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Abstract
We have developed a modeling method suitable for analyzing single- and multiple-electron
resonances detected by electric-field-sensitive scanning probe techniques. The method is based
on basic electrostatics and a numerical boundary-element approach. The results compare well
to approximate analytical expressions and experimental data.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The ability to manipulate and probe the electrons in nanoscale
systems of dopant atoms and quantum dots represents an
emerging line of research. These experiments are motivated
by the continued miniaturization of semiconductor devices and
potential applications where single charges and spins form the
functional part of the device [1–5]. Low-temperature electric-
field-sensitive scanning probe methods have the potential to
locally resolve electrons in these systems; such methods
include scanning single-electron transistor microscopy [6, 7],
charged-probe atomic force microscopy [8, 9], and subsurface
charge accumulation (SCA) imaging [10, 11]. In particular,
Kuljanishvili and co-workers have applied SCA imaging
to probe silicon donors in an aluminum–gallium–arsenide
heterostructure sample, resolving both individual electrons
entering the donor layer and clusters of charge entering several
donors [12].

Reference [12] briefly introduced a modeling method
to simulate the capacitance–voltage curves resulting from
electrons entering individual traps beneath the tip. In
this paper, to fully elucidate single-electron and multiple-
electron measurements, we present a detailed discussion of
the electrostatic interaction. The discussion includes both
analytical approximations and a numerical modeling method
based on the boundary-element approach [13]. Although the

discussion is motivated by SCA measurements, the approach is
relevant for any capacitance-based scanning probe technique.

2. Subsurface charge accumulation method

Figure 1(a) presents a schematic of the SCA method, which
essentially measures the capacitance between the sample and
a sharp metal tip. The tip is connected to a charge sensor
that achieves a sensitivity of 0.01 e/Hz−1/2 [14]. For the
measurements reported here, the PtIr tip and sample were
immersed in liquid helium-3 at a temperature of 290 mK.
The tip’s position was fixed (i.e. not scanned) at a distance of
∼1 nm from the sample surface. We then monitored the AC
charge qtip in response to a sinusoidal excitation voltage Vexc

applied to an underlying electrode, as a function of DC bias
voltage Vtip. As detailed in [15], if the quantum system below
the tip can accommodate additional charge, the excitation
voltage causes it to resonate between the system and the
underlying electrode—giving rise to an enhanced capacitance,
C ≡ qtip/Vexc.

For the measurements describe here, we employed a
GaAs [001] heterostructure sample grown by molecular beam
epitaxy; it contained a low layer of Si donors situated 20 nm
above a high-mobility two-dimensional electron layer that
served as an ideal base electrode for the measurement [12].
The donor plane consisted of delta-doped Si of nominal density
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Figure 1. (a) Schematic of the SCA technique and key layers in the gallium-arsenide [001] heterostructure sample. An excitation voltage can
cause charge to resonate between the Si donor layer and a base electrode. This results in image charge appearing on the tip. A circuit
constructed from high-electron-mobility transistors is attached directly to the tip and is used to measure the charging. (b) Representative local
capacitance curve measured at a single tip position, with an excitation voltage amplitude of Vexc = 15 mV rms. The local measurements
consistently showed three broad peaks labeled A, B and C. (c) Capacitance curves acquired at the same position as part (b), but over the
indicated expanded voltage range. To investigate the structure in detail, here we employed a smaller excitation amplitude of 3.8 mV rms.
These data reproduced from [12].

1.25 × 1016 m−2 within an Al0.3Ga0.7As layer. The silicon
atoms are confined to a plane with respect to the z direction,
but randomly positioned with respect to the x–y direction
(figure 1(a)). For the SCA measurements, the radius of
interaction with the donor plane is determined approximately
by the tip–donor-layer distance of 60 nm; for comparison, the
tip had an apex of radius ∼50 nm. Given the donor density
and the expected area of interaction for the tip, we expect to be
sensitive to the charging of ∼150 donors.

Figures 1(b) and (c) show representative capacitance–
voltage curves. On the scale of 0–1 V the data show three
broad peaks labeled A, B and C; the half-width-at-half-maxima
(HWHM) of the peaks is roughly 50 mV. In contrast, at smaller
voltage scales the data consist of a series of many peaks.
Although at first glance these peaks may appear to be noise,
this fine structure is reproducible as long as the tip remains in
the same location [12]. Moreover, individual fine peaks are
consistent with single-electron charging, as discussed below.
In this interpretation, larger peaks correspond to unresolved
clusters of electrons.

3. Analysis of capacitance resonances

3.1. Single-electron peaks

In pioneering research in the early 1990s, Ashoori and co-
workers performed single-electron capacitance spectroscopy
(SECS) of quantum dots [16, 17]. The experiments measured
electron addition energies εn of quantum dots in much the same

way our scanned probe method measures the electron addition
energies of dopant atoms. However, the original SECS work
did not employ a tip; both the base electrode and the top gate
were planar conducting layers. For both SECS and SCA, the
movement of individual electrons between the base electrode
and the quantum system, in response to a sinusoidal excitation
voltage Vexc, results in an oscillation of image charge on the top
gate or tip. If the DC voltage of the top gate/tip Vtip is slowly
ramped, the resulting capacitance-versus-Vtip curve has semi-
elliptical peaks in the low-temperature limit. The HWHM of
each peak is equal to 1.22 Vexc, where Vexc is the rms value of
the excitation voltage.

For SECS measurements, the voltage positions of the
peaks are determined by the alignment of the base-electrode
Fermi level and the addition-energy levels of the quantum
system. More specifically, the peaks are centered at the gate
voltages for which the chemical potential of the base electrode
aligns with the addition-energy levels εn: Vgate = εn(αe),
where α is a scale factor sometimes called the voltage lever
arm; α depends on the distances between the base electrode,
quantum dot and the top gate. With regard to the amplitude
of the peaks, as discussed in [17], an electron of charge −e
entering the dot results in image charge proportional to the
fraction of electric flux that terminates on the top gate. This can
be expressed as qgate(peak) = eC1/(C1 + C2), where C1 is the
mutual capacitance between the top gate and quantum dot, and
C2 is the mutual capacitance between the quantum dot and base
electrode. For parallel-plate electrodes, C1/(C1 + C2) = α.
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Figure 2. (a) Schematic of the two bell-shaped functions that
determine the functional form of single-electron and
multiple-electron charging. The potential function P(r) gives the
potential in an interior plane (donor layer) of the sample at lateral
location r for unit voltage applied to the tip. The charging function
Q(r) accounts for the charge induced on the tip due to a localized
electron entering the plane at r . (b) Simple parallel-plate picture
describing the capacitance between the sample and tip.

In our work, the top electrode is a tip and hence the pattern
of electric-field lines is very different from a parallel-plate
picture. To analyze the measurements, we must develop a
realistic model to describe the interaction between the sharp
tip and planar layered sample. We find that two bell-shaped
functions are key, which we refer to as the potential function
P(r) and the charging function Q(r). P(r) is essentially a
position-dependent voltage lever arm. Specifically, it is the
potential in the donor layer at radial position r for unit voltage
applied to the tip. Q(r) accounts for the charge induced on
the tip due to a localized electron entering the donor layer at
r . Figure 2(a) schematically introduces the two functions, both
of which are dimensionless and maximum directly below the
apex of the tip, which we define as r = 0.

It is straightforward to describe single-electron peaks in
the tip geometry in analogy to the parallel-plate SECS picture
described above. Consider a charge trap that will accommodate
an electron at energy ε0, residing in the donor layer at position
r . We expect the resulting capacitance-versus-Vtip curve to
be a semi-elliptical peak in the low-temperature limit. In this
case, the peak will be centered at Vtip = ε0/(eP(r)). The
half-width of the peak is 1.22Vexc, exactly as in the parallel-
plate case. The non-dependence on r occurs because the peak
width is set by the relative magnitude of Vtip and Vexc; both
voltages must scale with the same factor of P(r). However, if
thermal broadening is significant, there will be r -dependence;
the measured thermal contribution to the peak width will scale
inversely with P(r).

