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The Problem

Consider the electromagnetic decay of an excited state of a 3D
isotropic harmonic oscillator with quantum numbers

(n,-,/,-,m,-) = (1,1,0) (1.1)

to the ground state with quantum numbers

(nf,/f,mf) = (0,0,0) (1.2)
The wavefunctions are
mw 3/4 2 2
¢000(f) = <ﬂ'> e~ mwr / , (]__3)
V2 5/4 r cos e ™" /2, (1.4)

P110(r) = m(mw)
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The Problem - Part 1

First, compute the differential decay rate,

dr

pTol (1.5)

in the dipole approximation. Make sure to complete the sum over
the polarization vectors.

4/21



The Problem - Part 2

Next, carry out the angular integral to compute the total decay
rate,

dr
M= /deQ. (1.6)
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The Problem - Part 3

Finally, use the Wigner-Eckart theorem to compute the differential
decay rate for m; = 1, and show that these give the same decay
rate as that for m; = 0.
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Conceptual Goals

Fermi's golden rule

Dipole approximation

]
]
m Integrating things that look like Gaussians
m Polarization sums

]

Wigner-Eckart theorem
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The Solution - Part 1

Fermi's golden rule gives the differential decay rate. It is

dar ek

dQ - 2mrm?2 Z ‘65 ) M‘27 (3'1)

M=—i / d3r e X (x)Vipi(x), (3.2)
k=Ei — Ef = w. (3.3)

In M, the approximation e’** ~ 1 is the dipole approximation.
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The Solution - Part 1

M=—i / d*r ek X7 (x)Vipi(x)

Re-writing the wave functions in Cartesian, the gradient is
straightforward to compute. The matrix element is

__V2(mw)? / @3 e—mer? <22 _ 1) 3 (3.4)
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The Solution - Part 1

For the z? term of the M we compute the integral as:

o > 2 —mwz? _ 9 > —mwz?
/_OO dzz%e = 30mw) /_oo dze (3.5)
0 T 1 Jr
T am)V mw T 2 (mw)3? (3.6)

This method is called differentiating under the integral.
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The Solution - Part 1

The matrix element simplifies to
M=—i |23 (3.7)
which we plug into
271' 2rm? Z\Gs M

We want to compute the polarization sum

D les- MP. (3.8)

s=1,2
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The Solution - Part 1

The two polarization vectors and the propagation vectors

~

(€1, €2, k) (3.9)

form an orthonormal basis for R3, so

> les- MP+ k- MP = |MP. (3.10)

s=1,2
This lets us write

doles MP =D Jes- MP+ k- MPP— k- MPP (3.11)

s=1,2 5=1,2

= |MP— k- M. (3.12)
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Polarization Basis Visual

Figure 1: Image of propagation and polarization vectors.
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The Solution - Part 1

The propagation vector can be written as

~

k = sin 6 cos ¢x + sin 0 sin ¢y + cos 0z. (3.13)

So, we conclude that

.2
0. 14
—sin (3.14)
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The Problem - Part 2

Next, carry out the angular integral to compute the total decay
rate,

dr
= /deQ. (4.1)
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The Solution - Part 2

The total decay rate is

dr
r_/ d¢/ df smOdQ (4.2)
2 e%w?
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The Problem - Part 3

Finally, use the Wigner-Eckart theorem to compute the differential
decay rate for m; = 1, and show that these give the same decay
rate as that for m; = 0.
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The Solution - Part 3

To use the Wigner-Eckart theorem, write the matrix elements as
M; = (nlm|P;|n"I'm'), (5.1)
and recall the spherical tensors

P, +iP,

Po=P;,, Pua=7F NG

(5.2)
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The Solution - Part 3

The Wigner-Eckart theorem lets us write the matrix elements as

(nlp Pl 1y = (nll|PIIW 1) s gl ) (5.3)
/ /.
\ 72" (1,0:1,0/0,0)

for g = 0,+1. We can write

(000|P|01m;) = (000|Py|01m;)% + (000|P,|01m;)y
+ (000|P,|01m;)2. (5.5)
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The Solution - Part 3

In our spherical tensors, solving for Py, Py, P, in terms of P +1
lets us write

M = (000|P|01m;) = —(000|P_1|01m;) [% + i7]

\[(000|P1|01m,>[— X+ iy]

7
+
+ (000| Po|01m;) 2. (5.6)

Using the Wigner-Eckart theorem gives us

VO &+ i9)0ma + Y0 [~ %+ 9] 0m

— I“%Z(Smo (5'7)
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The Solution - Part 3

Evaluating the polarization sum in the same way as the u = 0 case

gives
drm:il e%u a
2 2
= ‘;::n [2 — sin20]. (5.9)

Integrating directly shows that

(5.10)
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