in all three regions.

Step 2: Apply boundary conditions.

Step 3: Do algebra to solve for the phase shift.

E V, let
$$k = \sqrt{\frac{2\pi V_0}{M^2}}$$

 $q = \sqrt{\frac{2\pi V_0 - E}{M^2}}$
I II II
Step1: Find the wave functions in each region:
As a reminder from chapter 4, the radial schoolinger eqn is:
 $-\frac{K^2}{2m} \partial_r^2 W(r) + (\frac{K^2 (U+1)}{2mr^2} + V(r)) W(r) = E W(r)$
where $W_2(r) \equiv rR_0(r)$ and $V(\vec{r}) = R_2(r) V_{em}(Q_1Q)$
(i) The quick way to get the wave functions for swaves
For surves $l = 0$ and you can treat this exactly
like a 1-D problem for $W(r)$:
 $W_{II}(r) = R_0(r + C = qr)$
 $W_{II}(r) = R_0(r + K)$
 $W_{II}(r) = Ser + C = qr$
 $W_{III}(r) = Sin(kr + K)$
 W_{II} is a free particle where $W_{I}(Q) = 0$ so it must be a sin fun
 U_{II} is a free particle where $W_{I}(Q) = 0$ so it must be a sin fun
 W_{II} is a tree particle with a phase due to the potential
 W_{II} is a sum of increasing and decaying exponentials like normal

(ii) The slow way to get the wave faustions
(works for any l with V=0 but opts uply real quick)
The free particle solutions for any l can be written as
hiveor combinations of themkle functions:
We(kr) =
$$\frac{kr}{2} (C_1h_1(kr) + C_2h_2(kr))$$

 $\frac{4}{2} ikr$ $\frac{4}{2} ikr$
 $\frac{4}{2} ikr$ $\frac{1}{2} ikr$
 $\frac{4}{2} ikr$ $\frac{1}{2} ikr$
 $\frac{1}{2} kr(C_1h_2(kr) + C_2h_2^{+}(kr))$
 $= C_1(sin(kr) - i(cs(kr)) + C_2(sin(kr) + i(cs(kr)))$
 $= C_1(sin(kr) - i(cs(kr)) + C_2(sin(kr) + i(cs(kr)))$
 $= -iC_1e^{-ikr} + iC_2e^{-ikr} = C_1e^{-ikr} + C_2e^{-ikr}$
 $= U_1(kr) = Asin(kr)$ where $A = C_1 = -C_2$
For region TIT:
This is also a tree particle solution like u_2 but the
outgoing term must be shitted by a phase due
to the potential. So write this like u_2 but with $C_1 - C_2e^{-ikr}$
 $= 2K_{III}(kr) = C_2e^{-ikr} + C_2e^{-ikr}$
 $= e^{-ikr} = e^{-ikr} + C_2e^{-ikr}$
 $= e^{-ikr} = e^{-ikr} + C_2e^{-ikr}$

=>
$$U_{\text{MI}}(kr) = 0 \sin(kr+\delta)$$

For region II:
We get $U_{\text{MI}} = C_1 e^{ikr} + C_2 e^{ikr}$ with $k \rightarrow iq$
 $= C_1 e^{iqr} + C_2 e^{iqr}$
Letting $C_0 = B$, $C_1 = C$ we get the three walk
functions to be:
 $U_{\text{L}}(r) = A \sin(kr)$
 $U_{\text{L}}(r) = B e^{iqr} + Ce^{iqr}$
 $U_{\text{MI}}(r) = b \sin(kr+\delta)$
The only difference between the above answer and the
quick way is that A, B, C are normalized to D
Step 2: Use boundary conditions to construct system of equse:
 $1 U_{\text{MI}}(a) = U_{\text{M}}(a)$: Asin(ka) = $Be^{iqr} + Ce^{iqr}$
 $(2) U_{\text{MI}}(a) = U_{\text{MI}}(a)$: $kA \cos(ka) = q (Be^{iqr} - Ce^{iqr})$
 $(3) U_{\text{MI}}(b) = U_{\text{MI}}(b)$: $sin(kb+\delta) = Be^{iqb} + Ce^{iqb}$
 $(4) U_{\text{MI}}(b) = U_{\text{MI}}(b)$: $k(\cos(kb+\delta) = q (Be^{iqb} - Ce^{iqb})$
Step 3: Lots of Algebra