Returning to the assumption of negligible temperature, the
amplitude of the single-electron peak is given by C(peak) ≡
qtip(peak)/Vexc, where

qtip(peak) = eQ(r). (1)

Equation (1) essentially defines the charging function Q(r).

3.2. Multiple-electron peaks

If many charge traps are distributed within the sample,
obviously, many single-electron peaks can be observed. The
spatial distribution of traps will lead to a spread in the measured
voltages of the peaks, even if all the traps have the same
addition energy. This voltage broadening is an important issue
that can be considered as a limiting factor for the energy
resolution of the technique.

To address the distributed-trap voltage broadening, we
examine the capability of the technique to resolve a sharp
resonance in the limit of an arbitrarily high density of non-
interacting traps, each with the same addition energy ε0. If
our tip were a flat plate, then all the traps in the donor layer
would charge at the same voltage, Vtrap = ε0(αe), resulting in
a sharp peak with the same functional form as a single-electron
resonance. In contrast, for a realistic tip, the charging voltage
must depend on the positions of the traps r . This leads to a
characteristic capacitance peak for distributed traps D(Vtip).
Here we consider the form of D(Vtip) for a realistic tip–sample
geometry.

Suppose the tip voltage is significantly larger than the
value for which the traps directly below the apex will charge.
In this case, the charging will occur along a circle of constant
r (figure 2(a)). In other words, a ring in the donor layer will
form for which the chemical potential of the base electrode
aligns with the addition energy of the traps. The ring has an
average radius r for which Vtip P(r) = ε0/e. The inner and
outer radii of the ring, r1 and r2, are determined by Vtip, Vexc

and P(r) according to the following expressions (neglecting
for the moment the width of the single-electron peaks):

(Vtip − Vexc)P(r1) = ε0/e, (Vtip + Vexc)P(r2) = ε0/e.
(2)

Next, we consider that every electron that enters the ring
will induce the measured signal qtip, as determined by Q(r).
Specifically, we can express the tip charging as

qtip(Vtip) =
∫ r2

r1

Q(r)(2πr) dr . (3)

Lastly, the resulting capacitance-versus-Vtip curve must be
convolved with the appropriate semi-elliptical function to
account for the single-electron width. The procedure will yield
the desired peaked function D(Vtip); the width of the peak
gives the voltage resolution of the method for cases where the
tip is interacting with many identical charge traps distributed
below the apex.

4. Calculating the bell functions

4.1. Approximate expressions

In a thorough study, Eriksson and co-workers showed that the
mutual capacitance per unit area between a scanning probe tip
and a subsurface conducting layer is given by a bell-shaped
Lorentzian curve,

c(r) = c0

1 + (r/w)2
, (4)
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where c0 is the capacitance per unit area of the conducting
layer at r = 0 and w is the HWHM [18]. Eriksson et al and
Kuljanishvilli et al [19] showed that w is equal to the depth of
the layer below the exposed surface and that the accuracy of
the expression holds to a few per cent, if the depth of the layer
is comparable to or greater than the radius of curvature of the
tip’s apex.

To estimate of the radial dependence of the donor-layer
potential P(r), we note that for our sample the donor layer
is only 20 nm from the underlying 2D layer; the apex of
the tip is three times farther away. Hence the contribution
to the potential from the 2D layer should dominate. This
contribution is proportional to the charge of the layer, which
in turn is proportional to c(r) as given by equation (4), with
w = b = 80 nm (the depth of the base electrode).

With regard to the charging function, as a first guess for
Q(r) we can apply a model motivated by the parallel-plate
picture. In analogy to the Ashoori measurements discussed in
section 3.1, we approximate the function as

Q(r) ≈ c1(r)

c1(r) + c2
, (5)

where c1(r) is the tip–donor mutual capacitance per unit area
of the donor layer, and c2 is the mutual capacitance per unit
area between the donor and the base electrode, which we
assume to be approximately independent of donor location.
This picture is shown schematically in figure 2(b).

