Quantum Final Presentation Chapter 9: Decays

Daniel Lay
Gray Perez

Outline

1 The Problem

2 Conceptual Goals

3 The Solution - Part 1

4 The Solution - Part 2

5 The Solution - Part 3

The Problem

Consider the electromagnetic decay of an excited state of a 3D isotropic harmonic oscillator with quantum numbers

$$
\begin{equation*}
\left(n_{i}, l_{i}, m_{i}\right)=(1,1,0) \tag{1.1}
\end{equation*}
$$

to the ground state with quantum numbers

$$
\begin{equation*}
\left(n_{f}, l_{f}, m_{f}\right)=(0,0,0) \tag{1.2}
\end{equation*}
$$

The wavefunctions are

$$
\begin{align*}
& \psi_{000}(\boldsymbol{r})=\left(\frac{m \omega}{\pi}\right)^{3 / 4} e^{-m \omega r^{2} / 2} \tag{1.3}\\
& \psi_{110}(\boldsymbol{r})=\frac{\sqrt{2}}{\pi^{3 / 4}}(m \omega)^{5 / 4} r \cos \theta e^{-m \omega r^{2} / 2} \tag{1.4}
\end{align*}
$$

The Problem - Part 1

First, compute the differential decay rate,

$$
\begin{equation*}
\frac{d \Gamma}{d \Omega} \tag{1.5}
\end{equation*}
$$

in the dipole approximation. Make sure to complete the sum over the polarization vectors.

The Problem - Part 2

Next, carry out the angular integral to compute the total decay rate,

$$
\begin{equation*}
\Gamma=\int d \Omega \frac{d \Gamma}{d \Omega} \tag{1.6}
\end{equation*}
$$

The Problem - Part 3

Finally, use the Wigner-Eckart theorem to compute the differential decay rate for $m_{i}= \pm 1$, and show that these give the same decay rate as that for $m_{i}=0$.

Conceptual Goals

- Fermi's golden rule
- Dipole approximation
- Integrating things that look like Gaussians
- Polarization sums

■ Wigner-Eckart theorem

The Solution - Part 1

Fermi's golden rule gives the differential decay rate. It is

$$
\begin{align*}
\frac{d \Gamma}{d \Omega} & =\frac{e^{2} k}{2 \pi m^{2}} \sum_{s}\left|\boldsymbol{\epsilon}_{s} \cdot \boldsymbol{\mathcal { M }}\right|^{2} \tag{3.1}\\
\boldsymbol{\mathcal { M }} & \equiv-i \int d^{3} r e^{i \boldsymbol{k} \cdot \boldsymbol{x}} \psi_{f}^{*}(\boldsymbol{x}) \nabla \psi_{i}(\boldsymbol{x}), \tag{3.2}\\
k & =E_{i}-E_{f}=\omega \tag{3.3}
\end{align*}
$$

In \mathcal{M}, the approximation $e^{i \boldsymbol{k} \cdot \boldsymbol{x}} \approx 1$ is the dipole approximation.

The Solution - Part 1

$$
\mathcal{M} \equiv-i \int d^{3} r e^{i \boldsymbol{k} \cdot \boldsymbol{x}} \psi_{f}^{*}(\boldsymbol{x}) \nabla \psi_{i}(\boldsymbol{x})
$$

Re-writing the wave functions in Cartesian, the gradient is straightforward to compute. The matrix element is

$$
\begin{equation*}
\mathcal{M}=-\frac{\sqrt{2}(m \omega)^{3}}{\pi^{3 / 2}} \int d^{3} r e^{-m \omega r^{2}}\left(z^{2}-\frac{1}{m \omega}\right) \hat{\boldsymbol{z}} \tag{3.4}
\end{equation*}
$$

The Solution - Part 1

For the z^{2} term of the $\boldsymbol{\mathcal { M }}$ we compute the integral as:

$$
\begin{align*}
-\int_{-\infty}^{\infty} d z z^{2} e^{-m \omega z^{2}} & =\frac{\partial}{\partial(m \omega)} \int_{-\infty}^{\infty} d z e^{-m \omega z^{2}} \tag{3.5}\\
& =\frac{\partial}{\partial(m \omega)} \sqrt{\frac{\pi}{m \omega}}=-\frac{1}{2} \frac{\sqrt{\pi}}{(m \omega)^{3 / 2}} \tag{3.6}
\end{align*}
$$

This method is called differentiating under the integral.

