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Consider the electromagnetic decay of an excited state of a 3D isotropic harmonic oscillator with quantum numbers
(n,l,m) = (0,1,0) to the ground state with (n,l,m) = (0,0,0). In units of i = 1, the ground state wavefunction is
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and the excited state wavefunction is
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1. First, compute the differential decay rate,
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in the dipole approximation. Make sure to complete the sum over the polarization vectors.

2. Next, carry out the angular integral to compute the total decay rate,
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3. Finally, use the Wigner-Eckart theorem to compute the differential decay rate for m; = +1, and show that

these give the same decay rate as that for m; = 0.



Solution:

1. Let’s take a moment to remember that Fermi’s golden rule is:
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but this can be simplified for electromagnetic decays.

Recall that the differential decay rate in the dipole approximation for electromagnetic decays'
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Here, the final momentum £ is the energy difference between the initial and final states,
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the frequency of the harmonic oscillator. Although the wavefunctions are given in spherical coordinates, the
gradient is actually easier to write in Cartesian coordinates:
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From this we can evaluate M:
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But the z and y components go to zero since they are odd functions over even intervals. This leaves us with:
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Now, we want to compute the polarization sum,
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Because €; and €5 are orthonormal vectors, and are already orthogonal to the propagation vector E, these three
vectors form a basis for R?, and we can write?
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1Scott’s Notes page 141
21f this feels weird, consider writing it out for the standard basis (&, 9, £), for your favorite vector.



The propagation vector is

~

k = sin 0 cos ¢& + sin @ sin ¢y + cosHZ.

So, for this case, the differential decay rate is
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2. To get the Total decay rate we simply integrate over the angular distribution:
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3. To use the Wigner-Eckart theorem, write the matrix elements as
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and recall that we can write the momentum operator as a tensor operator of rank 1 as follows:

Inverting the latter lets us write
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Then, the Wigner-Eckart theorem lets us write the matrix elements as
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So, we see that
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Now, the differential decay rate can be evaluated using the same trick as the case where u = 0. For u = 1, this

gives
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Note that this is the same result we get for u = —1. Integrating this gives the total decay rate:
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Note that this decay rate is the same as p = 0, as expected.



