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The basics of interactions with some background electromagnetic field in quantum me-
chanics are as follows.

� All of this is in Gaussian units where E and B have the same units, hence weird factors
of c

� Minimal coupling: p→ Π = p− eA

c
and E → E − eΦ

� The canonical momentum Π satisfies the relation Π = mv

� Schrödinger equation becomes

[
(p− eA/c)2

2m
+ V (r) + eΦ

]
ψ = Eψ

� Classical results are reproduced with these modifications, e.g. helical motion in criss-
crossed E and B fields and cyclotron frequency

Problem

A particle of mass m and electric charge e is placed in the uniform static magnetic field
B = Bẑ and the harmonic oscillator potential along the x-axis (frequency ωx) and along
the z-axis (frequency ωz) Find the energy spectrum and the wavefunctions of the stationary
states.

Solution

First we need to pick a vector potential that will produce this magnetic field B = ∇ ×A.
Because of the harmonic oscillator in x, it is easiest if we pick A to be only in the y-direction.
The vector potential

A = Bxŷ (1)

will produce the required magnetic field. Then the Schrödinger equation is[
p2x
2m

+
(py − eBx/c)2

2m
+

p2z
2m

+
1

2
mω2

xx
2 +

1

2
mω2

zz
2

]
ψ = Eψ (2)
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We can use separation of variables to rewrite the wavefunction as

ψ(x, y, z) = X(x)Y (y)Z(z) (3)

Then we can solve the Schrödinger equation for each coordinate separately. The y direction
has a free particle, so its wavefunction is just

Y (y) = eikyy (4)

The x-direction is not a free particle since the coordinate x appears in the Hamiltonian
through the vector potential. If you do the separation of variables, you get the following
equations for X and Z.(

p2x
2m

+
(py − eBx/c)2

2m
+

1

2
mω2

xx
2

)
X(x) = ExyX(x) (5)

(
p2z
2m

+
1

2
mω2

zz
2

)
Z(z) = EzZ(z) (6)

E = Exy + Ez (7)

In the X(x) equation, we can keep py as py since it is a constant of motion. That is, py
commutes with the Hamiltonian since there are no y terms. We don’t need to replace it with
−i~∂y since that would simply act on Y (y) and pull out its eigenvalue, which is py.

The Z(z) equation is easy to solve since it is a harmonic oscillator in the z-direction
centered at z = 0. Thus

Ez = ~ωz

(
nz +

1

2

)
(8)

The X(x) equation is a little trickier. We need to rewrite the ”potential” terms to put
them in a more useful form.

(py − eBx/c)2

2m
+

1

2
mω2

xx
2 =

(eB/c)2(x− cpy/eB)2

2m
+

1

2
mω2

xx
2

=
1

2
m

(
eB

mc

)2 (
x− cpy

eB

)2
+

1

2
mω2

xx
2

=
1

2
mω2

c (x− x0)2 +
1

2
mω2

xx
2

ωc ≡
eB

mc
x0 ≡

cpy
eB

Note that ωc is the cyclotron frequency, which is a classical result that has been reproduced.
Now we have two oscillator potentials, but one is centered at x = x0 and the other is
centered at x = 0. We need to rewrite the terms to write the potential as a single oscillator
and constant terms. This involves some messy algebra and completing the square. All the
steps will be shown below, but if you just want the final result, then look at the first and
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last lines.

1

2
mω2

c (x− x0)2 +
1

2
mω2

xx
2 =

1

2
m(ω2

cx
2 − 2ω2

cx0x+ ω2
cx

2
0 + ω2

xx
2)

=
1

2
m
[
(ω2

c + ω2
x)x2 − 2ω2

cx0x+ ω2
cx

2
0

]
=

1

2
m(ω2

c + ω2
x)

(
x2 − 2ω2

cx0
ω2
c + ω2

x

x+
ω2
cx

2
0

ω2
c + ω2

x

)
=

1

2
mΩ2

(
x2 − 2ω2

cx0
Ω2

x+
ω2
cx

2
0

Ω2

)
We define a new frequency Ω2 ≡ ω2

c + ω2
x and complete the square.

