PHY 852 Review: Time Reversal

Tyler Weitzel, Hieu Le

April 13, 2020

Problem

a)

Construct the matrix representations of S_{y} and S_{z} for a spin-1 particle using the basis

$$
|m=1\rangle=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),|m=0\rangle=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),|m=-1\rangle=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

What is the behavior of $S_{ \pm}$under time reversal?
b)

Given the Hamiltonian

$$
H=A S_{z}^{2}+B\left(S_{x}^{2}-S_{y}^{2}\right)
$$

with $A, B \in \mathbb{R}$, find the eigenstates and energies. How does the Hamiltonian behave under time reversal? What about the eigenstates and energies?

Solutions

a)

By construction, S_{z} is diagonal in this basis. We have

$$
S_{z}=\hbar|1\rangle\langle 1|+0|0\rangle\langle 0|-\hbar|-1\rangle\langle-1|=\hbar\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

Now, to build S_{y}, we let's use operators that we already know the behavior of:

$$
S_{ \pm}=S_{x} \pm i S_{y} .
$$

This tells us

$$
S_{y}=\frac{1}{2 i}\left(S_{+}-S_{-}\right)
$$

so

$$
\begin{aligned}
\left\langle m^{\prime}\right| S_{y}|m\rangle & =\frac{1}{2 i}\left\langle m^{\prime}\right| S_{+}-S_{-}|m\rangle \\
& =\frac{\hbar}{2 i}\left(\sqrt{(1-m)(2+m)} \delta_{m^{\prime}, m+1}-\sqrt{(1+m)(2-m)} \delta_{m^{\prime}, m-1}\right) \\
& \Longrightarrow S_{y}=\frac{i \hbar}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & -1 \\
0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

after calculating out these matrix elements. While not asked by the problem, it will be useful to know later that a similar calculation using $S_{x}=\frac{1}{2}\left(S_{+}+S_{-}\right)$yields

$$
S_{x}=\frac{\hbar}{\sqrt{2}}\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Now, how do $S_{ \pm}$behave under time reversal? Well, we know on physical grounds that spin operators transform as

$$
\Theta S_{i} \Theta^{-1}=-S_{i}
$$

We also know that Θ acts as an antiunitary operator, i.e. it conjugates coefficients as it passes through them. Thus,

$$
\begin{aligned}
\Theta S_{ \pm} \Theta^{-1} & =\Theta\left(S_{x} \pm i S_{y}\right) \Theta^{-1} \\
& =\left(\Theta S_{x} \mp i \Theta S_{y}\right) \Theta^{-1} \\
& =\left(\Theta S_{x} \Theta^{-1}\right) \mp i\left(\Theta S_{y} \Theta^{-1}\right) \\
& =-S_{x} \pm i S_{y} \\
& =-\left(S_{x} \mp i S_{y}\right) \\
& =-S_{\mp} .
\end{aligned}
$$

b)

Using our computed matrix representations, the Hamiltonian has the matrix

$$
\begin{aligned}
H & =A S_{z}^{2}+B\left(S_{x}^{2}-S_{y}^{2}\right) \\
& =\hbar^{2}\left[A\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)^{2}+\frac{B}{2}\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)^{2}+\frac{B}{2}\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & -1 \\
0 & 1 & 0
\end{array}\right)^{2}\right] \\
& =\hbar^{2}\left[A\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)+\frac{B}{2}\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 1
\end{array}\right)+\frac{B}{2}\left(\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -2 & 0 \\
1 & 0 & -1
\end{array}\right)\right] \\
& =\hbar^{2}\left(\begin{array}{ccc}
A & 0 & B \\
0 & 0 & 0 \\
B & 0 & A
\end{array}\right)
\end{aligned}
$$

The eigensystem of this matrix is easily solved in the standard way, yielding

$$
\begin{aligned}
& E_{+}=\hbar^{2}(A+B) ;\left|E_{+}\right\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
1
\end{array}\right) \\
& E_{-}=\hbar^{2}(A-B) ;\left|E_{-}\right\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) \\
& E_{0}=0 ;\left|E_{0}\right\rangle=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) .
\end{aligned}
$$

How does H act under time reversal? We have

$$
\begin{aligned}
\Theta H \Theta^{-1} & =\Theta\left(A S_{z}^{2}+B\left(S_{x}^{2}-S_{y}^{2}\right)\right) \Theta^{-1} \\
& =A \Theta S_{z}^{2} \Theta^{-1}+B\left(\Theta S_{x}^{2} \Theta^{-1}-\Theta S_{y}^{2} \Theta^{-1}\right) \\
& =A\left(\Theta S_{z} \Theta^{-1}\right)\left(\Theta S_{z} \Theta^{-1}\right)+B\left(\left(\Theta S_{x} \Theta^{-1}\right)\left(\Theta S_{x} \Theta^{-1}\right)-\left(\Theta S_{y} \Theta^{-1}\right)\left(\Theta S_{y} \Theta^{-1}\right)\right. \\
& =A S_{z}^{2}+B\left(S_{x}^{2}-S_{y}^{2}\right)
\end{aligned}
$$

So, H is invariant under time reversal.
Now, how do the eigenstates transform under time reversal? We know

$$
\Theta|j, m\rangle=(-1)^{m}|j,-m\rangle
$$

so

$$
\begin{aligned}
\Theta\left|E_{+}\right\rangle & =\frac{1}{\sqrt{2}} \Theta(|m=1\rangle+|m=-1\rangle) \\
& =\frac{1}{\sqrt{2}}((-1)|m=-1\rangle+(-1)|m=1\rangle) \\
& =\frac{1}{\sqrt{2}}(-1)(|m=-1\rangle+|m=1\rangle) \\
& =-\left|E_{+}\right\rangle \\
\Theta\left|E_{-}\right\rangle & =\frac{1}{\sqrt{2}} \Theta(|m=1\rangle-|m=-1\rangle) \\
& =\frac{1}{\sqrt{2}}((-1)|m=-1\rangle-(-1)|m=1\rangle) \\
& =\frac{1}{\sqrt{2}}(|m=1\rangle-|m=-1\rangle) \\
& =\left|E_{-}\right\rangle \\
\Theta\left|E_{0}\right\rangle & =\Theta|m=0\rangle \\
& =|m=0\rangle \\
& =\left|E_{0}\right\rangle
\end{aligned}
$$

So, the $\left|E_{+}\right\rangle$eigenstate is odd under time reversal while the others are even. Notice that the time reversal simply introduces a phase to the state, and thus does not change the energy.

