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Consider the electromagnetic decay of an excited state of a 3D isotropic harmonic oscillator with quantum numbers
(n, l,m) = (0, 1, 0) to the ground state with (n, l,m) = (0, 0, 0). In units of ~ = 1, the ground state wavefunction is

ψ000 = N00e
−mωr2/2 =

(
mω

π

)3/4

e−mωr
2/2, (1)

and the excited state wavefunction is

ψ010(r) =

√
2

π3/4
(mω)5/4 r cos θ e−mωr

2/2. (2)

1. First, compute the differential decay rate,

dΓ

dΩ
, (3)

in the dipole approximation. Make sure to complete the sum over the polarization vectors.

2. Next, carry out the angular integral to compute the total decay rate,

Γ =

∫
dΩ

dΓ

dΩ
. (4)

3. Finally, use the Wigner-Eckart theorem to compute the differential decay rate for mi = ±1, and show that
these give the same decay rate as that for mi = 0.
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Solution:

1. Let’s take a moment to remember that Fermi’s golden rule is:

Γ =
2π

~
∑
k

|〈f |Hint|ψi〉|2 δ(E0 − Ef ),

but this can be simplified for electromagnetic decays.

Recall that the differential decay rate in the dipole approximation for electromagnetic decays1 is

dΓ

dΩ
=

e2k

2πm2

∑
s

|εs ·M|2, M ≡ −i
∫
d3xψ∗f (x)∇ψi(x). (5)

Here, the final momentum k is the energy difference between the initial and final states,

k = Ei − Ef = ω, (6)

the frequency of the harmonic oscillator. Although the wavefunctions are given in spherical coordinates, the
gradient is actually easier to write in Cartesian coordinates:

∇ψ010(r) = ∇r cos θe−mωr
2/2 (7)

= ∇ze−mω(x
2+y2+z2)/2 (8)

= −mωe−mω(x
2+y2+z2)/2

(
xzx̂+ yzŷ +

(
z2 − 1

mω

)
ẑ

)
. (9)

From this we can evaluate M:

iM =

∫
d3xψ∗f∇ψi = −mω

(mω
π

)3/2√
2mω

∫
d3xe−mωr

2

{
xz, yz, z2 − 1

mω

}
(10)

But the x and y components go to zero since they are odd functions over even intervals. This leaves us with:

iM =

∫
d3xψ∗f∇ψi = −mω

(mω
π

)3/2√
2mω

∫
d3xe−mωr

2

(
z2 − 1

mω

)
ẑ (11)

= −
√

2

π
(mω)2

∫
dze−mωz

2

(
z2 − 1

mω

)
ẑ (12)

= −
√

2

π
(mω)2

(
−∂mω

∫
dze−mωz

2

−
√
π

(mω)3/2

)
ẑ (13)

=

√
2

π
(mω)2

(
∂mω

√
π

mω
+

√
π

(mω)3/2

)
ẑ (14)

=

√
2

π
(mω)2

( √
π

(mω)3/2
−

√
π

2(mω)3/2

)
ẑ (15)

=

√
mω

2
ẑ (16)

Now, we want to compute the polarization sum,∑
s=1,2

|εs ·M|2. (17)

Because ε1 and ε2 are orthonormal vectors, and are already orthogonal to the propagation vector k̂, these three
vectors form a basis for R3, and we can write2∑

s=1,2

|εs ·M|2 + |k̂ ·M|2 = |M|2. (18)

1Scott’s Notes page 141
2If this feels weird, consider writing it out for the standard basis (x̂, ŷ, ẑ), for your favorite vector.
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The propagation vector is

k̂ = sin θ cosφx̂+ sin θ sinφŷ + cos θẑ. (19)

So, for this case, the differential decay rate is

dΓ

dΩ
=

e2k

2πm2

[ ∑
s=1,2

|εs ·M|2 + |k̂ ·M|2 − |k̂ ·M|2
]

(20)

=
e2k

2πm2

[
|M|2 − |k̂ ·M|2

]
(21)

=
e2k

2πm2

mω

2

[
1− cos2 θ

]
=

e2ω2

4πm
sin2 θ. (22)

2. To get the Total decay rate we simply integrate over the angular distribution:

Γ =
e2ω2

4πm

∫ 2π

0

dφ

∫ π

0

dθ sin3(θ) (23)

=
2e2ω2

3m
(24)

3. To use the Wigner-Eckart theorem, write the matrix elements as

〈nlm|Pi|n′l′m′〉, (25)

and recall that we can write the momentum operator as a tensor operator of rank 1 as follows:

P0 = Pz, P±1 = ∓Px ± iPy√
2

. (26)

Inverting the latter lets us write

Px =
P−1 − P1√

2
, Py =

i(P−1 + P1)√
2

. (27)

Then, the Wigner-Eckart theorem lets us write the matrix elements as

〈nlm|Pµ|n′l′m′〉 = 〈nl||P ||n′l′〉〈l′,m′; 1, µ|l,m〉 = −i
√
mω

2

〈l′,m′; 1, µ|l,m〉
〈1, 0; 1, 0|0, 0〉

. (28)

So, we see that

〈ψ000|P |ψ01µ〉 = 〈ψ000|Px|ψ01µ〉x̂+ 〈ψ000|Py|ψ01µ〉ŷ + 〈ψ000|Pz|ψ01µ〉ẑ (29)

=
1√
2
〈ψ000|P−1|ψ01µ〉

[
x̂+ iŷ

]
+

1√
2
〈ψ000|P1|ψ01µ〉

[
− x̂+ iŷ

]
+ 〈ψ000|P0|ψ01µ〉ẑ (30)

=
1√
2

(−i)
√
mω

2

〈1, µ; 1,−1|0, 0〉
〈1, 0; 1, 0|0, 0〉

[
x̂+ iŷ

]
+

1√
2

(−i)
√
mω

2

〈1, µ; 1, 1|0, 0〉
〈1, 0; 1, 0|0, 0〉

[
− x̂+ iŷ

]
(−i)

√
mω

2

〈1, µ; 1, 0|0, 0〉
〈1, 0; 1, 0|0, 0〉

ẑ (31)

= i

√
mω

2

[
x̂+ iŷ

]
δµ1 +

√
mω

2

[
− x̂+ iŷ

]
δµ,−1 − i

√
mω

2
ẑδµ0. (32)

Now, the differential decay rate can be evaluated using the same trick as the case where µ = 0. For µ = 1, this
gives

dΓµ=1

dΩ
=

e2ω

2πm2

[
|M|2 − |k̂ ·M|2

]
(33)

=
e2ω

2πm2

[
mω

2
− mω

4
| sin θ cosφ+ i sin θ sinφ|2

]
(34)
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=
e2ω2

8πm

[
2− sin2 θ

]
. (35)

Note that this is the same result we get for µ = −1. Integrating this gives the total decay rate:

Γµ=±1 = 2π
e2ω2

8πm

∫ π

0

dθ
[
2 sin θ − sin3 θ

]
(36)

=
e2ω2

4m
· 8

3
=

2

3

e2ω2

m
. (37)

Note that this decay rate is the same as µ = 0, as expected.
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