Chapter 13: Relativistic Quantum Mechanics

Josh Wylie and Cavan Maher

The problem

Suppose that an electron of momentum k coming from the left strikes a one-dimensional potential barrier

$$
\begin{aligned}
& e \Phi(x)=V, x>0 \\
& e \Phi(x)=0, x<0 .
\end{aligned}
$$

Calculate the transmission and reflection coefficients for the cases where $E<V<2 m$ and $V>2 m$ and interpret the results.

The Solution (cont)

First, starting with the Dirac Equation:

$$
(\vec{\alpha} \cdot \vec{p}+\beta m+e \Phi) \Psi(\vec{r}, t)=0
$$

We are looking at an electron, so we'll start by assuming that we are using the positive energy, right helicity solution for an electron.

$$
\Psi_{R}^{+}=e^{i(k x-E t)}\left(\begin{array}{c}
1 \\
0 \\
\frac{k}{m+E} \\
0
\end{array}\right)
$$

The Solution (cont)

How to define helicity:

Right-handed has spin projection parallel to momentum.

Left-handed has spin projection antiparallel to momentum.

\longrightarrow Spin Projection

e^{-}
Spin Projection

The Solution (cont)

We next need to write the solutions of the Dirac equation in both regions. Writing the incident, reflected, and transmitted wavefunctions separately.

$$
\begin{aligned}
& \Psi_{i}(x)=e^{i k x}\left(\begin{array}{c}
1 \\
0 \\
\frac{1}{E+m} \\
0
\end{array}\right) \\
& \Psi_{r}(x)=b e^{-i k x}\left(\begin{array}{c}
1 \\
0 \\
\frac{-k}{E+m} \\
0
\end{array}\right)+b^{\prime} e^{-i k x}\left(\begin{array}{c}
0 \\
1 \\
0 \\
\frac{1}{E+m}
\end{array}\right) \\
& \Psi_{t}(x)=d e^{i q x}\left(\begin{array}{c}
1 \\
0 \\
\frac{q}{E-V+m} \\
0
\end{array}\right)+d^{\prime} e^{-i q x}\left(\begin{array}{c}
0 \\
1 \\
0 \\
-\frac{k}{E-V+m}
\end{array}\right)
\end{aligned}
$$

$$
4-10
$$

Note that $b^{\prime}=d^{\prime}=0$ because we are assuming that the barrier isn't causing a spinflip.

The Solution (cont)

After removing states (due to no spin-flip at the barrier).

Putting these together gives the following

$$
\begin{aligned}
& \Psi_{I}(x)=\Psi_{i}+\Psi_{r}=e^{i k x}\left(\begin{array}{c}
1 \\
0 \\
\frac{k}{E+m} \\
0
\end{array}\right)+b e^{-i k x}\left(\begin{array}{c}
1 \\
0 \\
\frac{-k}{E+m} \\
0
\end{array}\right) \\
& \Psi_{I I}(x)=d e^{i q x}\left(\begin{array}{c}
1 \\
0 \\
\frac{q}{E-V+m} \\
0
\end{array}\right)
\end{aligned}
$$

The Solution (cont)

Now, at the boundary, $\Psi_{I}(0)=\Psi_{2}(0)$
We match the respective spinor indices with each other. This will give two equations with 2 unknowns,

$$
1+b=d
$$

$$
(1-b) \frac{k}{E+m}=d \frac{q}{E-V+m}
$$

Now, divide the equations and solving for b and d (after some algebra/Mathematica simplification, whichever is preferred)

$$
b=\frac{1-\xi}{1+\xi} \quad \text { and } \quad d=\frac{2}{1+\xi} \quad \text { where } \quad \xi=\frac{q}{k} \quad \frac{(E+m)}{E-V+m}
$$

The Solution (cont)

We want the transmission and reflection coefficients, which are defined in terms of currents as

$$
R=-\frac{j_{r}}{j_{i}} \quad \text { and } \quad T=\frac{j_{t}}{j_{i}} \quad \begin{aligned}
& \text { Using the definition of current from Sakurai } \\
& \text { to be }
\end{aligned}
$$

In 4-vector notation:

$$
\begin{gathered}
j^{\mu}=\bar{\Psi} \gamma^{\mu} \Psi \\
\text { where } \\
\bar{\Psi}=\Psi^{\dagger} \beta
\end{gathered}
$$