Lots of Algebra $(A) = D/C : \frac{4}{K} \tan(ka) = \frac{Be^{qa} + Ce^{qa}}{Be^{qa} - Ce^{qa}}$ $B = 3/4: \frac{4}{k} + un(kb+s) = \frac{18e^{4b} + (e^{-9b})}{18e^{9b} - (e^{-9b})}$ let $\frac{q}{k} \tan(ka) = \alpha \frac{q}{k} \tan(kb+s) = 3$ rewrite A: $K = \frac{Be^{qa} + Ce^{-qa}}{Be^{qa} - Ce^{-qa}}$ => × (Bega-Cega) = Bega+Cega => $(\alpha - 1) Be^{q\alpha} = (\alpha + 1) Ce^{-q\alpha}$ $= \sum \frac{K+1}{K-1} = \frac{B}{C} e^{2qa}$ for (B) just $x \rightarrow B$, $a \rightarrow b$: $\frac{J^{2}+1}{B-1} = \frac{B}{C} e^{2qb}$ So \mathbb{A}/\mathbb{B} : $\frac{x+1}{x-1}\frac{\mathbf{B}-1}{\mathbf{B}+1} = e^{2q(a-b)}$

$$\begin{aligned} |et (q = q(a-b) \\ = > \underline{\alpha + (p-\alpha) - 1} = e^{2q} \\ \underline{\alpha + (p-\alpha) - 1} = e^{2q} \\ \underline{\alpha + (p-\alpha) - 1} = e^{2q} (\alpha + (p-\alpha) - 1) \\ = > \alpha + p^{2} + (p-\alpha) - 1 = e^{2q} (\alpha + p^{2} - (p-a^{2q}) - 1) \\ = > \alpha + p^{2} + (p-\alpha) - 1 = e^{2q} (\alpha + p^{2}) - (p-a^{2q}) = 0 \\ = > (\alpha + p - 1) (1 - e^{2q}) + (p-\alpha) (1 + e^{2q}) = 0 \\ = > (\alpha + p - 1) (e^{-q} - e^{-q}) + (p-\alpha) (1 + e^{2q}) = 0 \\ = > (\alpha + p - 1) (e^{-q} - e^{-q}) + (p-\alpha) (1 + e^{2q}) = 0 \\ = > (\alpha + p - 1) (e^{-q} - e^{-q}) + (p-\alpha) (1 + e^{-q}) = 0 \\ = > (\alpha + p - 1) (e^{-q} - e^{-q}) + (p-\alpha) (1 + e^{-q}) = 0 \\ = > (\alpha + p - 1) (e^{-q} - e^{-q}) + (p-\alpha) (1 + e^{-q}) = 0 \\ = > (\alpha + p - 1) (e^{-q} - e^{-q}) + (p-\alpha) (1 + e^{-q}) = 0 \\ = > (\alpha + p - 1) (e^{-q} + p^{2}) (1 - \alpha + 1) (e^{-q}) - \alpha + 1) (e^{-q}) \\ = > (\alpha + p - 1) (e^{-q} + p^{2}) (1 - \alpha + 1) (e^{-q}) \\ = > (\alpha + p - 1) (e^{-q} + 1) (e^{-q}) + (p - \alpha + 1) (e^{-q}) \\ = > (\alpha + 1) (e^{-q}) - \alpha + 1) (e^{-q}) \\ = > (\alpha + 1) (e^{-q}) + (p - \alpha + 1) (e^{-q}) \\ = > (\alpha + 1) (e^{-q}) \\ = > (\alpha + 1) (e^{-q}) \\ = > (\alpha + 1) (e^{-q}) \\ = > ($$

$$\delta = -kb + tah^{1} \left(\frac{tan(ka) - \frac{k}{2} tanh(q(a-b))}{1 - \frac{q}{k} tanh(q(a-b))} \right)$$
b. Send a > 0 to see if it matches a soft sphere.

$$\delta_{a \Rightarrow 0} = -kb + tah^{1} \left[\frac{k}{2} tanh(qb) \right] which matches notes$$
C. Find cross section in low E limit
For low E limit $\sigma = 4\pi s^{2}$ where S is the scattering length
 $S = -\frac{2}{2k} S_{a=0}$
go to lineor order in k for S(k);
 $\delta = -kb + \frac{ka - \frac{k}{q} tanh(q(a-b))}{1 - qa tanh(q(a-b))}$
SD $0 = 4\pi s^{2}$ where $S = b - \frac{\alpha - \frac{1}{2} tanh(q(a-b))}{1 - qa tanh(q(a-b))}$
d. Ghave this watches soft sphere scattering length:
 $S_{a \Rightarrow 0} = b - \frac{1}{q} tanh(qb) as in the units$