The Solution - Part 1

The matrix element simplifies to

$$
\begin{equation*}
\mathcal{M}=-i \sqrt{\frac{m \omega}{2}} \hat{\boldsymbol{z}} . \tag{3.7}
\end{equation*}
$$

which we plug into

$$
\frac{d \Gamma}{d \Omega}=\frac{e^{2} k}{2 \pi m^{2}} \sum_{s}\left|\boldsymbol{\epsilon}_{s} \cdot \mathcal{M}\right|^{2}
$$

We want to compute the polarization sum

$$
\begin{equation*}
\sum_{s=1,2}\left|\boldsymbol{\epsilon}_{s} \cdot \boldsymbol{\mathcal { M }}\right|^{2} \tag{3.8}
\end{equation*}
$$

The Solution - Part 1

The two polarization vectors and the propagation vectors

$$
\begin{equation*}
\left(\epsilon_{1}, \epsilon_{2}, \hat{\boldsymbol{k}}\right) \tag{3.9}
\end{equation*}
$$

form an orthonormal basis for \mathbb{R}^{3}, so

$$
\begin{equation*}
\sum_{s=1,2}\left|\boldsymbol{\epsilon}_{s} \cdot \boldsymbol{\mathcal { M }}\right|^{2}+|\hat{\boldsymbol{k}} \cdot \boldsymbol{\mathcal { M }}|^{2}=|\mathcal{M}|^{2} \tag{3.10}
\end{equation*}
$$

This lets us write

$$
\begin{align*}
\sum_{s=1,2}\left|\boldsymbol{\epsilon}_{s} \cdot \boldsymbol{\mathcal { M }}\right|^{2} & =\sum_{s=1,2}\left|\boldsymbol{\epsilon}_{s} \cdot \boldsymbol{\mathcal { M }}\right|^{2}+|\hat{\boldsymbol{k}} \cdot \mathcal{M}|^{2}-|\hat{\boldsymbol{k}} \cdot \boldsymbol{\mathcal { M }}|^{2} \tag{3.11}\\
& =|\mathcal{M}|^{2}-|\hat{\boldsymbol{k}} \cdot \mathcal{M}|^{2} \tag{3.12}
\end{align*}
$$

Polarization Basis Visual

Figure 1: Image of propagation and polarization vectors.

The Solution - Part 1

The propagation vector can be written as

$$
\begin{equation*}
\hat{\boldsymbol{k}}=\sin \theta \cos \phi \hat{\boldsymbol{x}}+\sin \theta \sin \phi \hat{\boldsymbol{y}}+\cos \theta \hat{\boldsymbol{z}} \tag{3.13}
\end{equation*}
$$

So, we conclude that

$$
\begin{equation*}
\frac{d \Gamma}{d \Omega}=\frac{e^{2} \omega^{2}}{4 \pi m} \sin ^{2} \theta \tag{3.14}
\end{equation*}
$$

The Problem - Part 2

Next, carry out the angular integral to compute the total decay rate,

$$
\begin{equation*}
\Gamma=\int d \Omega \frac{d \Gamma}{d \Omega} \tag{4.1}
\end{equation*}
$$

The Solution - Part 2

The total decay rate is

$$
\begin{align*}
\Gamma & =\int_{0}^{2 \pi} d \phi \int_{0}^{\pi} d \theta \sin \theta \frac{d \Gamma}{d \Omega} \tag{4.2}\\
& =\frac{2}{3} \frac{e^{2} \omega^{2}}{m} . \tag{4.3}
\end{align*}
$$

The Problem - Part 3

Finally, use the Wigner-Eckart theorem to compute the differential decay rate for $m_{i}= \pm 1$, and show that these give the same decay rate as that for $m_{i}=0$.

