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The Problem

Consider the electromagnetic decay of an excited state of a 3D
isotropic harmonic oscillator with quantum numbers

(ni , li ,mi ) = (1, 1, 0) (1.1)

to the ground state with quantum numbers

(nf , lf ,mf ) = (0, 0, 0) (1.2)

The wavefunctions are

ψ000(r) =

(
mω

π

)3/4

e−mωr
2/2, (1.3)

ψ110(r) =

√
2

π3/4 (mω)5/4 r cos θ e−mωr
2/2. (1.4)
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The Problem - Part 1

First, compute the differential decay rate,

dΓ

dΩ
, (1.5)

in the dipole approximation. Make sure to complete the sum over
the polarization vectors.
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The Problem - Part 2

Next, carry out the angular integral to compute the total decay
rate,

Γ =

∫
dΩ

dΓ

dΩ
. (1.6)
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The Problem - Part 3

Finally, use the Wigner-Eckart theorem to compute the differential
decay rate for mi = ±1, and show that these give the same decay
rate as that for mi = 0.
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Conceptual Goals

Fermi’s golden rule
Dipole approximation
Integrating things that look like Gaussians
Polarization sums
Wigner-Eckart theorem
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The Solution - Part 1

Fermi’s golden rule gives the differential decay rate. It is

dΓ

dΩ
=

e2k

2πm2

∑
s

|εs ·M|2, (3.1)

M ≡ −i
∫

d3r e ik·xψ∗f (x)∇ψi (x), (3.2)

k = Ei − Ef = ω. (3.3)

InM, the approximation e ik·x ≈ 1 is the dipole approximation.
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The Solution - Part 1

M ≡ −i
∫

d3r e ik·xψ∗f (x)∇ψi (x)

Re-writing the wave functions in Cartesian, the gradient is
straightforward to compute. The matrix element is

M = −
√
2(mω)3

π3/2

∫
d3r e−mωr

2
(
z2 − 1

mω

)
ẑ (3.4)

9 / 21



The Solution - Part 1

For the z2 term of the M we compute the integral as:

−
∫ ∞
−∞

dz z2e−mωz
2

=
∂

∂(mω)

∫ ∞
−∞

dz e−mωz
2

(3.5)

=
∂

∂(mω)

√
π

mω
= −1

2

√
π

(mω)3/2 . (3.6)

This method is called differentiating under the integral.
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The Solution - Part 1

The matrix element simplifies to

M = −i
√

mω

2
ẑ . (3.7)

which we plug into

dΓ

dΩ
=

e2k

2πm2

∑
s

|εs ·M|2

We want to compute the polarization sum∑
s=1,2

|εs ·M|2. (3.8)
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The Solution - Part 1

The two polarization vectors and the propagation vectors

(ε1, ε2, k̂) (3.9)

form an orthonormal basis for R3, so∑
s=1,2

|εs ·M|2 + |k̂ ·M|2 = |M|2. (3.10)

This lets us write∑
s=1,2

|εs ·M|2 =
∑
s=1,2

|εs ·M|2 + |k̂ ·M|2 − |k̂ ·M|2 (3.11)

= |M|2 − |k̂ ·M|2. (3.12)
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Polarization Basis Visual

Figure 1: Image of propagation and polarization vectors.
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The Solution - Part 1

The propagation vector can be written as

k̂ = sin θ cosφx̂ + sin θ sinφŷ + cos θẑ . (3.13)

So, we conclude that

dΓ

dΩ
=

e2ω2

4πm
sin2 θ. (3.14)
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The Problem - Part 2

Next, carry out the angular integral to compute the total decay
rate,

Γ =

∫
dΩ

dΓ

dΩ
. (4.1)
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The Solution - Part 2

The total decay rate is

Γ =

∫ 2π

0
dφ

∫ π

0
dθ sin θ

dΓ

dΩ
(4.2)

=
2
3
e2ω2

m
. (4.3)
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The Problem - Part 3

Finally, use the Wigner-Eckart theorem to compute the differential
decay rate for mi = ±1, and show that these give the same decay
rate as that for mi = 0.
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The Solution - Part 3

To use the Wigner-Eckart theorem, write the matrix elements as

Mi = 〈nlm|Pi |n′l ′m′〉, (5.1)

and recall the spherical tensors

P0 = Pz , P±1 = ∓Px ± iPy√
2

. (5.2)
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The Solution - Part 3

The Wigner-Eckart theorem lets us write the matrix elements as

〈nlµ|Pq|n′l ′µ′〉 = 〈nl ||P||n′l ′〉〈l ′, µ′; 1, q|l , µ〉 (5.3)

= −i
√

mω

2
〈l ′, µ′; 1, q|l , µ〉
〈1, 0; 1, 0|0, 0〉

, (5.4)

for q = 0,±1. We can write

〈000|P|01mi 〉 = 〈000|Px |01mi 〉x̂ + 〈000|Py |01mi 〉ŷ
+ 〈000|Pz |01mi 〉ẑ . (5.5)
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The Solution - Part 3

In our spherical tensors, solving for Px , Py , Pz in terms of P0,±1
lets us write

M = 〈000|P|01mi 〉 =
1√
2
〈000|P−1|01mi 〉

[
x̂ + i ŷ

]
+

1√
2
〈000|P1|01mi 〉

[
− x̂ + i ŷ

]
+ 〈000|P0|01mi 〉ẑ . (5.6)

Using the Wigner-Eckart theorem gives us

M = i

√
mω

2
[
x̂ + i ŷ

]
δmi1 + i

√
mω

2
[
− x̂ + i ŷ

]
δmi ,−1

− i

√
mω

2
ẑδmi0. (5.7)
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The Solution - Part 3

Evaluating the polarization sum in the same way as the µ = 0 case
gives

dΓmi=±1

dΩ
=

e2ω

2πm2

[
|M|2 − |k̂ ·M|2

]
(5.8)

=
e2ω2

8πm
[
2− sin2 θ

]
. (5.9)

Integrating directly shows that

Γmi=±1 = Γmi=0 =
2
3
e2ω2

m
. (5.10)
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