To approximate Q(r) we use the Lorentzian curve;
specifically, for a donor of depth a located at lateral position
r , we take c1(r) = c(r), with w = a. This should be regarded
as a rough approximation as an isolated donor is not part of a
conducting layer. For the donor-to-base-electrode capacitance
we use the parallel-plate expression: c2 = κε0/d , where κ

is the dielectric constant, ε0 is the free-space permittivity and
d = b − a is the distance between the donor layer and the
base electrode. Due to the high dielectric constant of the
semiconductor and the proximity of the donor layer and base
electrode, we expect c2 to be an order of magnitude greater
than c1. Hence, equation (5) can be further simplified to

Q(r) ≈ c1(r)

c2
= c0/c2

1 + (r/a)2
. (6)

So for our experiment, we expectQ(r) to be roughly
proportional to c(r) to as given by equation (2), with w = a =
60 nm.

4.2. Numerical approach

For a more thorough calculation of the bell functions we apply
a numerical method that uses a boundary-element approach,
described in detail in [19]. As shown schematically in
figure 3(a), the method considers the tip and sample conductors
as being composed of discrete point-like elements, and invokes
image charges to account for the dielectric surface. The
calculation results in a potential matrix Â that can be inverted
to arrive at a capacitance matrix Ĉ; this large matrix gives
the relationship between the voltage and charge among all
the elements. In [19] the tip was modeled as a realistic cone

terminated by an approximate half sphere; it was positioned
1 nm above the dielectric surface to match the experimental
conditions. To streamline the calculations presented here, we
model the tip as a single line of points, shown schematically in
figure 3(b).

To emphasize the generality of the method, we begin by
considering calculations of the mutual capacitance function
c(r) in dimensionless units: lengths are expressed with respect
to the base-electrode depth b; capacitance is normalized such
that the peak of the bell function is unity. To perform the
calculation, we essentially find the charge distribution on the
conducting plane required to maintain it at zero potential, with
unit potential applied to the tip. Figures 3(c) and (d) address
the issue of errors due to the discreteness of the conductors
by considering c(r) for various point densities. As shown in
figure 3(b), the same grid spacing δ is used for both the tip
and conducting plane. Four calculations were performed using
grid spacings of δ = 2b, b, b/2 and b/4, for a sample with a
dielectric constant of ten with square conducting plane of width
L = 10b and a line-tip of height 5b. An additional calculation
with δ = b/8 was performed for a similar sample of width
L = 5b (the smaller sample was necessitated by the higher
point density and correspondingly large computational time).
In each case the bottom point of the tip was positioned 0.1b
above the surface of the dielectric. As long as this gap distance
is much less than b, it has negligible impact on the errors
arising from the finite point density. To avoid edge artifacts,
the data shown in figures 3(c)–(e) do not include points within
a distance of ∼L/8 from the sample edge.

To gauge the accuracy of the method, figure 3(c) shows
four iterative plots of �c, which we define as the difference
between calculations of c(r) for successive values of δ. We
see that difference between the two highest density curves,
δ = b/4 and δ = b/8, is relatively small, with �c much less
than 0.075 in the normalized capacitance units. Figure 3(d)
shows explicitly these two mutual capacitance functions with
the highest point densities. To further quantify the accuracy,
the inset of figure 3(d) shows the maximum �c extracted from
the figure 3(c) data, plotted as a function of δ. The lower
left data point corresponds to the maximum error between the
δ = b/4 and b/8 curves, which we see is about one-half of 1%.
In light of this convergence, we use a grid spacing of δ = b/4
or b/8 for all of the calculations below, and estimate that the
discretization errors are at most a few per cent.

For the following calculations, we focus on modeling the
sample used in [12] by setting the depth of the conducting layer
to b = 80 nm and the dielectric constant to 12.5, appropriate
for GaAs. The calculations employ a sample width of L =
800 nm and a line-charge tip of height 400 nm. The bottom
point of the tip is situated 7 nm above the dielectric surface.
Figure 3(e) shows the calculation of the mutual capacitance
function c(r) for the tip and conducting plane. We see that this
calculated curve shows excellent agreement with the expected
Lorentzian of equation (4), with w = 80 nm. Hence we
conclude that although the line-charge tip is a highly simplified
model of the actual shape, by positioning the line 7 nm above
the sample surface, we achieve a very good approximation of
the realistic image charge of the tip–sample system.
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Figure 3. (a) Schematic example of the boundary-element method [19]. Here we show the case for which both conductors i and k are part of
the tip and k is a distance S from the sample dielectric surface. To calculate the potential matrix element Aik , we consider the distance
between the two conductors R. Moreover, to account for the modification in potential due to the dielectric layer, we consider the distance to
an image charge R′ situated at the symmetric position with respect to the vacuum–dielectric interface. Similar considerations are used to
calculate the matrix elements for the case of both conductors in the sample and for the case of one conductor in the sample and one conductor
in the tip. After the complete potential matrix Â is constructed for all tip and sample points, the capacitance matrix Ĉ is found by inverting Â.
(b) The tip and sample geometry employed for the present calculations. The tip is represented by a line of points, with each point spaced by δ.
The sample consists of a conducting plane located at a distance b below the surface of a dielectric. The conducting plane is modeled as an
array of grid points with δ separating adjacent points. The donor layer is indicated, located at a distance a below the surface. As shown in
figure 2(a), to calculate the bell functions, we will consider the potential in the donor layer and the effect of introducing point charges in the
layer. For the sample used in [12], a = 60 nm and b = 80 nm, as indicated. (c) Four iterative plots of the change in the calculated mutual
capacitance �c = |c[δ2/b] − c[δ1/b]| to test discretization errors, where δ1,2/b indicates the grid spacing used for each calculation.
(d) Mutual capacitance functions calculated with δ/b = 1/4 and 1/8. The two curves show close agreement, consistent with the relatively flat
�c = |c[1/4] − c[1/8]| curve in part (c). (INSET) The maximum �c, extracted from part (c), plotted as a function of δ2/b. The lower left
data point indicates that the maximum error between the δ = b/4 and b/8 curves is about one-half of 1%. In light of this convergence, we
estimate that the discretization errors for either δ = b/4 or b/8 are at most a few per cent. (e) Calculated bell-shaped curves using parameters
appropriate for the sample used in [12]. The three curves are normalized so that their peak value is unity. For clarity, the middle and top
curves are shifted vertically by 0.50 and 1.00, respectively, in the normalized units. (TOP) Calculation of the mutual capacitance function c(r)
using our method. The calculated curve is compared to the expected Lorentzian (equation (4)) with w = b = 80 nm; we see excellent
agreement. (MIDDLE) Calculation of the potential function P(r) compared to the expected Lorentzian curve with w = b = 80 nm; we see
excellent agreement. (BOTTOM) Calculation of the charging function Q(r). We find that the calculation compares very well to a Lorentzian
curve with w = 70 nm, somewhat wider than the expected w = a = 60 nm (equation (6)). (f) Calculation of the distributed-trap charging
peak D(Vtip) appropriate for our tip and sample. The calculation follows from equations (2) and (3), where we have used
Vtrap = ε0(eP(0)) = 500 mV, Vexc = 15 mV and the bell functions calculated in (c). For these parameters we find a charging peak of width
HWHM(D) = 32 mV, roughly double the width of a single-electron peak.

To calculate the potential and the charging functions, we
apply our method using identical parameters as for the mutual
capacitance calculation. For P(r), we consider the charge
distributions on both the tip and the grounded conducting

plane for unit voltage applied to the tip. These charges are
then used to calculate the potential in the layer 60 nm below
the surface, labeled donor layer in figure 3(b). To calculate
Q(r), we must apply the method to find the charge induced
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on the tip due to a point charge entering the donor layer.
This is accomplished by introducing a small conducting sphere
(holding unit charge) 60 nm below the surface at a series of
radii r . The corresponding tip charge is calculated by summing
over the appropriate Ĉ matrix elements [19].