For the 3-vector component

$$
\begin{gathered}
\vec{J}=\Psi^{\dagger} \vec{\alpha} \Psi \\
\text { where } \\
\vec{\alpha}=\left(\begin{array}{ll}
0 & \vec{\sigma} \\
\vec{\sigma} & 0
\end{array}\right)
\end{gathered}
$$

We are working in 1-D, so we are going to use α_{z}, or

$$
\alpha=\left(\begin{array}{cc}
0 & \sigma_{z} \\
\sigma_{z} & 0
\end{array}\right)
$$

The Solution (cont)

Solving for the incident, reflected, and transmitted current densities:

$$
\begin{gathered}
j_{i}=\Psi_{\mathrm{i}}^{\dagger} \alpha \Psi_{\mathrm{i}}=e^{-i k x}\left(\begin{array}{c}
1 \\
0 \\
\frac{k}{E+m} \\
0
\end{array}\right)^{T}\left(\begin{array}{cc}
0 & \sigma_{z} \\
\sigma_{z} & 0
\end{array}\right) e^{i k x}\left(\begin{array}{c}
1 \\
0 \\
\frac{k}{E+m} \\
0
\end{array}\right)=2 \frac{k}{E+m} \\
j_{r}=\Psi_{\mathrm{r}}^{\dagger} \alpha \Psi_{\mathrm{r}}=b e^{i k x}\left(\begin{array}{c}
1 \\
0 \\
\frac{-k}{E+m} \\
0
\end{array}\right)^{T}\left(\begin{array}{cc}
0 & \sigma_{z} \\
\sigma_{z} & 0
\end{array}\right) b e^{-i k x}\left(\begin{array}{c}
1 \\
0 \\
\frac{-k}{E+m} \\
0
\end{array}\right)=-2 b^{2} \frac{k}{E+m} \\
j_{t}=\Psi_{\mathrm{t}}^{\dagger} \alpha \Psi_{\mathrm{t}}=d e^{-i q x}\left(\begin{array}{c}
1 \\
0 \\
\frac{q}{E-V+m} \\
0
\end{array}\right)^{T}\left(\begin{array}{cc}
0 & \sigma_{z} \\
\sigma_{z} & 0
\end{array}\right) d e^{i q x}\left(\begin{array}{c}
1 \\
0 \\
\frac{q}{E-V+m} \\
0
\end{array}\right)=2 d^{2} \frac{q}{E-V+m}
\end{gathered}
$$

The Solution (cont)

Solving for the incident, reflected, and transmitted current densities:

$$
j_{i}=2 \frac{k}{E+m} \quad j_{r}=-2 b^{2} \frac{k}{E+m} \quad j_{t}=2 d^{2} \frac{q}{E-V+m}
$$

For a sanity check, can also show that at the boundary

$$
j_{i}+j_{r}=j_{t}
$$

so the current is conserved.

$$
R=-\frac{j_{r}}{j_{i}}=|b|^{2}=\left|\frac{1-\xi}{1+\xi}\right|^{2} \quad T=\frac{j_{t}}{j_{i}}=|d|^{2} \frac{q}{k} \frac{E+m}{E-V+m}
$$

Now, the different cases:

1) $V<2 m$
2) $V>2 m$

$$
\xi=\frac{q}{k} \frac{(E+m)}{E-V+m}
$$

Now, the different cases:

1) For $V<2 m$, everything is normal. $\xi>0$, and like normal $R+T=1$, and R, T will be between 0 and 1
2) For $V>2$ m, weird stuff happens. $\xi<0$, meaning that $b>1$ which implies that $\mathrm{R}>1$ and $\mathrm{T}<0$. But how can this happen?
\rightarrow This is the Klein Paradox. Electron-holes are produced at the boundary

The Solution (cont)

2) For $V>2 \mathrm{~m}$, weird stuff happens. $\xi<0$, meaning that $b>1$ which implies that $\mathrm{R}>1$ and $\mathrm{T}<0$. But how can this happen? \rightarrow This is the Klein Paradox. Electron-holes are produced at the boundary

$$
\begin{gathered}
T=\frac{j_{t}}{j_{i}}=|d|^{2} \frac{q}{k} \frac{E+m}{E-V+m} \\
R=-\frac{j_{r}}{j_{i}}=|b|^{2}=\left|\frac{1-\xi}{1+\xi}\right|^{2} \\
\xi=\frac{q}{k} \frac{(E+m)}{E-V+m}
\end{gathered}
$$

