An A particle of mass m rests in the ground state of a harmonic oscillator:

$$
H_{0}=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}
$$

when it suddenly feels the effect of a harmonic potential

$$
V=\alpha x \sin (\omega t)
$$

with the same frequency ω as that of the oscillator. This potential allows the A particle to decay into a B particle of the same mass, which doesn't feel the harmonic oscillator potential. Calculate the decay rate for the transition.

Solution

Fermi's Golden Rule is:

$$
\left.\Gamma=\frac{2 \pi}{\hbar} \sum_{k}|\langle f| V| i\right\rangle\left.\right|^{2} \delta\left(E_{f}-E_{i}\right) .
$$

The particle starts out in the lowest state of the Harmonic oscillator and ends up in a momentum eigenstate:

$$
\begin{array}{r}
\langle x \mid i\rangle=\frac{1}{\left(\pi b^{2}\right)^{\frac{1}{4}}} e^{-\frac{x^{2}}{2 b^{2}}} \\
\langle f \mid x\rangle=\frac{1}{\sqrt{L}} e^{i k x}
\end{array}
$$

where, as usual, $b^{2}=\frac{\hbar}{m \omega}$. The matrix element is of a harmonic perturbation, which has a pair of time dependent phases for decay processes and absorption processes

$$
V=\alpha x \sin \omega t=\frac{\alpha x}{2 i}(\underbrace{e^{i \omega t}}_{\text {decay }}-\underbrace{e^{-i \omega t}}_{\text {absorption }}) .
$$

Since this is a decay, the absorption piece won't contribute, so

$$
\begin{aligned}
&\langle k| V|n=0\rangle=\frac{\alpha e^{i \omega t}}{2 i} \frac{1}{\sqrt{L}} \frac{1}{\left(\pi b^{2}\right)^{\frac{1}{4}}} \int \mathrm{~d} x e^{i k x} x e^{-\frac{x^{2}}{2 b^{2}}} \\
&=A \int \mathrm{~d} x e^{-\left(\frac{x^{2}}{2 b^{2}}-i k x\right)} x \\
&=A \int \mathrm{~d} x e^{-\left(\frac{x^{2}}{2 b^{2}}-i k x-\frac{k^{2} b^{2}}{2}+\frac{k^{2} b^{2}}{2}\right)} x \\
&=A e^{-\frac{k^{2} b^{2}}{2}} \int \mathrm{~d} x e^{-\left(\frac{x}{b \sqrt{2}}-\frac{i k b}{\sqrt{2}}\right)^{2}} x \\
&=A b \sqrt{2} e^{-\frac{k^{2} b^{2}}{2}} \int \mathrm{~d} u e^{-u^{2}}\left(u b \sqrt{2}+i k b^{2}\right)
\end{aligned}
$$

where the first term was canceled through symmetry. What's left is simply

$$
A \sqrt{2 \pi} e^{-\frac{k^{2} b^{2}}{2}} i k b^{3}
$$

So the norm squared of the matrix element is

$$
|M|^{2}=2 \pi|A|^{2} e^{-k^{2} b^{2}} k^{2} b^{6}
$$

and

$$
|A|^{2}=\frac{\alpha^{2}}{4} \frac{1}{b L \sqrt{\pi}}
$$

with the time dependence completely disappearing, so the norm squared is finally

$$
|M|^{2}=\frac{1}{2 L}\left(e^{-k^{2} b^{2}} k^{2} b^{5} \alpha^{2} \sqrt{\pi}\right) .
$$

The decay rate, by Fermi's Golden Rule, is

$$
\Gamma=\frac{2 \pi}{\hbar} \sum_{k}|M|^{2} \delta\left(\frac{\hbar^{2} k^{2}}{2 m}-\hbar \omega-\frac{1}{2} \hbar \omega\right) .
$$

Converting to an integral,

$$
\begin{aligned}
\Gamma & =\frac{2 \pi}{\hbar} \frac{L}{2 \pi} \frac{\sqrt{\pi} b^{5} \alpha^{2}}{2 L} \int \mathrm{~d} k e^{-k^{2} b^{2}} k^{2} \delta\left(\frac{\hbar^{2} k^{2}}{2 m}-\frac{3}{2} \hbar \omega\right) \\
& =\frac{\sqrt{\pi} b^{5} \alpha^{2}}{2 \hbar} \frac{\hbar^{2}}{2 m} \int \mathrm{~d} k e^{-k^{2} b^{2}} k^{2} \delta\left(k^{2}-\frac{3 m \omega}{\hbar}\right)
\end{aligned}
$$

And the delta can be resolved using the identity

$$
\delta(f(k))=\sum_{i} \frac{1}{\left|f^{\prime}\left(k_{i}\right)\right|} \delta\left(k-k_{i}\right)
$$

for zeros of f, k_{i}. The zeros of f here are at $\pm \sqrt{\frac{3 m \omega}{\hbar}}$ and $f^{\prime}(k)=2 k$ so we get

$$
\begin{gathered}
\Gamma=\frac{\sqrt{\pi} b^{5} \alpha^{2} \hbar}{4 m} \sqrt{\frac{\hbar}{3 m \omega}} \int \mathrm{~d} k e^{-k^{2} b^{2}} k^{2} \delta\left(k-\sqrt{\frac{3 m \omega}{\hbar}}\right) \\
=\frac{3 \alpha^{2}}{\sqrt{3 \pi}} \frac{b^{2}}{\hbar^{2} \omega} e^{-3} .
\end{gathered}
$$