Figure 3(e) shows the calculated normalized P(r) and
Q(r) curves. With regard to P(r), the calculation is compared
to the Lorentzian curve with w = b = 80 nm, which we expect
to provide an approximate fit, as discussed in section 4.1.
Indeed, the agreement is excellent. With regard Q(r), the
calculation is also compared to a Lorentzian. In this case we
initially expected to achieve a good fit for w = a = 60 nm,
as shown by equation (6). However, instead the best fit was
achieved for a slightly wider w of 70 nm, which is the dashed
curve.

In summary, the agreement between the analytical
expressions of section 4.1 and the numerical calculations is
very good, especially in light of the many approximations
involved. Both approaches show that Lorentzian functions
represent good approximations to the key bell-shaped curves.
For the potential function, both approaches indicate a HWHM
equal to the depth of the conducting layer. For the charging
function, the analytical approximation predicted a HWHM
equal to the donor-layer depth. However, for our sample
parameters, the numerical calculation showed a HWHM equal
to the average of the conducting-layer and the donor-layer
depths, a disagreement of 10 nm, or about 15%.

5. Calculation of the distributed-trap charging peak

Given the P(r) and Q(r) curves calculated in section 4, we
can apply equations (2) and (3) to find the D(Vtip) curve
characteristic of our sample and tip. This is a peaked
function for which the width of the peak HWHM(D) gives
the voltage resolution of the method for densely distributed
charge traps. Figure 3(f) shows the D(Vtip) appropriate for
our tip and sample; for this calculation we used Vtrap =
ε0(eP(0)) = 500 mV and Vexc = 15 mV. In general, for
small excitation amplitudes, Vexc � Vtrap/P(0), we find the
width depends linearly on the excitation voltage. The scale
factor for the HWHM(D) is approximately 2.5Vexc for the
sample/tip parameters used in our calculation, which is double
the width of a single-electron peak. Moreover, we find that
HWHM(D) has negligible dependence on the amplitudes of
the bell functions P(r) and Q(r), and only a weak dependence
on their widths, for variations on the scale of 10s of nm.
Hence, even if we conservatively estimate that our numerical
calculations of the bell curves are accurate to 20%, we can
assert that the calculated D(Vtip) is accurate to within a few
per cent.

6. Comparison to measurements

Figure 4(a) shows three capacitance curves taken on the same
sample and at the same location as the data shown in figure 1.
Moreover, these curves were taken at the voltage indicated
by the arrow in figure 1(c) where a clear fine-structure peak
appears in the data. This peak is a good candidate for
a comparison to modeling as it is relatively well-isolated

from neighboring peaks. The data are displayed to show
the rms charge induced on the tip in units of the electron
charge e, where the conversion from capacitance to charge
is trivial, requiring a simple scaling by the applied excitation
voltage of 3.8 mV. Figure 4(b) shows the average of the three
curves. The data are compared to a model curve which shows
the semi-elliptical peak shape expected for single-electron
tunneling [17]. The peak is broadened to account for the
low-pass filter of the lock-in amplifier, which leads to the
asymmetric shape. However, the data are not further broadened
to account for temperature because this effect is much less
than the 3.8 mV excitation amplitude (thermal broadening
is ∼kT = 25 μV, where T is temperature and k is the
Boltzmann constant). We see that the overall shapes of the
measured and modeled curves agree reasonably well. The
amplitude of the curves is about 0.075e. This peak height
is roughly consistent with expected captured electric flux for
single-electron charging within the donor layer; for this sample
we expect the factor to be approximately α = 1/10 [19].

Figure 4(c) shows data acquired on the same sample over
a larger voltage range. Similar to the data of figure 1(b),
we employed an excitation voltage of 15.0 V rms to increase
the signal-to-noise ratio for the broader peaks, labeled A, B
and C. To further reduce the scatter figure 4(c) shows an
average of data acquired at three locations. Moreover, to isolate
the contribution of the donor charging, we have subtracted
away the background capacitance slope [12]. Given the donor
density and the expected area of interaction for the tip, we
expect that each of these measurements reflect the charging of
∼150 donors.

In [12], we presented a donor-molecule model to account
for the broad peaks. The model asserts that on average, each
donor interacts with its nearest neighbor to effectively form
a two-atom molecule. Configuration-interaction calculations
show that each of these molecules can bind four electrons. In
addition to electron–electron interactions, the complete model
considers the Coulomb energy among the non-nearest neighbor
donors. Moreover, the model predicts that the characteristic
capacitance curve will have three peaks; these peaks agree
reasonably well with peaks A, B and C [12]. Peaks A and B
represent the average addition energies for the first and second
electrons, respectively; peak C corresponds to the unresolved
third and fourth electrons.

Although the model is rather complicated, we can use a
simple consideration to estimate the voltage separations �V
between the peaks: the basic energy scale of the molecules is
the effective Rydberg energy of 8.1 meV. This consideration
together with the simple parallel-plate approximation Vtip =
ε1(αe), where α ≈ 1/10, imply that the voltage separations
between peaks A, B and C should be, very roughly, �V ≈
(8.1 meV)(10)/e = 81 mV. This simple estimate is off by
only about a factor of two, as the observed �V ’s are 160 mV
(peaks A and B) and 180 mV (peaks B and C).

As we interpret the broad peaks to arise from spatially
distributed charge traps, it in reasonable to compare the
individual peaks to the model distributed-trap curve D(Vtip),
presented in section 5. The solid curve of figure 4(c) shows the
comparison (the same D(Vtip) curve presented in figure 3(f)).
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Figure 4. (a) Three curves acquired at the same location as the data of figure 1, near the voltage marked by the red arrow in figure 1(c) and
with an excitation voltage of 3.8 mV. The vertical scale has been converted to charge units qtip. (b) The average of the three measured curves
shown in (a), compared to a model curve which shows the expected semi-elliptical peak shape for single-electron tunneling. (c) Capacitance
measurements of the broad peaks, A, B and C. To show clearly the characteristic structure, here the measurement is the average of data
acquired at three different locations. The averaging reduces the amplitude of individual single-electron peaks, which shift in voltage at
different locations. However, the broader peaks, which each correspond to roughly 20 electrons tunneling at nearly the same energy, are
affected little by the averaging. The excitation voltage amplitude was Vexc = 15 mV. Peak A is compared to two model curves. The solid
curve is the D(Vtip) shown in figure 3(f). The dashed curve is the same D(Vtip) broadened by convolving it with a peak that accounts
approximately for shifts in the addition energy due to the Coulomb interaction among the donors (the dotted curve shown in figure 3(d)
of [12]). A similar procedure can be performed for peaks B and C.

We see that the measured peak is much broader than the ideal
curve predicted by distributed-trap model. This comparison
was discussed briefly in [12], but not shown explicitly.

We believe that the large width of each peak arises from
the fact that the molecules do not have exactly the same
addition energies [12]. In other words, with regard to peak
A, unlike the assumption made in calculating the D(Vtip), the
complete model does not assume that each trap has the same
ε0. Variations in the Coulomb interaction among the donors
are likely the dominant contribution to the spread in addition
energies. This is a subtle effect that is different for each of
the broad peaks; essentially, the charge environment in the
neighborhood of each molecule changes during the course of
the measurements as charge fills the donor layer. To account
for this effect for peak A, we have further broadened the
D(Vtip) curve by convolving it with an approximate Coulomb-
energy shift curve. The result is shown as the dashed peak
in figure 4(c). We see that the fit is reasonable, although it
neglects effects due to the overlap of the adjacent peak B.

7. Summary

We have developed a modeling procedure based on basic
electrostatics and a boundary-element method that is suitable

to analyze single- and multiple-electron resonances detected
by electric-field-sensitive scanning probes. We introduce two
key bell-shaped curves that are centered below the apex of the
tip, the potential function and the charging function; together
with the mutual capacitance curve, these functions determine
the spatial and energy resolution of the methods. We find that
all three bell functions are well approximated by Lorentzians
of the form [1 + (r/w)2]−1, where r is the radial coordinate
and w is the half-width.

Our model yields curves that compare very well to
approximate analytical expressions and previously-published
SCA experimental data. More specifically, our modeling
procedure shows that the fine-structure capacitance-versus-
voltage peaks observed in [12] are consistent with single-
electrons entering subsurface dopants. Moreover, the broad
peaks observed in the experiment are consistent with charge
entering many traps distributed throughout the donor layer. We
show that the increased voltage-width of these peaks can be
attributed to the intrinsic width characteristic of identical but
spatially distributed charge traps, as described in section 3.2,
and a Coulomb shift effect that further convolves the peaks, as
described in [12].

7



Nanotechnology 19 (2008) 445503 S H Tessmer and I Kuljanishvili

Acknowledgments

We gratefully acknowledge helpful discussions with C Pier-
marocchi and T A Kaplan and J F Harrison. For
the experimental measurements discussed here, the sample
was provided by L N Pfeiffer and K W West. This
work was supported by the Michigan State Institute for
Quantum Sciences and the National Science Foundation, Grant
No. DMR-0305461.

References

[1] Ruess F J et al 2007 Small 3 563
[2] Andresen S E S et al 2007 Nano Lett. 7 2000
[3] Kane B E 1998 Nature 393 133
[4] Vrijen R et al 2000 Phys. Rev. A 62 012306
[5] Hollenberg L C L et al 2004 Phys. Rev. B 69 113301
[6] Yoo M J et al 1997 Science 276 579

[7] Yacoby A, Hess H F, Fulton T A, Pfeiffer L N and West K W
1999 Solid State Commun. 111 1

[8] Aidala K E, Parrott R E, Kramer T, Heller E J, Westervelt R M,
Hanson M P and Gossard A C 2007 Nat. Phys. 3 464

[9] Topinka M A et al 2001 Nature 410 183
[10] Tessmer S H, Glicofridis P I, Ashoori R C, Levitov L S and

Melloch M R 1998 Nature 392 51
[11] Finkelstein G, Glicofridis P I, Ashoori R C and

Shayegan M 2000 Science 289 90
[12] Kuljanishvili I et al 2008 Nat. Phys. 4 227
[13] Becker A A 1992 The Boundary Element Method in

Engineering (New York: McGraw-Hill)
[14] Urazhdin S, Tessmer S H and Ashoori R C 2002 Rev. Sci.

Instrum. 73 310
[15] Kaplan T A 2006 J. Stat. Phys. 122 1237
[16] Ashoori R C 1996 Nature 379 413
[17] Ashoori R C et al 1992 Phys. Rev. Lett. 68 3088
[18] Erikkson M A et al 1996 Appl. Phys. Lett. 69 671
[19] Kuljanishvili I, Chakraborty S, Maasilta I J and Tessmer S H

2004 Ultramicroscopy 102 7

8

http://dx.doi.org/10.1002/smll.200600680
http://dx.doi.org/10.1021/nl070797t
http://dx.doi.org/10.1038/30156
http://dx.doi.org/10.1103/PhysRevA.62.012306
http://dx.doi.org/10.1103/PhysRevB.69.113301
http://dx.doi.org/10.1126/science.276.5312.579
http://dx.doi.org/10.1016/S0038-1098(99)00139-8
http://dx.doi.org/10.1038/nphys628
http://dx.doi.org/10.1038/35065553
http://dx.doi.org/10.1038/32112
http://dx.doi.org/10.1126/science.289.5476.90
http://dx.doi.org/10.1038/nphys855
http://dx.doi.org/10.1063/1.1433951
http://dx.doi.org/10.1007/s10955-005-8067-x
http://dx.doi.org/10.1038/379413a0
http://dx.doi.org/10.1103/PhysRevLett.68.3088
http://dx.doi.org/10.1063/1.117801
http://dx.doi.org/10.1016/j.ultramic.2004.07.004

	1. Introduction
	2. Subsurface charge accumulation method
	3. Analysis of capacitance resonances
	3.1. Single-electron peaks
	3.2. Multiple-electron peaks

	4. Calculating the bell functions
	4.1. Approximate expressions
	4.2. Numerical approach

	5. Calculation of the distributed-trap charging peak
	6. Comparison to measurements
	7. Summary
	Acknowledgments
	References