1

2
mΩ2

(
x2 − 2ω2

cx0
Ω2

x+
ω2
cx

2
0

Ω2

)
=

1

2
mΩ2

(
x2 − 2ω2

cx0
Ω2

x

)
+

1

2
mω2

cx
2
0

=
1

2
mΩ2

(
x2 − 2ω2

cx0
Ω2

x+
ω4
cx

2
0

Ω4

)
+

1

2
mω2

cx
2
0 −

1

2
m
ω4
cx

2
0

Ω2

=
1

2
mΩ2

(
x− ω2

cx0
Ω2

)2

+
1

2
mω2

cx
2
0

(
1− ω2

c

Ω2

)
=

1

2
mΩ2

(
x− ω2

cx0
Ω2

)2

+
1

2
mω2

cx
2
0

(
1− ω2

c

ω2
c + ω2

x

)
=

1

2
mΩ2

(
x− ω2

cx0
Ω2

)2

+
1

2
mω2

cx
2
0

(
ω2
x

ω2
c + ω2

x

)
=

1

2
mΩ2

(
x− ω2

cx0
Ω2

)2

+
1

2
m
ω2
xω

2
c

Ω2
x20

If we use the fact that ωcx0 = py/m from how those variables were defined, we can rewrite
the potential term as

1

2
mΩ2

(
x− ωcpy

mΩ2

)2
+

ω2
xp

2
y

2mΩ2
(9)

Thus, the Schrödinger equation for X(x) becomes[
p2x
2m

+
1

2
mΩ2

(
x− ωcpy

mΩ2

)2
+

ω2
xp

2
y

2mΩ2

]
X(x) = ExyX(x) (10)

After making the substitution px = −i~∂x and distributing X(x), this becomes[
− ~2

2m

∂2

∂x2
+

1

2
mΩ2

(
x− ωcpy

mΩ2

)2]
X(x) +

ω2
xp

2
y

2mΩ2
X(x) = ExyX(x) (11)

The first term is a harmonic oscillator potential with frequency Ω =
√
ω2
c + ω2

x and centered

at x =
ωcpy
mΩ2

. Therefore, we can simply replace that part of the Hamiltonian with the

eigenenergies of that Hamiltonian. Then the partial derivative goes away and we are just
left with numbers instead of operators.

~Ω

(
n+

1

2

)
X(x) +

ω2
xp

2
y

2mΩ2
X(x) = ExyX(x) (12)
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Now since everything is in terms of numbers are not operators, we are free to divide out
X(x) and get the energy.

Exy = ~Ω

(
n+

1

2

)
+

ω2
xp

2
y

2mΩ2
(13)

Thus the energy spectrum is

E = Exy + Ez = ~Ω

(
n+

1

2

)
+

ω2
xp

2
y

2mΩ2
+ ~ωz

(
nz +

1

2

)
n, nz ∈ N (14)

The wavefunction for Y (y) has already been explained to be that of a free particle. For
Z(z), it is a regular 1D harmonic oscillator centered at z = 0. For X(x), the potential looks

like a harmonic oscillator except there is an additional term
ω2
xp

2
y

2mΩ2
. However, this term is a

constant, so it only contributes a phase to the wavefunction, which we will ignore, so that
X(x) is a 1D oscillator as well.

ψ(x, y, z) = φn

(
x− ωcpy

mΩ2
, oscillator frequency = Ω

)
χnz (z, oscillator frequency = ωz) e

ikyy

(15)

Additional Remarks

� Notice that the additional oscillator in x has lifted the degeneracy for different py since
the Exy energy would otherwise be independent of py. With the additional oscillator,
the energy now depends on py. Otherwise, py does little more than add a phase to the
wavefunction and contribute to the shift in the x oscillator.

� With only a magnetic field, the oscillator is shifted by x0 =
cpy
eB

. Here the shift is

x0 =
ωcpy
mΩ2

. Clearly, this is a different shift.

� The interaction between B and ωx: in addition to lifting the degeneracy from py,
there is some interesting interaction between the magnetic field and the x oscillator.
We still have an oscillator, but its frequency is the sum of the cyclotron and regular
oscillator frequencies in quadrature. We also get a new constant term that depends on
the frequencies.
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