Chapter 13: Relativistic
Quantum Mechanics

Josh Wylie and Cavan Maher



The problem

Suppose that an electron of momentum k coming from the left strikes a
one-dimensional potential barrier

eb(x)=V,x>0
eb(x) =0,x <O0.

Calculate the transmission and reflection coefficients for the cases
where E <V < 2mandV > 2m and interpret the results.



(chuckles)
I'm In danger.




The Solution (cont)

First, starting with the Dirac Equation:

(@-p+ Bm+ed)¥Y(,t) =0

We are looking at an electron, so we’ll
start by assuming that we are using
the positive energy, right helicity
solution for an electron.
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This general solution looks like:
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The Solution (cont)

How to define helicity:

Right-handed has spin projection
parallel to momentum.

Left-handed has spin projection anti-
parallel to momentum.

Momentum

Spin Projection
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The Solution (cont)

¥
We next need to write the solutions of the g W ed
Dirac equation in both regions. Writing the Y, < L >
incident, reflected, and transmitted
wavefunctions separately.
L x=0§
. O I
Yi(x) =e™™ | k
E+m Where k = +/E2 — m2 and
0
: ) q=(E-V)?>—m?
W.(x) =be k¥ —k [+ bpe thx 0
E "(‘) m - k Note that b’ = d' = 0 because we are
1 Fm 0 assuming that the barrier isn’t causing a spin-
0 1 flip.
Y, (x) = de'd* q + d'e~tax 0
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The Solution (cont)

After removing states (due to no spin-flip at
the barrier).

Putting these together gives the following
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The Solution (cont)

Now, at the boundary, ¥;(0) = ¥, (0)

We match the respective spinor indices with each other. This will give two equations with 2 unknowns,

_ q
1+b=d (1 b)E+m_dE—V+m

Now, divide the equations and solving for b and d (after some algebra/Mathematica simplification, whichever is preferred )
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The Solution (cont)

We want the transmission and reflection coefficients, which are defined in terms of currents as

_Jr e Using the definition of current from Sakurai

R=-=— and T ==
Ji Ji to be
In 4-vector notation: For the 3-vector component We are working in 1-D, so we are going
to use a,, or

JH =Wyt j=vtaw

where where 0 o

= (5, )
o, O



The Solution (cont)

Solving for the incident, reflected, and transmitted current densities:
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The Solution (cont)

Solving for the incident, reflected, and transmitted current densities:

k

.'= .=_ 2

Ji 2E+m Jr 2bE+m
] 2

R ]
Ji 1+¢

Now, the different cases:

1) V<2m
2) V>2m

q

i = 2d?
Jt E—-V+m

For a sanity check, can also

show that at the boundary
Ji T Jr =Jt

so the current is conserved.



Now, the different cases:

1) For V<2m, everything is normal. ¢ > 0, and like normal R+T =1, and R,T will be
between 0 and 1

2) For V>2m, weird stuff happens. ¢ < 0, meaning that b > 1 which implies that
R>1 and T<0. But how can this happen?
—This is the Klein Paradox. Electron-holes are produced at the boundary




The Solution (cont)

2) For V>2m, weird stuff happens. £ < 0, meaning thatb > 1
which implies that R>1 and T<0. But how can this happen?
—This is the Klein Paradox. Electron-holes are produced at
the boundary
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