The Solution - Part 3

To use the Wigner-Eckart theorem, write the matrix elements as

$$
\begin{equation*}
\mathcal{M}_{i}=\langle n I m| P_{i}\left|n^{\prime} I^{\prime} m^{\prime}\right\rangle, \tag{5.1}
\end{equation*}
$$

and recall the spherical tensors

$$
\begin{equation*}
P_{0}=P_{z}, \quad P_{ \pm 1}=\mp \frac{P_{x} \pm i P_{y}}{\sqrt{2}} . \tag{5.2}
\end{equation*}
$$

The Solution - Part 3

The Wigner-Eckart theorem lets us write the matrix elements as

$$
\begin{align*}
\langle n l \mu| P_{q}\left|n^{\prime} I^{\prime} \mu^{\prime}\right\rangle & =\left\langle n\|| | P\| n^{\prime} I^{\prime}\right\rangle\left\langle I^{\prime}, \mu^{\prime} ; 1, q \mid I, \mu\right\rangle \tag{5.3}\\
& =-i \sqrt{\frac{m \omega}{2} \frac{\left\langle I^{\prime}, \mu^{\prime} ; 1, q \mid I, \mu\right\rangle}{\langle 1,0 ; 1,0 \mid 0,0\rangle}} \tag{5.4}
\end{align*}
$$

for $q=0, \pm 1$. We can write

$$
\begin{align*}
&\langle 000| \boldsymbol{P}\left|01 m_{i}\right\rangle=\langle 000| P_{x}\left|01 m_{i}\right\rangle \hat{\boldsymbol{x}}+\langle 000| P_{y}\left|01 m_{i}\right\rangle \hat{\boldsymbol{y}} \\
&+\langle 000| P_{z}\left|01 m_{i}\right\rangle \hat{\boldsymbol{z}} \tag{5.5}
\end{align*}
$$

The Solution - Part 3

In our spherical tensors, solving for P_{x}, P_{y}, P_{z} in terms of $P_{0, \pm 1}$ lets us write

$$
\begin{align*}
& \boldsymbol{\mathcal { M }}=\langle 000| \boldsymbol{P}\left|01 m_{i}\right\rangle=\frac{1}{\sqrt{2}}\langle 000| P_{-1}\left|01 m_{i}\right\rangle[\hat{\boldsymbol{x}}+i \hat{\boldsymbol{y}}] \\
&+\frac{1}{\sqrt{2}}\langle 000| P_{1}\left|01 m_{i}\right\rangle[-\hat{\boldsymbol{x}}+i \hat{\boldsymbol{y}}] \\
&+\langle 000| P_{0}\left|01 m_{i}\right\rangle \hat{\boldsymbol{z}} . \tag{5.6}
\end{align*}
$$

Using the Wigner-Eckart theorem gives us

$$
\begin{align*}
\mathcal{M}= & i \frac{\sqrt{m \omega}}{2}[\hat{\boldsymbol{x}}+i \hat{\boldsymbol{y}}] \delta_{m_{i} 1}+i \frac{\sqrt{m \omega}}{2}[-\hat{\boldsymbol{x}}+i \hat{\boldsymbol{y}}] \delta_{m_{i},-1} \\
& -i \sqrt{\frac{m \omega}{2}} \hat{\mathbf{z}} \delta_{m_{i} 0} . \tag{5.7}
\end{align*}
$$

The Solution - Part 3

Evaluating the polarization sum in the same way as the $\mu=0$ case gives

$$
\begin{align*}
\frac{d \Gamma_{m_{i}= \pm 1}}{d \Omega} & =\frac{e^{2} \omega}{2 \pi m^{2}}\left[|\mathcal{M}|^{2}-|\hat{\boldsymbol{k}} \cdot \boldsymbol{\mathcal { M }}|^{2}\right] \tag{5.8}\\
& =\frac{e^{2} \omega^{2}}{8 \pi m}\left[2-\sin ^{2} \theta\right] . \tag{5.9}
\end{align*}
$$

Integrating directly shows that

$$
\begin{equation*}
\Gamma_{m_{i}= \pm 1}=\Gamma_{m_{i}=0}=\frac{2}{3} \frac{e^{2} \omega^{2}}{m} \tag{5.10}
\end{equation*}
$$

