

Fortran - 1 - David Apsley

FORTRAN AUTUMN 2005

1. Background to Fortran
1.1 Terminology
1.2 Fortran history
1.3 Creating executable code – general issues
1.4 Creating executable code – Salford Fortran

2. Running a Fortran program
2.1 Salford Fortran in the University Clusters
2.2 Using the Command Window
2.3 Using Salford’s Integrated Development
Environment (Plato)

3. A simple program

4. Basic elements of Fortran
4.1 Building blocks of the language
4.2 Variable names
4.3 Data types
4.4 Declaration of variables
4.5 Numeric operators and expressions
4.6 Character operators
4.7 Logical operators and expressions
4.8 Line discipline

5. Repetition: DO and DO WHI LE

6. Decision making: I F and CASE
6.1 The I F construct
6.2 The CASE construct

7. Arrays
7.1 One-dimensional arrays (vectors)
7.2 Array declaration
7.3 Dynamic memory allocation
7.4 Array input/output and implied DO loops
7.5 Array-handling functions
7.6 Element-by-element operations
7.7 Matrices and higher-dimension arrays
7.8 Array initialisation
7.9 Array assignment and array expressions
7.10 The WHERE construct

8. Character handling
8.1 Character constants and variables
8.2 Character assignment
8.3 Character operators
8.4 Character substrings
8.5 Comparing and ordering
8.6 Character-handling functions

9. Functions and subroutines
9.1 Intrinsic subprograms
9.2 Program units
9.3 Subprogram arguments
9.4 The SAVE attribute
9.5 Array arguments
9.6 Character arguments
9.7 Modules

10. Advanced input/output
10.1 READ and WRI TE
10.2 Input/output with files
10.3 Formatted output
10.4 The READ statement
10.5 File positioning

Appendices
A1. Order of statements in a program unit
A2. Fortran statements
A3. Type declarations
A4. Intrinsic routines
A5. Operators

Recommended Books

Hahn, B.D., 1994, Fortran 90 For Scientists and Engineers, Arnold
Smith, I.M., 1995, Programming in Fortran 90. A First Course For Engineers and Scientists, Wiley

Fortran - 2 - David Apsley

1. BACKGROUND TO FORTRAN

1.1 Terminology

A computer is a machine capable of storing and executing sets of instructions, called programs, in order to
solve specific problems.

A platform refers to the combination of computer + operating system.

A programming language is a particular set of rules (with its own grammar or syntax) for coding the
instructions to a computer.

Source code (human-readable) is converted to binary code (computer-readable) in the process of compilation.
This is achieved by running a special program called a compiler.

A high-level programming language. (e.g. Fortran, C, Pascal, Java,…) is human-comprehensible and capable
of running on any platform with a suitable compiler. A low-level language (like assembler) is machine-
dependent and makes direct instructions to the processor.

1.2 Fortran History

Fortran (FORmula TRANslation) was the first high-level programming language. It was devised by John
Bachus in 1953. The first compiler was produced in 1957.

Fortran is highly-standardised, making it extremely portable (able to run under a wide range of computers and
operating systems). It is an evolving language, passing through a sequence of international standards:
 Fortran 66 – the original ANSI standard (accepted 1972!)
 Fortran 77 – ANSI X3.9-1978
 Fortran 90 – ISO/TEC 1539:1991
 Fortran 95 – ISO/IEC 1539-1: 1997 – a (very) minor revision of Fortran 90

The compiler which we shall use is provided by Salford Software and happens to be a Fortran 95 compiler.
However, everything we do will actually conform to the Fortran 90 standard.

Salford Fortran – like many Fortran implementations – comes with additional library routines for producing,
for example, graphical output or Windows applications.

1.3 Creating Executable Code – General Procedure

For all high-level languages (Fortran, C, Pascal, …) producing executable code is a two-stage process:
(i) Compiling converts source code to binary object code.
(ii) Linking combines one or more files of compiled code with additional library routines to create an

executable program.

linking

f i l e1. f 95

f i l e2. f 95

source code

f i l e1. obj

f i l e2. obj

object code

pr ogname. exe

l i br ar i es

executable code

compiling

Fortran - 3 - David Apsley

Source code is a human-readable set of instructions that can be created and modified on any computer with any
text editor. It consists of one or more files.
 Fortran files typically have filetype . f 90 or . f 95.
 C++ files typically have filetype . CPP

Each source file is compiled (by a special program called a compiler) to create a corresponding object code
file. These are computer-readable and platform-dependent.
 On a PC object code usually has filetype . obj

One or more object code files are linked (by a special program called a linker) with any required library
routines to create a single executable program. On a PC this would have filetype . exe

Most Fortran codes consist of multiple subprograms, all performing specific, independent functions. Different
sets of subprograms may be contained in different source files which must be compiled separately and then
linked. The advantages of having collections of routines in different files is that it is easy to re-use
subprograms in different applications. Many important subprograms are kept together as pre-compiled
libraries. Examples in engineering are the NAG (National Algorithms Group) libraries for mathematical
programming or Salford’s ClearWin libraries for creating Windows applications.

1.4 Creating Executable Code – Salford Fortran

Source code can be created with any text editor. In the University clusters, suitable editors are:

not epad – supplied with the Windows operating system
pl at o – supplied with the Salford software

but many other editors are available.

The precise commands used to compile and link will depend on the particular platform and compiler. For the
Salford Fortran 95 compiler on a PC the relevant programs are:
 compiler: f t n95
 linker: sl i nk

In the Salford implementation, files containing Fortran source code should have filetype . f 95 or . f 90.

Salford’s Fortran implementation (like many others) includes additional applications to facilitate program
development:
• an integrated development environment or graphical interface (pl at o);
• additional library routines (Cl ear Wi n+ for writing Windows interfaces);
• a debugging facility (sdbg).
• a make facility for better control of compiling and linking.
Only the first of these will be covered in this course, but the rest are available and worth investigating if you
intend to pursue Fortran programming further.

Fortran - 4 - David Apsley

2. RUNNING A FORTRAN PROGRAM

You have TWO options:
(i) Use the Command Window
(ii) Use an “ integrated development environment” (pl at o2)

Those who have grown up with Windows will probably find the latter more friendly, but it tends to obscure the
basic processes going on and is Salford-Fortran-specific, so we will examine both options.

2.1 Salford Fortran in the University Clusters

The Salford Software programs group can be accessed from the usual St ar t menu:
 St ar t > Al l Pr ogr ams

> Pr ogr ams - Cor e
 > Compi l er s
 > Sal f or d Sof t war e
 > Sal f or d FTN95 Command- l i ne Envi r onment or Pl at o2 I DE

(Although there are plenty of other ways of starting a Command Window, starting from the Salford Software link should
ensure that the PCs in the cluster are able to find all the necessary compilers and run-time libraries.)

2.2 Using the Command Window

(A brief summary of the more common commands in the Command Window can be found in the Internet
resources for this course.)

Open a command window as in Section 2.1.

Navigate to, e.g., your p: drive (if necessary):

p:
Create a directory (aka “ folder”) to put your work in:

md myf or t r an
Then change to that directory:

cd myf or t r an

Create the following simple source file with any editor, e.g., not epad:

not epad pr og1. f 95
(Notepad will tell you if the file doesn’ t already exist and ask you to confirm creation).
PROGRAM HELLO
 PRI NT * , ' Hel l o, wor l d! '
END PROGRAM HELLO

Make sure that you save the file.

Compile the code by entering the command
 f t n95 pr og1. f 95
This will (by default) create the binary object file pr og1. obj .

Link the code by entering the command
 sl i nk pr og1. obj
This will (again by default) create an executable file pr og1. exe

Run the program by entering the command
 pr og1

Various options can be passed to the compiler. These vary considerably between Fortran compilers. Typical
examples for Salford Fortran are given below.

Fortran - 5 - David Apsley

 f t n95 pr og1. f 95 / l i nk
– invokes the linker immediately after compiling.

 f t n95 pr og1. f 95 / f ul l _debug / undef
 – debugging options; useful during development but will slow down final code.

 f t n95 / hel p
 – brings up a (moderately useful) help system, including the complete set of compile options.

2.3 Using Salford’s Integrated Development Environment (Plato)

Open the Pl at o integrated development environment as in Section 2.1.

An integrated development environment (IDE) is basically there to assist in program development. It consists
of an advanced text editor with all the buttons you need to carry out compiling/linking/executing (plus a lot of
other things) with the click of a mouse. It can optionally provide “syntax highlighting” , i.e. colouring sections
of code according to their function: keyword, variable, comment etc. This occasionally helps.

(Note, however, that pl at o is specific to Salford software and if the University ever goes over to another
compiler then you are stuffed! Hence we teach the Command Window version as well.)

Type in the same source file.

PROGRAM HELLO
 PRI NT * , ' Hel l o, wor l d! '
END PROGRAM HELLO

Save the source code (in any folder of your choice) as pr og2. f 95 (The . f 95 extension is vital!)

Compile the code by using the pull-down menu
 Pr oj ect > Compi l e f i l e
(You will find a handy little button on the toolbar that does exactly the same thing.)
This will create an object file pr og2. obj .

Compile and link (“build”) the code by using the pull-down menu
 Pr oj ect > Bui l d f i l e
(Again, you will find a handy little button on the toolbar that does exactly the same thing.)
This will create an executable file pr og2. exe

Run the program by either:
 Hitting the RUN button after you have complied and linked the code
 or
 Using the pull-down menu: Pr oj ect > Run
 or
 Clicking the appropriate button on the toolbar

Actually, using Pr oj ect > Run will automatically
 save,
 compile,
 link,
 run
the code. However, it is usually better at first to do these in separate steps, so that you can debug your program.

If the compiler encounters any mistakes then it will list these in an errors window and you can go direct to the
appropriate line of code by clicking on the particular error.

Fortran - 6 - David Apsley

3. A SIMPLE PROGRAM

Example. Quadratic equation solver (real roots).

The well-known solutions of the quadratic equation

 02 =++ CBxAx
are

A

ACBB
x

2

42 −±−=

The roots are real if and only if the discriminant ACB 42 − is greater than or equal to zero.

A program which asks for the coefficients and then outputs the real roots might look like the following.

PROGRAM ROOTS
! Pr ogr am sol ves t he quadr at i c equat i on Ax* * 2+Bx+C=0
 I MPLI CI T NONE

 REAL A, B, C ! decl ar e var i abl es
 REAL DI SCRI MI NANT, ROOT1, ROOT2

 PRI NT * , ' I nput A, B, C' ! r equest coef f i c i ent s
 READ * , A, B, C

 DI SCRI MI NANT = B * * 2 - 4. 0 * A * C ! cal cul at e di scr i mi nant

 I F (DI SCRI MI NANT < 0. 0) THEN
 PRI NT * , ' No r eal r oot s '
 ELSE
 ! Cal cul at e r oot s
 ROOT1 = (- B + SQRT(DI SCRI MI NANT)) / (2. 0 * A)
 ROOT2 = (- B - SQRT(DI SCRI MI NANT)) / (2. 0 * A)
 PRI NT * , ' Root s ar e ' , ROOT1, ROOT2 ! out put r oot s
 END I F

END PROGRAM ROOTS

This example illustrates many of the features of Fortran.

(1) Statements

Fortran source code consists of a series of statements. The usual use is one per line (interspersed with blank
lines for clarity). However, we shall see later that it is possible to have more than one statement per line and for
one statement to run over several lines.

Lines may be up to 132 characters long.

 (2) Comments

The exclamation mark (!) signifies that everything after it on that line is a comment (i.e. ignored by the
compiler, but there for your information). Sprinkle liberally.

(3) Constants

Elements whose values don’ t change are termed constants. Here, 2. 0 and 4. 0 are numerical constants. The
presence of the decimal point indicates that they are of real type. We shall discuss the difference between real
and integer types later.

Fortran - 7 - David Apsley

(4) Variables

Entities whose values can change are termed variables. Each has a name that is, basically, a symbolic label
associated with a specific location in memory. To make the code more readable, names should be descriptive
and meaningful; e.g. DI SCRI MI NANT in the above example.

All the variables in the above example have been declared of type REAL. Other types (I NTEGER,
CHARACTER, LOGI CAL, …) will be introduced later, where we will also explain the I MPLI CI T NONE
statement.

Variables are declared when memory is set aside for them by specifying their type, and defined when some
value is assigned to them.

(5) Operators

Fortran makes use of the usual binary numerical operators +, - , * and / for addition, subtraction,
multiplication and division, respectively. * * indicates exponentiation (‘ to the power of’).

Note that ‘=’ is an assignment operation, not a mathematical equality. Read it as ‘becomes’ .

(6) Intrinsic Functions

The Fortran standard provides some intrinsic (that is, built-in) functions to perform important mathematical
functions. The square-root function SQRT is used in the example above. Others include COS, SI N, LOG, EXP,
TANH. A list of useful mathematical intrinsic functions is given in Appendix A4.

Note that, in common with all other scientific programming languages, the trigonometric functions SI N, COS,
etc. expect their arguments to be in radians.

(7) Simple Input/Output

Simple list-directed input and output is achieved by the statements
 READ * , list
 PRI NT * , list
respectively. The contents are determined by what is in list and the * indicates that the computer should decide
how to format the output. Data is read from the standard input device (usually the keyboard) and output to the
standard output device (usually the screen). Later we shall see how to read from and write to files, and how to
produce formatted output.

(8) Decision-making

All programming languages have some facility for decision-making: doing one thing if some condition is true
and (optionally) doing something else if it is not. The particular form used here is
 I F (some condition) THEN
 [do something]
 ELSE
 [do something else]
 END I F

We shall encounter various other forms of the I F construct.

(9) The PROGRAM and END PROGRAM statements

Every Fortran program has one and only one main program. We shall see later that it can have many

Fortran - 8 - David Apsley

subprograms (subroutines or functions). The main program has the structure
[PROGRAM [name]]
 [declaration statements]
 [executable statements]
END [PROGRAM [name]]

Everything in square brackets [] is optional. However, it is good programming practice to put the name of the
program in both header and END statements, as in the example above.

(10) Cases and Spaces

Except within character strings, Fortran is completely case-insensitive. Everything may be written in upper
case, lower case or a combination of both, and we can refer to the same variable as ROOT1 and r oot 1 within
the same program unit. Warning: this is not true in some programming languages, notably C and C++, so it is
probably best not to get in the habit of doing it.

Spaces are generally valid everywhere except in the middle of names and keywords. As with comments, they
should be sprinkled liberally to aid clarity.

Indentation is optional, but widely used to clarify program structure. Typical use is to indent a program’s
contents (by 2 or 3 spaces) from its header and END statements, and to indent the statements contained within,
for example, I F constructs or DO loops (see later) by a similar amount.

(11) Running the Program.

Follow the instructions in the first section to compile and link the program. Run it by entering its name at the
command prompt or from within Pl at o. It will ask you for the three coefficients A, B and C.

Try A=1, B=3, C=2 (i.e. 0232 =++ xx). The roots should be –1 and –2. You can input the numbers as
 1 3 2 [enter]
or
 1, 3, 2 [enter]
or even
 1 [enter]
 3 [enter]
 2 [enter]

Now try the combinations
 A = 1, B = –5, C = 6
 A = 1, B = –5, C = 10 (What are the roots of the quadratic equation in this case?)

Fortran - 9 - David Apsley

4. BASIC ELEMENTS OF FORTRAN

4.1 Building Blocks of the Language

The Fortran character set consists of:

the alphanumeric characters: A, …, Z, a, …, z , 0, …, 9 and _(underscore)
the special symbols: (blank) = + - * / () , . ' $: " % & ; < > ?

From the character set we can build tokens which are one of six types:
 labels e.g. 100 1234 9999
 constants e.g. 15 30. 5 ' Thi s i s a st r i ng' . TRUE.
 keywords e.g. PROGRAM END I F DO
 names e.g. MYNAME Manchest er _Uni t ed Chel sea123
 operators e.g. + - * / * * >
 separators e.g. () : ;

From tokens we can build statements. e.g.
 X = (- B + SQRT(B * * 2 – 4. 0 * A * C)) / (2. 0 * A)

From statements we can build program units.

4.2 Variable Names

A name is a symbolic link to a location in memory. A variable is a memory location whose value may be
changed during execution. Names must:
• have between 1 and 31 alphanumeric characters (alphabet, digits and underscore);
• start with a letter.

It is possible – but unwise – to use a Fortran keyword or the name of an intrinsic function as a variable name.
Tempting names that should be avoided in this respect include: COUNT, LEN, PRODUCT, RANGE, SCALE,
SI ZE, SUM and TI NY.

The following are valid (if unlikely) variable names:
 Manchest er _Uni t ed
 AS_EASY_AS_123
 STUDENT
The following are not:
 ROMEO+JULI ET (+ is not allowed)
 999Hel p (starts with a number)
 HELLO! (! is not allowed)

4.3 Data Types

In Fortran there are 5 intrinsic (i.e. built-in) data types:
 integer
 real
 complex
 character
 logical
The first three are the numeric types. The last two are non-numeric types.

In advanced applications it is also possible to have derived types and pointers. Both of these are highly
desirable in a modern programming language (they are very similar to features in the C programming
language), but they are beyond the scope of this course.

Integer constants are (signed or unsigned) whole numbers, without a decimal point, e.g.
 100 +17 –444 0 666

Fortran - 10 - David Apsley

They are stored exactly, but their range is limited: typically –2n-1 to 2n-1–1, where n is either 16 (for 2-byte
integers) or 32 (for 4-byte integers). It is possible to change the default range using the ki nd type parameter
(see later).

Real constants have a decimal point and may be entered as either
 fixed point, e.g. 412.2
 floating point, e.g. 4.122E+02
Real constants are stored in exponential form in memory, no matter how they are entered. They are accurate
only to a finite machine precision, (which, again, can be changed using the ki nd type parameter).

Complex constants consist of paired real numbers, corresponding to real and imaginary parts. e.g. (2. 0, 3. 0)
corresponds to 2 + 3i.

Character constants consist of strings of characters enclosed by a pair of delimiters, which may be either single
(') or double (") quotes; e.g.
 ' Thi s i s a st r i ng'
 " School of Mechani cal , Aer ospace and Ci v i l Engi neer i ng"
The delimiters themselves are not part of the string.

Logical constants may be either . TRUE. or . FALSE.

4.4 Declaration of Variables

Type Declarations

Variables should be declared (that is, have their type defined and memory set aside for them) before any
executable statements. This is achieved by a type declaration statement of the form, e.g.,
 I NTEGER NUMBER_OF_PEOPLE
 REAL RESULT
 COMPLEX Z
 LOGI CAL ANSWER

More than one variable can be declared in each statement. e.g.
 I NTEGER I , J , K

Initialisation

Variables can be initialised in their type-declaration statement. In this case use the double colon (: :) separator
must be used. Thus, the above examples might become:
 I NTEGER : : NUMBER_OF_PEOPLE = 20
 REAL : : RESULT = 0. 05
 COMPLEX : : Z = (0. 0, 1. 0)
 LOGI CAL : : ANSWER = . TRUE.

Variables can also be initialised at compile time with a DATA statement; e.g.
 DATA NUMBER_OF_PEOPLE, RESULT, Z, ANSWER / 20, 0. 05, (0. 0, 1. 0) , . TRUE. /
The DATA statement must be placed before any executable statements.

Attributes

Various attributes may be specified for variables in their type-declaration statements. One such is
PARAMETER. A variable declared with this attribute may not have its value changed within the program unit.
It is often used to emphasise key physical or mathematical constants; e.g.
 REAL, PARAMETER : : PI = 3. 14159
 REAL, PARAMETER : : GRAVI TY = 9. 81
The double colon (: :) must be used when attributes are specified.

Fortran - 11 - David Apsley

Kind (Optional)

The kind concept will not be mentioned much in this course, but it is valuable in ensuring true portability
across platforms and one should be aware of its existence. Basically, the default memory size and format of
storage for the various data types is not set by the standard and varies between Fortran implementations – for
example 2 or 4 bytes for an integer, 4 or 8 bytes for a real. This affects both the largest integer that can be
represented and the accuracy with which real numbers can be stored. If you wish true portability then you may
wish to declare the kind type parameter explicitly; e.g.
 I NTEGER, PARAMETER : : I KI ND = SELECTED_I NT_KI ND(5)
 I NTEGER, PARAMETER : : RKI ND = SELECTED_REAL_KI ND(6, 99)
 I NTEGER (KI ND=I KI ND) I
 REAL (KI ND=RKI ND) R
In this example, the first two lines work out the kind type parameters needed to store integers of up to 5 digits
(i.e. –99999 to 99999) and real numbers of accuracy at least 6 significant figures and covering a range -1099 to
1099. These are assigned to parameter variables IKIND and RKIND, which can then be used to declare all
integers and reals with the required range and precision.

To print out the default kind types for the Salford Fortran 95 compiler, try
 PRI NT * , KI ND(1) , KI ND(1. 0)
where the intrinsic function KI ND returns the kind type of its argument: in this case integer and real values.

The ki nd parameter will not be used in this introductory course, but is described in the recommended books.

Historical Baggage – Implicit Typing.

Unless a variable was explicitly typed, older versions of Fortran implicitly assumed a type for a variable
depending on the first letter of its name. A variable whose name started with one of the letters I - O was
assumed to be an integer; otherwise it was assumed to be real. To admit older standards as a subset, Fortran has
to go on doing this. However, it is appalling programming practice and it is highly advisable to:
• use a type declaration for all variables;
• put the I MPLI CI T NONE statement at the start of all program units (the compiler will then flag any

variable that you have forgotten to declare).

4.5 Numeric Operators and Expressions

A numeric expression is a formula combining constants, variables and functions using the numeric intrinsic
operators given in the following table.

operator meaning precedence (1 = highest)
* * exponentiation (xy) 1
* multiplication (xy) 2
/ division (x/y) 2
+ addition (x+y) or unary plus (+x) 3
- subtraction (x–y) or unary minus (–x) 3

An operator with two operands is called a binary operator. An operator with one operand is called a unary
operator.

Precedence

Expressions are evaluated in order: highest precedence (exponentiation) first, then left to right. Brackets (),
which have highest precedence of all, can be used to override this. e.g.
 1 + 2 * 3 evaluates as 1 + (2 × 3) or 7
 10. 0 / 2. 0 * 5. 0 evaluates as (10.0 / 2.0) × 5.0 or 25.0
 5. 0 * 2. 0 * * 3 evaluates as 5.0 × (2.03) or 40.0

Fortran - 12 - David Apsley

Repeated exponentiation is the single exception to the left-to-right rule for equal precedence:

 A * * B * * C evaluates as
CBA

Type Coercion

When a binary operator has operands of different type, the weaker (usually integer) type is coerced (i.e.
converted) to the stronger (usually real) type and the result is of the stronger type. e.g.
 3 / 10. 0 → 3. 0 / 10. 0 → 0. 3

The biggest source of difficulty is with integer division. If an integer is divided by an integer then the result
must be an integer and is obtained by truncation towards zero. Thus, in the above example, if we had written
3/ 10 (without a decimal point) the result would have been 0.

Integer division is fraught with dangers to the unwary. Be careful when mixing reals and integers in mixed-
mode expressions. If you intend a constant to be a real number, use a decimal point!

Integer division can, however, be useful. For example,
 25 – 4 * (25 / 4)
gives the remainder (here, 1) when 25 is divided by 4.

Type coercion also occurs in assignment. This time, however, the conversion is to the type of the variable
being assigned. Suppose I is an integer. Then the statement
 I = –25. 0 / 4. 0
will first evaluate the RHS (as –6.25) and then truncate it towards zero, assigning the value –6 to I .

4.6 Character Operators

There is only one character operator, concatenation, //:
 ' Man' / / ' chest er ' gives ' Manchest er '

4.7 Logical Operators and Expressions

A logical expression is either:
• a combination of numerical expressions and the relational operators
 < less than
 <= less than or equal
 > greater than
 >= greater than or equal
 == equal
 / = not equal
• a combination of other logical expressions, variables and the logical operators given below.

operator meaning precedence (1=highest)
. NOT. logical negation (. TRUE. → . FALSE. and vice-versa) 1
. AND. logical intersection (both are . TRUE.) 2
. OR. logical union (at least one is . TRUE.) 3
. EQV. logical equivalence (both . TRUE. or both . FALSE.) 4
. NEQV. logical non-equivalence (one is . TRUE. and the other . FALSE.) 4

As with numerical expressions, brackets can be used to override precedence.

A logical variable can be assigned to directly; e.g.
 L = . TRUE.
or by using a logical expression; e.g.
 L = A > 0. 0 . AND. C > 0. 0

Fortran - 13 - David Apsley

Logical expressions are most widely encountered in decision making; e.g.
 I F (DI SCRI MI NANT < 0. 0) PRI NT * , ' Root s ar e compl ex'

The older forms . LT. , . LE. , . GT. , . GE. , . EQ. , . NE. may be used instead of <, <=, >, >=, ==, / = if
desired.

Character strings can also be compared, according to the character-collating sequence used by the compiler:
this is often (but does not have to be), ASCII or EBCDIC. The Fortran standard requires that for all-upper-case,
all-lower-case or all-numeric expressions, normal dictionary order is preserved. Thus, for example, both the
logical expressions
 ' ABCD' < ' EF'
 ' 0123' < ' 3210'
are true, but
 ' DR' < ' APSLEY'
is false. However, upper case may or may not come before lower case in the character-collating sequence and
letters may or may not come before numbers, so that mixed-case expressions or mixed alphabetic-numeric
expressions should not be compared as they could conceivably give different answers on different platforms.

4.8 Line Discipline

The usual layout of statements is one-per-line, interspersed with blank lines for clarity. This is the
recommended form in most instances. However,
• There may be more than one statement per line, separated by a semicolon; e.g.

 A = 1; B = 10; C = 100
This is only recommended for simple initialisation.

• Each statement may run onto one or more continuation lines if there is an ampersand (&) at the end of

the line to be continued. e.g.
 DEGREES = RADI ANS * PI &

 / 180. 0
is the same as the single-line statement
 DEGREES = RADI ANS * PI / 180. 0

There may be up to 132 characters per line. However, editor defaults (and historical limits in previous versions
of Fortran) mean that most programmers do not use lines longer than 72 characters.

Fortran - 14 - David Apsley

5. REPETITION: DO AND DO WHI LE

See Sample Programs – Week 2

One advantage of computers is that they never get bored by repeating the same action many times. For
example, consider the following program.

PROGRAM LI NES
! I l l ust r at i on of DO- l oops
 I MPLI CI T NONE

 I NTEGER L ! a count er

 DO L = 1, 100 ! s t ar t of r epeat ed sect i on
 PRI NT * , L, ' I must not t al k i n c l ass '
 END DO ! end of r epeat ed sect i on

END PROGRAM LI NES

This illustrates how a DO loop may be used to carry out the same statement or set of statements many times.
The main forms of loop structure are:

(i) Deterministic DO loop – the maximum number of loops is specified:

 DO variable = expression1, expression2 [, expression3]

repeated section

 END DO

(ii) Non-deterministic DO loop: EXI T the loop when some criterion is met.
 DO

 ...
I F (logical expression) EXI T
 ...

 END DO

(iii) Alternative form of non-deterministic loop.
 DO WHI LE (logical expression)

repeated section

 END DO

In the first of these, variable is an integer variable to be used as a loop counter and expression1, expression2,
expression3 are integers or, more generally, integer expressions. expression1 and expression2 are the limits of
the count and expression3 is the increment (which may be positive or negative). If expression3 is not specified,
it is assumed to be 1. If expression3 is positive then the loop will stop executing once the integer variable
exceeds expression2.

In the last two examples, looping stops when some logical criterion is met.

Fortran - 15 - David Apsley

DO loops can be nested (i.e. one inside another). Indentation is definitely recommended here. For example:

PROGRAM NESTED
! I l l ust r at i on of nest ed DO- l oops
 I MPLI CI T NONE

 I NTEGER I , J ! l oop count er s

 DO I = 1, 6 ! s t ar t of out er l oop
 PRI NT * , ' Out er l oop wi t h I = ' , I
 DO J = 1, 3 ! s t ar t of i nner l oop
 PRI NT * , ' I , J = ' , I , J
 END DO
 PRI NT * ! a bl ank l i ne
 END DO ! end of r epeat ed sect i on

END PROGRAM NESTED

The DO loop counter should be an integer. To increment in a non-integer sequence, e.g. 0.5, 0.8, 1.1, ... , define
separate loop counters (e.g. I), increment (e.g. DX), initial value (e.g. X0) and for each pass of the loop work
out the value to be output, as in the example below:

PROGRAM XLOOP
! I l l ust r at i on of non- i nt eger val ues
 I MPLI CI T NONE

 I NTEGER I ! l oop count er
 REAL DX ! i ncr ement
 REAL X0 ! non- i nt egr al i ni t i al val ue
 REAL X ! val ue t o be out put

 X0 = 0. 5 ! set i ni t i al val ue
 DX = 0. 3 ! set i ncr ement

 DO I = 1, 10 ! s t ar t of r epeat ed sect i on
 X = X0 + (I - 1) * DX ! act ual val ue t o be out put
 PRI NT * , X
 END DO ! end of r epeat ed sect i on

END PROGRAM XLOOP

If one only uses the variable X once for each of its values (as in the example above) there is no need to define
it as a separate variable, and one could simply combine the lines
 X = X0 + (I - 1) * DX
 PRI NT * , X
as
 PRI NT * , X0 + (I - 1) * DX

Fortran - 16 - David Apsley

6. DECISION MAKING: I F AND CASE

See Sample Programs – Week 2

Often a computer is called upon to perform one set of actions if some condition is met, and (optionally) some
other set if it is not. This branching or conditional action can be achieved by the use of I F or CASE constructs.

6.1 The I F Construct

There are several forms of I F construct.

(i) Single statement.
 I F (logical expression) statement

(ii) Single block of statements.
 I F (logical expression) THEN

things to be done if true

 END I F

(iii) Alternative actions.
 I F (logical expression) THEN

things to be done if true

 ELSE

things to be done if false

 END I F

(iv) Several alternatives (there may be several ELSE I f s, and there may or may not be an ELSE).
 I F (logical expression-1) THEN

.........
 ELSE I F (logical expression-2) THEN

.........
 [ELSE

.........
]
 END I F

As with DO loops, I F constructs can be nested; (this is where indentation is very helpful).

Fortran - 17 - David Apsley

6.2 The CASE Construct

The CASE construct is a convenient (and often more readable and/or efficient) alternative to an
I F ... ELSE I F ... ELSE construct. It allows different actions to be performed depending on the set of
outcomes (selector) of a particular expression.

The general form is:
 SELECT CASE (expression)
 CASE (selector-1)

block-1
 CASE (selector-2)

block-2
 [CASE DEFAULT

default block
]
 END SELECT

expression is an integer, character or logical expression. It is often just a simple variable.
selector-n is a set of values that expression might take.
block-n is the set of statements to be executed if expression lies in selector-n.
CASE DEFAULT is used if expression does not lie in any other category. It is optional.

Selectors are lists of non-overlapping integer or character outcomes, separated by commas. Outcomes can be
individual values (e.g. 3, 4, 5, 6) or ranges (e.g. 3: 6). These are illustrated below and in the week’s
examples. CASE is often more efficient than an I F ... ELSE I F ... ELSE construct because only one
expression need be evaluated.

Example. What type of key am I pressing?

PROGRAM KEYPRESS
 I MPLI CI T NONE

 CHARACTER LETTER

 PRI NT * , ' Pr ess a key'
 READ * , LETTER

 SELECT CASE (LETTER)

 CASE (' a' , ' e' , ' i ' , ' o' , ' u' , ' A' , ' E' , ' I ' , ' O' , ' U')
 PRI NT * , ' Vowel '

 CASE (' b' : ' d' , ' f ' : ' h' , ' j ' : ' n' , ' p' : ' t ' , ' v ' : ' z ' , &
 ' B' : ' D' , ' F' : ' H' , ' J ' : ' N' , ' P' : ' T' , ' V' : ' Z')
 PRI NT * , ' Consonant '

 CASE (' 0' : ' 9')
 PRI NT * , ' Number '

 CASE DEFAULT
 PRI NT * , ' Somet hi ng el se'

 END SELECT

END PROGRAM KEYPRESS

Fortran - 18 - David Apsley

7. ARRAYS

See Sample Programs – Week 2

In geometry it is common to denote coordinates by x1, x2, x3 or { xi} . The elements of matrices are written as
a11, a12, ..., amn or { aij} . These are examples of subscripted variables or arrays.

It is common and convenient to denote the whole array by its unsubscripted name; e.g. x � { xi} , a � { aij} . The
presence of subscripted variables is important in any programming language. The ability to refer to an array as
a whole, without subscripts, is an element of Fortran 90/95 which makes it particularly useful in engineering.

When referring to an individual element of an array, the subscripts are enclosed in parentheses; e.g. X(1) ,
A(1, 2) , etc..

7.1 One-Dimensional Arrays (Vectors)

Example. Consider the following program to fit a straight line to the set of points (x1,y1),
(x2,y2), … , (xN,yN) and then print them out, together with the best-fit straight line. The data file
is assumed to be of the form shown right and the best-fit straight line is cmxy += where

2
2

x
N

x

yx
N

xy

m

−Σ

−Σ

= , xmyc −= where
N

y
y

N

x
x

Σ=Σ= ,

PROGRAM LI NE_1
 I MPLI CI T NONE
 I NTEGER N ! number of poi nt s
 I NTEGER I ! a count er
 REAL X(100) , Y(100) ! ar r ays t o hol d t he poi nt s
 REAL SUMX, SUMY, SUMXY, SUMXX ! var i ous i nt er medi at e sums
 REAL M, C ! l i ne s l ope and i nt er cept
 REAL XBAR, YBAR ! mean x and y

 SUMX = 0. 0; SUMY = 0. 0; SUMXY = 0. 0; SUMXX = 0. 0 ! i ni t i al i se sums

 OPEN (10, FI LE = ' pt s. dat ') ! open dat a f i l e; at t ach t o uni t 10
 READ (10, *) N ! r ead number of poi nt s

 ! Read r est of mar ks, one per l i ne, and add t o sums
 DO I = 1, N
 READ (10, *) X(I) , Y(I)
 SUMX = SUMX + X(I)
 SUMY = SUMY + Y(I)
 SUMXY = SUMXY + X(I) * Y(I)
 SUMXX = SUMXX + X(I) * * 2
 END DO
 CLOSE (10) ! f i ni shed wi t h dat a f i l e

 ! Cal cul at e best - f i t s t r ai ght l i ne
 XBAR = SUMX / N
 YBAR = SUMY / N
 M = (SUMXY / N - XBAR * YBAR) / (SUMXX / N - XBAR * * 2)
 C = YBAR - M * XBAR

 PRI NT * , ' Sl ope = ' , M
 PRI NT * , ' I nt er cept = ' , C
 PRI NT ' (3(1X, A10)) ' , ' x ' , ' y ' , ' mx+c'
 DO I = 1, N
 PRI NT ' (3(1X, 1PE10. 3)) ' , X(I) , Y(I) , M * X(I) + C
 END DO

END PROGRAM LI NE_1

N
x1 y1
x2 y2
...
xN yN

Fortran - 19 - David Apsley

Several features of arrays can be illustrated by this example.

7.2 Array Declaration

Like any other variables, arrays need to be declared at the start of a program unit and memory space assigned
to them. However, unlike scalar variables, array declarations require both a type (integer, real, complex,
character, logical, ...) and a size (i.e. number of elements).

In this case the two one-dimensional arrays X and Y can be declared as of real type with 100 elements by the
type-declaration statement
 REAL X(100) , Y(100)
or using the DI MENSI ON attribute:
 REAL, DI MENSI ON(100) : : X, Y
or by a separate DI MENSI ON statement:
 REAL X, Y
 DI MENSI ON X(100) , Y(100)

By default, the first element of an array has subscript 1. It is possible to make the array start from subscript 0
(or any other integer) by declaring the lower array bound as well. For example, to start at 0 instead of 1:
 REAL X(0: 100)
Warning: in the C programming language the default lowest subscript is 0.

7.3 Dynamic Memory Allocation

An obvious problem arises. What if the number of points N is greater than the declared size of the array (here,
100)? Well, different compilers will do different things – all of them garbage and most resulting in crashes.

One solution (which used to be required in earlier versions of Fortran) was to check for adequate space,
prompting the user to recompile if necessary with a larger array size:
 READ (10, *) N
 I F (N > 100) THEN
 PRI NT * , ' Sor r y, N > 100. Pl ease r ecompi l e wi t h l ar ger ar r ay '
 STOP
 END I F
Most departmental secretaries will not be impressed with this error message.

A far better solution is to use dynamic memory allocation; that is, the array size is determined (and memory
space allocated) at run-time, not in advance during compilation. To do this one must use allocatable arrays as
follows.

(i) In the declaration statement, use the ALLOCATABLE attribute; e.g.
 REAL, ALLOCATABLE : : X(:) , Y(:)
Note that the size of the arrays is not specified, but is replaced by a single colon (:).

(ii) When the arrays are needed, allocate them the required amount of memory:
 READ (10, *) N
 ALLOCATE (X(N) , Y(N))

(iii) When the arrays are no longer needed, recover memory by de-allocating them:
 DEALLOCATE (X, Y)

7.4 Array Input/Output and Implied DO Loops

In the example, the lines
 DO I = 1, N
 READ (10, *) X(I) , Y(I)
 ...
 END DO

Fortran - 20 - David Apsley

mean that at most one pair of points can be input per line. With the single statement
 READ (10, *) (X(I) , Y(I) , I = 1, N)
the program will simply read the first N data pairs (separated by spaces or commas) which it encounters. Since
all the points are read in one go, they no longer need to be on separate lines of the input file.

7.5 Array-handling Functions

Certain intrinsic functions are built into the language to facilitate array handling. For example, the one-by-one
summation can be replaced by the single statement
 SUMX = SUM(X)
This uses the intrinsic function SUM, which adds together all elements of its array argument. Other array-
handling functions are listed in Appendix A4.

7.6 Element-by-Element Operations

Sometimes we want to do the same thing to every element of an array. In the above example, for each mark we
form the square of that mark and add to a sum. The array expression
 X * X
is a new array with elements { xi

2} . SUM(X * X) therefore produces Σxi
2.

Using many of these array features a shorter version of the program is given below. Note that use of the
intrinsic function SUM obviates the need for extra variables to hold intermediate sums and there is a one-line
implied DO loop for both input and output.

PROGRAM LI NE_2
 I MPLI CI T NONE
 I NTEGER N ! number of poi nt s
 I NTEGER I ! a count er
 REAL, ALLOCATABLE : : X(:) , Y(:) ! ar r ays t o hol d t he poi nt s
 REAL M, C ! l i ne s l ope and i nt er cept
 REAL XBAR, YBAR ! mean x and y

 OPEN (10, FI LE = ' pt s. dat ') ! open dat a f i l e; at t ach t o uni t 10
 READ (10, *) N ! r ead number of poi nt s
 ALLOCATE (X(N) , Y(N)) ! al l ocat e memor y t o X and Y
 READ (10, *) (X(I) , Y(I) , I = 1, N) ! r ead r est of mar ks
 CLOSE (10) ! f i ni shed wi t h dat a f i l e

 ! Cal cul at e best - f i t s t r ai ght l i ne
 XBAR = SUM(X) / N
 YBAR = SUM(Y) / N
 M = (SUM(X * Y) / N - XBAR * YBAR) / (SUM(X * X) / N - XBAR * * 2)
 C = YBAR - M * XBAR

 PRI NT * , ' Sl ope = ' , M
 PRI NT * , ' I nt er cept = ' , C
 PRI NT ' (3(1X, A10)) ' , ' x ' , ' y ' , ' mx+c'
 PRI NT ' (3(1X, 1PE10. 3)) ' , (X(I) , Y(I) , M * X(I) + C, I = 1, N)

 DEALLOCATE (X, Y) ! r et r i eve memor y space

END PROGRAM LI NE_2

Fortran - 21 - David Apsley

7.7 Matrices and Higher-Dimension Arrays

An m×n array of numbers of the form

�
�
�

�

�

�
�
�

�

�

mnm

n

aa

aa

1

111

��

�

is called a matrix. The typical element is denoted aij. It has two subscripts.

Fortran allows matrices (two-dimensional arrays) and, in fact, arrays of up to 7 dimensions. (However, entities
of the form aijklmno have never found much application in civil engineering!)

In Fortran the declaration and use of a REAL 3×3 matrix might look like
 REAL A(3, 3)
 A(1, 1) = 1. 0; A(1, 2) = 2. 0; A(1, 3) = 3. 0
 A(2, 1) = A(1, 1) + A(1, 3)
 etc.

Terminology

dimension – a particular subscript
rank – the number of subscripts (1 for a vector, 2 for a matrix etc.)
extent – the number of elements in a particular dimension
shape – the set of extents

For example, the declaration
 REAL X(0: 100, 3, 3)
declares:
• an array of real type
• named X
• of rank 3
• of extent 101 along the first, 3 along the second and 3 along the third dimension
• of shape 101×3×3
A typical element is, e.g., X(50, 2, 2) .

Matrix Multiplication

Matrix multiplication can be accomplished by nested DO loops (see below). However, Fortran provides an
intrinsic function MATMUL to do the same in a single statement.

Consider the matrix multiplication C=AB, where A, B and C are 3×3 matrices declared by
 REAL, DI MENSI ON(3, 3) : : A, B, C

A nested DO loop construct can be used to evaluate the product; for example,
 DO I = 1, 3
 DO J = 1, 3
 C(I , J) = A(I , 1) * B(1, J) + A(I , 2) * B(2, J) + A(I , 3) * B(3, J)
 END DO
 END DO
However, the multiplication can also be accomplished by the single statement
 C = MATMUL(A, B)
Reasonable?

Note that, for matrix multiplication to be legitimate, the number of columns in A must equal the number of
rows in B; i.e. the matrices are conformable.

Fortran - 22 - David Apsley

7.8 Array Initialisation

Sometimes it is necessary to initialise all elements of an array. This can be done by separate statements; e.g,
 A(1) = 1. 0; A(2) = 20. 5; A(3) = 10. 0; A(4) = 0. 0; A(5) = 0. 0
It can also be done with a DATA statement:
 DATA A / 1. 0, 20. 5, 10. 0, 0. 0, 0. 0 /

DATA statements can be used to initialise multi-dimensional arrays. However, the storage order of elements is
important. In Fortran, column-major storage is used; i.e. the first subscript varies fastest so that, for example,
the storage order of a 3×3 matrix is
 A(1, 1) , A(2, 1) , A(3, 1) , A(1, 2) , A(2, 2) , A(3, 2) , A(1, 3) , A(2, 3) , A(3, 3)
Warning: this is the opposite convention to the C programming language.

7.9 Array Assignment and Array Expressions

Arrays are used where large numbers of data elements are to be treated in similar fashion. Fortran 90/95 now
allows a ‘syntactic shorthand’ to be used whereby, if the array name is used in a numeric expression without
subscripts, then the operation is assumed to be performed on every element of an array. This is far more
concise than older versions of Fortran, where it was necessary to use DO-loops.

For example, suppose that arrays X and Y are declared with 10 elements:
 REAL, DI MENSI ON(10) : : X, Y

Assignment

 X = 10. 0
sets every element of X to the value 10.0.

Array Expressions

 Y = - 3 * X
Sets yi to –3xi for each element of the respective arrays.

 Y = X + 3
Although 3 is only a scalar, yi is set to xi+3 for each element of the arrays.

Array Arguments to Intrinsic Functions

 Y = SI N(X)
Sets yi to sin(xi) for each element of the respective arrays.

7.10 The WHERE Construct

WHERE is simply an I F construct applied to every element of an array. For example, to turn every non-zero
element of an array A into its reciprocal, one could write
 WHERE (A / = 0. 0)
 A = 1. 0 / A
 END WHERE

Note that the individual elements of A are never mentioned. WHERE, ELSE, ELSE WHERE, END WHERE can
be used whenever one wants to use a corresponding I F, ELSE, ELSE I F, END I F for each element of an
array.

Fortran - 23 - David Apsley

8. CHARACTER HANDLING

See Sample Programs – Week 3

Fortran (FORmula TRANslation) was originally developed for engineering calculations, not word-processing.
However, it now has extensive character-handling capabilities.

8.1 Character Constants and Variables

A character constant (or string) is a series of characters enclosed in delimiters, which may be either single (')
or double (") quotes; e.g.
 ' Thi s i s a st r i ng' or " Thi s i s a st r i ng"
The delimiters themselves are not part of the string.

Delimiters of the opposite type can be used within a string with impunity; e.g.
 PRI NT * , " Thi s i sn' t a pr obl em"
However, if the bounding delimiter is to be included in the string then it must be doubled up; e.g.
 PRI NT * , ' Thi s i sn' ' t a pr obl em. '

Character variables must have their length – i.e. number of characters – declared in order to set aside memory.
Any of the following will declare a character variable WORD of length 10:
 CHARACTER (LEN=10) WORD
 CHARACTER (10) WORD
 CHARACTER WORD* 10
(The first is my personal preference, as it is the clearest to read).

To save counting characters, an assumed length (indicated by LEN=* or, simply, *) may be used for character
variables with the PARAMETER attribute; i.e. those whose value is fixed. e.g.
 CHARACTER (LEN=*) , PARAMETER : : UNI VERSI TY = ' MANCHESTER'

If LEN is not specified for a character variable then it defaults to 1; e.g.
 CHARACTER LETTER

Character arrays are simply subscripted character variables. Their declaration requires a dimension statement
in addition to length; e.g.
 CHARACTER (LEN=3) , DI MENSI ON(12) : : MONTHS
or, equivalently,
 CHARACTER (LEN=3) MONTHS(12)
This array might then be initialised by, for example,
 DATA MONTHS / ' Jan' , ' Feb' , ' Mar ' , ' Apr ' , ' May' , ' Jun' , &
 ' Jul ' , ' Aug' , ' Sep' , ' Oct ' , ' Nov' , ' Dec' /

8.2 Character Assignment

When character variables are assigned they are filled from the left and padded with blanks if necessary. For
example, if UNI VERSI TY is a character variable of length 7 then
 UNI VERSI TY = ' UMI ST' fills UNI VERSI TY with ' UMI ST '
 UNI VERSI TY = ' Manchest er ' fills UNI VERSI TY with ' Manches'

8.3 Character Operators

The only character operator is / / (concatenation) which simply sticks two strings together; e.g.
 ' Man' / / ' chest er ' → ' Manchest er '

Fortran - 24 - David Apsley

8.4 Character Substrings

Character substrings may be extended in a similar fashion to sub-arrays; (in a sense, a character string is an
array – a vector of single characters). e.g. if CI TY=' Manchest er ' then
 CI TY(2: 5) =' anch'
 CI TY(: 3) =' Man'
 CI TY(7:) =' s t er '

8.5 Comparing and Ordering

Each computer system has a character-collating sequence that specifies the intrinsic ordering of the character
set. Two of the most common are ASCII and EBCDIC. ‘Less than’ (<) and ‘greater than’ (>) refer to the
position of the characters in this collating sequence.

The Fortran standard requires that upper-case letters A- Z and lower-case letters a- z are separately in
alphabetical order, and numerals 0- 9 are in numerical order, and that a blank space comes before both. It does
not, however, specify whether numbers come before or after letters in the collating sequence, or lower case
comes before or after upper case. Provided there is consistent case, strings can be compared on the basis of
dictionary order, but the standard gives no guidance when comparing letters with numerals or upper with lower
case.

Example. The following logical expressions are both true:
 ' Dr ' > ' Apsl ey '
 ' 1st year ' < ' 2nd year '

8.6 Intrinsic Subprograms With Character Arguments

The more common character-handling routines are given in Appendix A4. A full set is given in Hahn (1994).

Position in the Collating Sequence

CHAR(I) character in position I of the system collating sequence;
I CHAR(C) position of character C in the system collating sequence.

The system may or may not use ASCII as a collating system, but the following routines are always available:
ACHAR(I) character in position I of the ASCII collating sequence;
I ACHAR(C) position of character C in the ASCII collating sequence.

The collating sequence may be used, for example, to sort names into alphabetical order or convert between
upper and lower case, as in the following example.

Example. Since the separation of ‘b’ and ‘B’ , ‘c ’ and ‘C’ etc. in the collating sequence is the same as that
between ‘a’ and ‘A’ , the following subroutine may be used successively for each character to convert lower to
upper case.

SUBROUTI NE UC(LETTER)
 I MPLI CI T NONE

 CHARACTER (LEN=1) LETTER

 I F (LETTER >= ' a' . AND. LETTER <= ' z ') THEN
 LETTER = CHAR(I CHAR(LETTER) + I CHAR(' A') - I CHAR(' a'))
 END I F

END SUBROUTI NE UC

Fortran - 25 - David Apsley

Length of String

LEN(STRI NG) declared length of STRI NG, even if it contains trailing blanks;
TRI M(STRI NG) same as STRI NG but without any trailing blanks;
LEN_TRI M(STRI NG) length of STRI NG with any trailing blanks removed.

Justification

ADJUSTL(STRI NG) left-justified STRI NG
ADJUSTR(STRI NG) right-justified STRI NG

Finding Text Within Strings

I NDEX(STRI NG, SUBSTRI NG) position of first (i.e. leftmost) occurrence of SUBSTRI NG in STRI NG
SCAN(STRI NG, SET) position of first occurrence of any character from SET in STRI NG
VERI FY(STRI NG, SET) position of first character in STRI NG that is not in SET

Each of these functions returns 0 if no such position is found.

To search for the last (i.e. rightmost) rather than first occurrence, add a third argument . TRUE. , e.g.:

I NDEX(STRI NG, SUBSTRI NG, . TRUE.)
returns the position of the last occurrence of SUBSTRI NG in STRI NG.

Fortran - 26 - David Apsley

9. FUNCTIONS AND SUBROUTINES

See Sample Programs – Week 3

All major computing languages allow complex and/or repetitive programs to be broken down into simpler
procedures, each carrying out particular well-defined tasks, often with different values of certain parameters. In
Fortran these subprograms are called subroutines and functions. Examples of the action carried out by a single
subprogram might be:

• calculate the distance 22 yxr += of a point (x,y) from the origin;

• calculate 1.2)...1(! −= nnn for a positive integer n

9.1 Intrinsic Subprograms

Certain subprograms – intrinsic subprograms – are defined by the Fortran standard and must be provided by an
implementation’s standard libraries. For example, the statement
 Y = X * SQRT(X)
invokes an intrinsic function SQRT, with argument X, and returns a value (in this case, the square root of its
argument) which is entered in the numeric expression.

Useful mathematical intrinsic functions are listed in Appendix A4. The complete set required by the standard is
given in Hahn (1994). Particular Fortran implementations may supply additional routines; for example, Salford
Fortran includes many plotting routines and an interface (Cl ear Wi n+) to the Windows operating system.

9.2 Program Units

There are four types of program unit:
 main programs
 subroutines
 functions
 modules

Each source file may contain one or more program units and is compiled separately. (This is why one requires
a link stage after compilation.) The advantage of separating subprograms between source files is that other
programs can make use of common routines.

Main Programs

Every Fortran program must contain exactly one main program which should start with a PROGRAM
statement. This may invoke functions or subroutines which may, in turn, invoke other subprograms.

Subroutines

A subroutine is invoked by
 CALL subroutine-name (argument list)
The subroutine carries out some action according to the value of the arguments. It may or may not change the
values of these arguments.

Functions

A function is invoked simply by using its name (and argument list) in a numeric expression; e.g.
 DI STANCE = RADI US(X, Y)
Within the function’s source code its name (without arguments) is treated as a variable and should be assigned
a value, which is the value of the function on exit – see the example below. A function should be used when a

Fortran - 27 - David Apsley

single (usually numerical, but occasionally character or logical) value is to be returned. It is permissible, but
poor practice, for a function to change its arguments – a better vehicle in that case would be a subroutine.

Modules

Functions and subroutines may be internal (i.e. CONTAI Ned within and only accessible to one particular
program unit) or external (and accessible to all). In this course we focus on the latter. Related internal routines
are better gathered together in special program units called modules; their contents are then made available
collectively to other program units by the initial statement
 USE module-name

The basic forms of main program, subroutines and functions are very similar and are given below. As usual, []
denotes something optional but, in these cases, it is strongly recommended.

The first line is called the subprogram statement and defines the type of program unit, its name and its
arguments. FUNCTION subprograms must also have a type. This may be declared in the subprogram statement
or in a separate type declaration within the routine itself.

Subprograms pass control back to the calling program when they reach the END statement. Sometimes it is
required to pass control back before this. This is effected by the RETURN statement. A similar early death can
be effected in a main program by a STOP statement.

Many actions can be coded as either a function or a subroutine. For example, consider a program which

calculates distance from the origin, 2/122)(yxr += :

Main program

[PROGRAM [name]]
 USE statements
 [I MPLI CI T NONE]
 type declarations
 executable statements
END [PROGRAM [name]]

Subroutines

SUBROUTI NE name (argument-list)
 USE statements
 [I MPLI CI T NONE]
 type declarations
 executable statements
END [SUBROUTI NE [name]]

Functions

[type] FUNCTI ON name (argument-list)
 USE statements
 [I MPLI CI T NONE]
 type declarations
 executable statements
END [FUNCTI ON [name]]

(Using a function)

PROGRAM EXAMPLE
 I MPLI CI T NONE

 REAL X, Y
 REAL, EXTERNAL : : RADI US

 PRI NT * , ' I nput X, Y'
 READ * , X, Y
 PRI NT * , ' Di st ance = ' , RADI US(X, Y)

END PROGRAM EXAMPLE

! =========================

REAL FUNCTI ON RADI US(A, B)
 I MPLI CI T NONE
 REAL A, B

 RADI US = SQRT(A * * 2 + B * * 2)

END FUNCTI ON RADI US

(Using a subroutine)

PROGRAM EXAMPLE
 I MPLI CI T NONE

 REAL X, Y
 REAL RADI US
 EXTERNAL DI STANCE

 PRI NT * , ' I nput X, Y'
 READ * , X, Y
 CALL DI STANCE(X, Y, RADI US)
 PRI NT * , ' Di st ance = ' , RADI US

END PROGRAM EXAMPLE

! =========================

SUBROUTI NE DI STANCE(A, B, R)
 I MPLI CI T NONE
 REAL A, B, R

 R = SQRT(A * * 2 + B * * 2)

END SUBROUTI NE DI STANCE

Fortran - 28 - David Apsley

Note that, in the first example, the calling program must declare the type of the function RADI US amongst its
other type declarations.

 It is optional, but good practice, to identify external functions or subroutines by using either an EXTERNAL
attribute in the type statement (as in the first example) or a separate EXTERNAL statement (as in the second
example). This makes clear what external routines are being used and ensures that if the Fortran
implementation supplied an intrinsic routine of the same name then the external routine would override it.

Note that all variables in the functions or subroutines above have scope the program unit in which they are
declared; that is, they have no connection with any variables of the same name in any other program unit.

9.3 Subprogram Arguments

The arguments in the subprogram statement are called dummy arguments: they exist only for the purpose of
defining this subprogram and have no connection to other variables of the same name in other program units.
The arguments used when the subprogram is actually invoked are called the actual arguments. They may be
variables (e.g. X, Y), constants (e.g. 1. 0, 2. 0) or expressions (e.g. 3. 0+X, 2. 0/ Y), but they must be of the
same type and number as the dummy arguments. For example, the RADI US function above could not be
invoked as RADI US(X) (too few arguments) or as RADI US(1, 2) (arguments of the wrong type).

(You may wonder how it is, then, that many intrinsic subprograms can be invoked with different types of
argument. For example, in the statement
 Y = EXP(X)
X may be real or complex, scalar or array. This is achieved by a useful, but highly advanced, process known as
overloading, which is way beyond the scope of this course.)

Passing by Name/Passing by Reference

In Fortran, if the actual arguments are variables, they are passed by reference, and their values will change if
the values of the dummy arguments change in the subprogram unit. If, however, the actual arguments are either
constants or expressions, then the arguments are passed by value; i.e. the values are copied into the
subprogram’s dummy arguments.

Warning: in C or C++ all arguments are passed by value – a feature that necessitates the use of pointers.

Declaration of Intent

Because input variables passed as arguments may be changed unwittingly if the dummy arguments change
within a subprogram, or, conversely, because a particular argument is intended as output and so must be
assigned to a variable (not a constant or expression), it is good practice to declare whether dummy arguments
are intended as input or output by using the I NTENT attribute. e.g. in the above example:
 SUBROUTI NE DI STANCE(A, B, R)
 REAL, I NTENT(I N) : : A, B
 REAL, I NTENT(OUT) : : R
This signifies that dummy arguments A and B must not be changed within the subroutine and that the third
actual argument must be a variable. There is also an I NTENT(I NOUT) attribute.

9.4 The SAVE Attribute

By default, variables declared within a subprogram do not retain their values between successive calls to the
same subprogram. This behaviour can be overridden by the SAVE attribute; e.g.
 REAL, SAVE : : VALUE

Fortran - 29 - David Apsley

9.5 Array Arguments

Arrays can be passed as arguments in much the same way as scalars, except that the subprogram must know
the dimensions of the array. This can be achieved in a number of ways, the most common being:
• Fixed array size – usually for smaller arrays such as coordinate vectors; e.g.
 SUBROUTI NE GEOMETRY(X)
 REAL X(3)

• Pass the array size as an argument; e.g.
 SUBROUTI NE GEOMETRY(NDI M, X)
 REAL X(NDI M)

To avoid errors, array dummy arguments should have the same dimensions and shape as the actual arguments.
Dummy arguments that are arrays must not have the ALLOCATABLE attribute. Their size must already have
been declared or allocated in the invoking program unit.

9.6 Character Arguments

Dummy arguments of character type behave in a similar manner to arrays – their length must be made known
to the subprogram. However, a character dummy argument may always be declared with assumed length
(determined by the length of the actual argument); e.g.
 CALL EXAMPLE(' Davi d')
 ...
 SUBROUTI NE EXAMPLE(PERSON)
 CHARACTER (LEN=*) PERSON

There are a large number of intrinsic character-handling routines (see Hahn, 1994). Some of the more useful
ones are given in Appendix A4.

9.7 Modules

See Sample Programs – Week 4

Modules are used to:
• make a large number of variables accessible to several program units without the need for a large and

unwieldy argument list;
• collect together related internal subprograms.

A module has the form:
MODULE module-name
 type declarations
 [CONTAI NS
 internal subprograms]
END [MODULE [module-name]]

Each module’s source code should be placed in its own . f 95 file and compiled before any program which
USEs it. Compilation results in a special file with the same root name and filename extension . mod . It is then
made accessible to any main program or subprogram by the statement
 USE module-name
All variables, executable code and internal subprograms in the module are then made available to any program
unit which USEs this module.

A particular advantage is that changes during program development to the set of global variables used need
only be made in one source file rather than in numerous program units and argument lists. Modules, which
were introduced with Fortran 90, make the I NCLUDE statements and COMMON-block features of earlier
versions of Fortran redundant.

Fortran - 30 - David Apsley

10. ADVANCED INPUT/OUTPUT

See Sample Programs – Week 4

Hitherto we have used list-directed input/output (i/o) with the keyboard and screen:
 READ * , list
 PRI NT * , list
This section describes how to:
• use formatted output to control the layout of results;
• read from and write to files.

10.1 READ and WRITE

General i/o is performed by the statements
 READ (unit, format) list
 WRI TE (unit, format) list

unit can be one of:
• an asterisk * , meaning the standard i/o device (usually the keyboard/screen);
• a unit number in the range 1-99 which has been attached (see below) to a particular i/o device;
• a character variable (internal file) – this is the simplest way of interconverting numbers and strings.

format can be one of:
• an asterisk * , meaning list-directed i/o;
• a label associated with a FORMAT statement containing a format specification;
• a character constant or expression evaluating to a format specification.

list is a set of variables or expressions to be input or output.

10.2 Input/Output With Files

Before an external file can be read from or written to, it must be associated with a unit number by the OPEN
statement. e.g.
 OPEN (10, FI LE = ' i nput . dat ')
One can then read from the file using
 READ (10, ...) ...
or write to the file using
 WRI TE (10, ...) ...

Although units are automatically disconnected at program end it is good practice (and it frees the unit number
for re-use) if it is explicitly closed when no longer needed. For the above example, this means:
 CLOSE (10)

In general the unit number (10 in the above example) may be any number in the range 1-99. Historically,
however, 5 and 6 have been preconnected to the standard input and standard output devices, respectively.

The example above shows OPEN used to attach a file for sequential (i.e. beginning-to-end), formatted (i.e.
human-readable) access. This is the default and is all we shall have time to cover in this course. However,
Fortran can be far more flexible – see for example, Hahn (1994). The general form of the OPEN statement for
reading or writing a non-temporary file is
 OPEN ([UNI T =] unit, FI LE = file[, specifiers])
There may be additional specifiers which dictate the type of access. These include:
• ACCESS = ' SEQUENTI AL' (the default) or ' DI RECT'
• FORM = ' FORMATTED' (the default) or ' UNFORMATTED'
• STATUS = ' UNKNOWN' (the default), ' OLD' , ' NEW' or ' REPLACE'
• ERR = label

Fortran - 31 - David Apsley

For example,
 OPEN (12, FI LE = ' mydat a. t xt ' , ACCESS = ' SEQUENTI AL' , STATUS = ' OLD' , ERR = 999)
will branch to the statement with label 999 if file mydat a. t xt isn't found.

The general form of the CLOSE statement is
 CLOSE ([UNI T =] unit[, STATUS = status])
where status may be either ' KEEP' (the default) or ' DELETE' .

10.3 Formatted Output

Example. The following code fragment indicates how I , F and E edit specifiers display numbers in integer,
fixed-point and floating-point formats. The layout is determined by the FORMAT statement at label 100.

 WRI TE (* , 100) 55, 55. 0, 55. 0
 100 FORMAT (1X, ' I , F and E f or mat : ' , I 3, 1X, F5. 2, 1X, E8. 2)

This outputs (to the screen) the line
 I , F and E f or mat s: 55 55. 00 0. 55E+02

Terminology

A record is an individual line of input/output.
A format specification describes how data is laid out in (one or more) records.
A label is a number in the range 1- 99999 preceding a statement on the same line. The commonest uses are in

conjunction with FORMAT statements and to indicate where control should pass following an i/o error.

Edit Descriptors

A format specification consists of a series of edit descriptors (e.g. I 4, F7. 3) separated by commas and
enclosed by brackets. The commonest edit descriptors are:
 I w integer in a field of width w;
 Fw.d real, fixed-point format, in a field of width w with d decimal places;
 Ew.d real, floating-point (exponential) format in a field of width w with d decimal places;
 nPEw.d floating point format as above with n significant figures in front of the decimal point;
 Lw logical value (T or F) in a field of width w;
 Aw character string in a field of width w;
 A character string of length determined by the output list;
 ' text' a character string actually placed in the format specification;
 nX n spaces
 Tn move to position n of the current record;
 / start a new record;
This is only a fraction of the available edit descriptors – see Hahn (1994).

For numerical output, if the required character representation is less than the specified width then it will be
right-justified in the field. If the required number of characters exceeds the specified width then the field will
be filled with asterisks. For example, an attempt to write 999 with edit descriptor I 2 will result in * * .

The format specifier will be used repeatedly until the output list is exhausted. Each use will start a new record.
For example,
 WRI TE (* , ' (1X, I 2, 1X, I 2, 1X, I 2) ') (I , I = 1, 5)
will produce the following lines of output:
 1 2 3
 4 5
If the whole format specifier isn’ t required (as in the last line of the above example) that doesn’ t matter: the
rest is simply ignored.

Fortran - 32 - David Apsley

Repeat Counts

Format specifications can be simplified by collecting repeated sequences together in brackets with a repeat
factor. For example, the above code example could also be written
 WRI TE (* , ' (3(1X, I 2)) ') (I , I = 1, 5)

Alternative Formatting Methods

The following are all equivalent means of specifying the same output format.

WRI TE (* , 150) X
150 FORMAT (1X, F5. 2)

WRI TE (* , ' (1X, F5. 2) ') X

CHARACTER (LEN=*) , C = ' (1X, F5. 2) '
WRI TE (* , C) X

Historical Baggage: Carriage Control

It is recommended that the first character of an output record be a blank. This is best achieved by making the
first edit specifier either 1X (one blank space) or T2 (start at the second character of the record). In the earliest
versions of Fortran the first character effected line control on a line printer. A blank meant ‘start a new record’ .
Although such carriage control is long gone, some i/o devices may still ignore the first character of a record.

10.4 The READ Statement

The general form of the READ statement is
 READ (unit, format[, specifiers])
unit and format are as for the corresponding WRI TE statement. However, format is seldom anything other than
* (i.e. list-directed input) with input data separated by blank spaces.

Some useful specifiers are:
 I OSTAT = integer-variable assigns integer-variable with a number indicating status
 ERR = label jump to label on an error (e.g. missing data or data of the wrong type);
 END = label jump to label when the end-of-file marker is reached.
IOSTAT returns zero if the read is successful, different negative integers for end-of-file (EOF) or end-of-
record (EOR), and positive integers for other errors. (Salford Fortran: –1 means EOF and –2 means EOR.)

10.5 File Positioning

Non-Advancing Output

Usually, each READ or WRITE statement will conclude with a carriage return/line feed. This can be prevented
with an ADVANCE = ' NO' specifier; e.g.
 WRI TE (* , * , ADVANCE = ' NO') ' Ent er a number : '
 READ * , I

Repositioning Input Files

 REWI ND unit repositions the file attached to unit at the first record.
 BACKSPACE unit repositions the file attached to unit at the previous record.
Obviously, neither will work if unit is attached to the keyboard!

Fortran - 33 - David Apsley

APPENDICES

A1. Order of Statements in a Program Unit

If a program unit contains no internal subprograms then the structure of a program unit is as follows.

PROGRAM, FUNCTI ON, SUBROUTI NE or MODULE statement
USE statements
I MPLI CI T NONE statement

PARAMETER and
DATA statements

type declarations

FORMAT
statements

executable statements

END statement

Where internal subprograms are to be used, a more general form would look like:

PROGRAM, FUNCTI ON, SUBROUTI NE or MODULE statement
USE statements
I MPLI CI T NONE statement

PARAMETER and
DATA statements

type declarations

FORMAT
statements

executable statements

CONTAI NS

internal subprograms

END statement

Fortran - 34 - David Apsley

A2. Fortran Statements

The following list is of the more common statements and is not exhaustive. A more complete list may be found
in, e.g., Hahn (1994). To dissuade you from using them, the table does not include elements of earlier versions
of Fortran – e.g. COMMON blocks, DOUBLE PRECI SI ON real type, I NCLUDE statements, CONTI NUE and
(the truly awful!) GOTO – whose functionality has been replaced by better elements of Fortran 90/95.

ALLOCATE Allocates dynamic storage.
BACKSPACE Positions a file before the preceding record.
CALL Invokes a subroutine.
CASE Allows a selection of options.
CHARACTER Declares character data type.
CLOSE Disconnects a file from a unit.
COMPLEX Declares complex data type.
CONTAI NS Indicates presence of internal subprograms.
DATA Used to initialise variables at compile time.
DEALLOCATE Releases dynamic storage.
DI MENSI ON Specifies the size of an array.
DO Start of a repeat block.
DO WHI LE Start of a block to be repeated while some condition is true.
ELSE, ELSE I F, ELSE WHERE Conditional transfer of control.
END Final statement in a program unit or subprogram.
END DO, END I F, END SELECT End of relevant construct.
EQUI VALENCE Allows two variables to share the same storage.
EXI T Allows exit from within a DO construct.
EXTERNAL Specifies that a name is that of an external procedure.
FORMAT Specifies format for input or output.
FUNCTI ON Names a function subprogram.
I F Conditional transfer of control.
I MPLI CI T NONE Suspends implicit typing (by first letter).
I NTEGER Declares integer type.
LOGI CAL Declares logical type.
MODULE Names a module.
OPEN Connects a file to an input/output unit.
PRI NT Send output to the standard output device.
PROGRAM Names a program.
READ Transfer data from input device.
REAL Declares real type.
RETURN Returns control from a subprogram before hitting the END statement.
REWI ND Repositions a sequential input file at its first record.
SELECT CASE Transfer of control depending on the value of some expression.
STOP Stops a program before reaching the END statement.
SUBROUTI NE Names a subroutine.
TYPE Defines a derived type.
USE Enables access to entities in a module.
WHERE I F-like construct for array elements.
WRI TE Sends output to a specified unit.

Fortran - 35 - David Apsley

A3. Type Declarations

Type statements:
 I NTEGER
 REAL
 COMPLEX
 LOGI CAL
 CHARACTER
 TYPE (user-defined, derived types)

The following attributes may be specified.
 ALLOCATABLE
 DI MENSI ON
 EXTERNAL
 I NTENT
 I NTRI NSI C
 OPTI ONAL
 PARAMETER
 POI NTER
 PRI VATE
 PUBLI C
 SAVE
 TARGET
Variables may also have a declared KI ND.

A4. Intrinsic Routines

A comprehensive list can be found in Hahn, 1994.

Mathematical Functions
(Arguments X, Y etc. can be real or complex, scalar or array unless specified otherwise)

COS(X) , SI N(X) , TAN(X) – trigonometric functions (arguments are in radians)
ACOS(X) , ASI N(X) , ATAN(X) – inverse trigonometric functions
ATAN2(Y, X) - inverse tangent of Y/ X in the range -π to π (real arguments)
COSH(X) , SI NH(X) , TANH(X) – hyperbolic functions
EXP(X) , LOG(X) , LOG10(X) – exponential and logarithmic functions
SQRT(X) – square root
ABS(X) – absolute value (integer, real or complex)

 MAX(X1, X2, ...) , MI N(X1, X2, ...) – maximum and minimum (integer or real)
 MODULO(X, Y) – X modulo Y (integer or real)
 MOD(X, Y) – remainder when X is divided by Y

Type Conversions
 I NT(X) – converts real to integer type, truncating towards zero
 NI NT(X) – nearest integer
 CEI LI NG(X) , FLOOR(X) – nearest integer greater than or equal, less than or equal
 REAL(X) – convert to real
 CMPLX(X) or CMPLX(X, Y) – real to complex
 CONJG(Z) – complex conjugate (complex Z)
 AI MAG(Z) – imaginary part (complex Z)
 SI GN(X, Y) – absolute value of X times sign of Y

Character-Handling Routines

CHAR(I) – character in position I of the system collating sequence;
I CHAR(C) – position of character C in the system collating sequence.
ACHAR(I) – character in position I of the ASCII collating sequence;
I ACHAR(C) – position of character C in the ASCII collating sequence.

Fortran - 36 - David Apsley

LEN(STRI NG) – declared length of STRI NG, even if it contains trailing blanks;
TRI M(STRI NG) – same as STRI NG but without any trailing blanks;
LEN_TRI M(STRI NG) – length of STRI NG with any trailing blanks removed.

ADJUSTL(STRI NG) – left-justified STRI NG
ADJUSTR(STRI NG) – right-justified STRI NG

I NDEX(STRI NG, SUBSTRI NG) – position of first occurrence of SUBSTRI NG in STRI NG
SCAN(STRI NG, SET) – position of first occurrence of any character from SET in STRI NG
VERI FY(STRI NG, SET) – position of first character in STRI NG that is not in SET

Array Functions
 DOT_PRODUCT(vector_A, vector_B) – scalar product (integer or real)
 MATMUL(matrix_A, matrix_B) – matrix multiplication (integer or real)
 TRANSPOSE(matrix) – transpose of a 2×2 matrix
 MAXVAL(arra y) , MI NVAL(array) – maximum and minimum values (integer or real)
 PRODUCT(arra y) – product of values (integer, real or complex)
 SUM(arra y) – sum of values (integer, real or complex)

A5. Operators

Numeric Intrinsic Operators

Operator Action Precedence (1 is highest)
* * Exponentiation 1
* Multiplication 2
/ Division 2
+ Addition or unary plus 3
- Subtraction or unary minus 3

Relational Operators

Operator Operation
< or . LT. less than
<= or . LE. less than or equal
== or . EQ. equal
/ = or . NE. not equal
> or . GT. greater than
>= or . GE. greater than or equal

Logical Operators

Operator Action Precedence (1 is highest)
. NOT. logical negation 1
. AND. logical intersection 2
. OR. logical union 3

. EQV. logical equivalence 4
. NEQV. logical non-equivalence 4

Character Operators

/ / concatenation

