Layered solids: from lubricants to 2D electronic materials*

David Tománek

Physics and Astronomy Department, Michigan State University, East Lansing, MI 48824, USA
tomanek@pa.msu.edu • http://www.pa.msu.edu/people/tomanek/

Abstract

Transition metal dichalcogenides (TMDs) with the chemical composition MX₂ (M=Mo,Ti and X=S,Se) are layered solids known for their excellent behavior as dry lubricants. Interestingly, TMDs have also caught strong interest from the post-graphene 2D electronics community, since they can be mechanically exfoliated down to monolayer thickness, becoming direct-gap semiconductors. Initial quantum transport measurements have suffered from limitations imposed by conventional contact materials such as Au [1]. In retrospect, this makes sense, since ‘nothing should stick to a lubricant’. Only after a long search, optimum strategies have been devised to make low-resistance, ohmic contacts to TMDs [2] using similar, epitaxial TMDs. A second problem in optoelectronic applications of TMDs arises from using CVD as a scalable growth process, which produces highly defective material. Defects such as chalcogen vacancies scatter charge carriers and quench photoluminescence. Recent experimental and theoretical [3] studies suggest that exposure of defective MoS₂ to sulfur-containing compounds may effectively heal such defects. Predictive ab initio calculations provide useful guidance to experimental studies in this case.

* Partly supported by the NSF/AFOSR EFRI 2-DARE grant number #EFMA-1433459.

References: