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Tight-binding description of graphene
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We investigate the tight-binding approximation for the dispersion ofthand 7* electronic bands in
graphene and carbon nanotubes. The nearest-neighbor tight-binding approximation withyg fipgtles only
to a very limited range of wave vectors. We derive an analytic expression for the tight-binding dispersion
including up to third-nearest neighbors. Interaction with more distant neighbors qualitatively improves the
tight-binding picture, as we show for graphene and three selected carbon nanotubes.
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The band structure of carbon nanotubes is widely modef approximation we start from the most general form of the
eled by a zone-folding approximation of the graphenand  secular equation, the tight-binding Hamiltoni&h and the
7 electronic states as obtained from a tight-bindingoverlap matrixS*

Hamiltonian! = The large benefit of this method is the very

simple formula for the nanotube electronic bands. While the | Haa(k) =E(K)Saa(k) - Hag(k) ~E(K)Sap(k)|
tight-binding picture provides qualitative insight into the Hig(k) —E(K)Sig(k)  Haa(k)—E(K)Saa(k)|
one-dimensional nanotube band structure, it is more and o

more being used for quantitative comparisons as well. Fowhere E(k) are the electronic eigenvalues. We used the
instance, attempts to assign diameters and chiralities of cafduivalence of theA and B carbon atoms in the graphene
bon nanotubes based on optical absorption and Raman dasigeet. The solution to Eql) is

rely heavily on the assumed transition energieDiffer-

ences between the zone-folding, tight-bindimeprbital de- E(k)*= ,
scription and experiment, as observed, e.g., in scanning tun- 2E;

neling measurements, are usually ascribed to “curvature @
effects.” However, the commonr-orbital tight-binding ap-  with

proach for the nanotube band structure involves two approxi-

mations:(i) zone folding, which neglects the curvature of the Eo=HaaSaa, E1=SasHag+HasSAs

wall; and (ii) the tight-binding approximation to the

graphene bands including only first-neighbor interaction. E2=H§A—HABH’;\B E3=S,§A— SasSag - 3
Whereas the first point received some attention in the

literature’~° the second approximation is usually assumed to To outline the procedure of setting up the Hamiltonian
be sufficient. and overlap matrix let us briefly derive the nearest-neighbor

In this paper we compare the tight-binding approXimaﬁontight-binding dispersiotifor a more co_mplete description see
of the graphener orbitals to first-principles calculations. We Ref. 4. For an atom, as shown in Fig. 1 the nearest neigh-
show that the nearest-neighbor tight-binding Hamiltonian
does not accurately reproduce theand7w* graphene bands
over a sufficiently large range of the Brillouin zone. We de-
rive an improved tight-binding electronic dispersion by in-
cluding up to third-nearest-neighbor interaction and overlap.
The formula for the electronic states we present may readily
be used, e.g., in combination with zone folding to obtain the
band structure of nanotubes.

The first tight-binding description of graphene was given
by Wallace in 1947° He considered nearest- and next-
nearest-neighbor interaction for the graphen®erbitals, but
neglected the overlap between wave functions centered at
different atoms. The other—nowadays better known—tight- FiG. 1. Graphene hexagonal lattice. and a, are the unit-cell
binding approximation was nicely described by Sait@l®  vectors of graphene with a lattice constant2.461 A. The unit
It considers the nonfinite overlap between the basis funceell contains two carbon ator#sand B belonging to the two sub-
tions, but includes only interactions between nearest neighattices. An atomA, has three nearest neighbdBs;, six next-
bors within the graphene sheet. To study the different levelsearest neighbora,; , and three second-nearest neighlddss.

0, (1)

—(—2Eo+E )= (—2Ey+E;)?>—4E,E,

0 0 0
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bors areBy;, By, andBj3, all of which belong to the other — ab initio ]
graphene sublattice; thus for nearest-neighbor interaction ~ N\~ tight binding
) 2 J
1 ik(Ra/ —Rp) N 22T
HAA:N > > KRR (r—Rp)[H| @a(r—Ra)) 5
Ra Rar Lﬁ =
1 SE 1
:NE <(PA(r_RA)|H|<PA(r_RA)>:82pv (4) S —
Ra % 0
whereN is the number of unit cells in the cryst&, andR,, 5 2tb)
are the positions of atord and A’, respectively, andp, 4
denote thep, atomic wave functions forming the basis for M r K M
the crystal Bloch functions. The overlap matrix element Wave vector

Saa=1, since we assume the atomic wave functions to be £ 2 Ap initio and nearest-neighbor tight-binding dispersions
normalized [(@a(r—Ra)[@a(r—Ra))=1]. To find Hag  of graphene(a) The convergeab initio calculation of the graphene
within the nearest-neighbor approximation, we simply sumg; and #* electronic bands is shown by the full lines. The dashed
over the three nearest neighbors shown in Fig. 1: lines represent the tight-binding dispersion of ). with s,=0
1 and yo=—2.7 eV. (b) Difference AE between theab initio and
HAB:N ; RE eik(RB*RA)(qvA(r—RA)|H|ch(r— Rs)) tight-binding band structures.
A B
- - - The nearest-neighbor tight-binding description of
= yo(e it el ellfug) graphene was originglly deve%ped to s?udy the Igw-energy
with properties of graphite, i.e., the focus was not on the in-plane
dispersion, but rather on the coupling between the graphene
Yo={(@a(r—Ra)|H|pg(r—Ra—Ry)) (i=1,2,3), sheets. As the interest rose in nanotubes, [By.(with s,
=0) was adopted for the electronic band structure through-
out the entire Brillouin zone. In Fig.(d we show anab
initio calculation of the graphene and#* bands(full lines)
and the tight-binding dispersiofEq. (6)], neglecting the
with overlap matrix(dashed linesand in Fig. Zb) the difference
between the two calculations. An interaction parametgr
So=(@a(r—Ra)|[@s(r—Ra—Ry)) (i=1,2,3), =—2.7 eV was used, a typical value which best reproduced
the slopes of the valence and conduction bands &t theint
from the first-principles calculations. Owab initio calcula-
tions were performed with thesiesta codé!!? using
pseudopotentiald and the Perdew-Zunger parametrizatfbn

the same treatment yields the overlap matrix element

Sap=So(eKR1L+ e KRiz gikR1)

whereRy; is the vector pointing from atorA, to atomsB;
in Fig. 1. Now we insert the Hamiltonian and overlap matrix
elements into Eqg.3) and(2). We define the function

f(k)=3+u(k) of the local-density approximation. An energy cutoff of 270
Ry was taken for real space integrations and &40x 1
=3+2 cok-a;+2 cosk-a,+2 cosk- (a; —ay) Monkhorst-Pack gritf in reciprocal space. The valence elec-

trons were expanded in a basis of numerical pseudoatomic
=3+2 cos 2rak, +2 cos 2rak, +2 cos 2ra(ki—Kz),  orhitals’®17 The converged band structure in Fig. 2 was ob-
(5) tained with a doubles singly polarized basis set. The exten-

) sion of thes orbitals was 5.12 a.&2.71 A and of thep and
wherek;=k-&/2m are the components of a wave veckdn  { orbjtals 6.25 a.u=3.31 A° A further increase of the cutoff
units of the reciprocal graphene lattice vectioyandky, and  radii affected the electronic energies by less than 5 meV. We
obtain the well-known resit obtained a graphene lattice constant 2.468 A; the binding

energy and elastic constants agreed well with plane wave

e2p+ YoV (k) calculations and experimettFor comparison we calculated

E=(k)= 175, /_f(k) ' 6) the band structure of graphite and found good agreement
with plane-wave pseudopotential calculatidfhs
The three parametets,,, o, ands, are found by fitting In general the agreement between first-principles and the

experimental or first-principles data. The most common practight-binding band structure is rather poor; good agreement
tice is to adjust the tight-binding dispersion to a correct deds only obtained very close to tH€ point of Brillouin zone,
scription of thew bands at theK point. This yieldse,, i.e., for the wave vectors used to determipg Even in the

=0 eV, yo between—2.5 and—3 eV, andsy below 0.1. range of the visible transitions the electronic energies deviate
Since sy is small, it is usually neglected. The nearest-by some 100 meV.

neighbor Hamiltonian is able to produce bands which are not The benefit of thesiEsTA method for the present discus-
symmetric with respect to the Fermi level, but only if the sion is that the self-consistent Hamiltonian is of a tight-
overlaps, is nonzero. binding type't'?We can thus directly compare the level of

035412-2



TIGHT-BINDING DESCRIPTION OF GRAPHENE PHYSICAL REVIEW B6, 035412 (2002

o 1072 singlet, rel18A e~ b)single-C, r=1.86 AF~_ ) double-L, polarized] 10
L 5F 1 1 15
g 5 . ;
| 1 1 iy
> 04 F o100 T T J04
Y SN N oo Pt SR R-C 1y
r K Mr K Mr T
Wave vector

FIG. 3. (a) Top: first-principles band structure with a sindlebasis set and.=1.18 A. The nearest-neighbor tight-binding band
structure[Eq. (6)] with yo=—1.86 eV ands,=0.02 coincides with the first-principles result. Bottom: differerdeé between the first-
principles and nearest-neighbor tight-binding band structui®sTop, full lines: first-principles result with a singlg-basis set and,
=1.86 A; dotted lines: nearest-neighbor tight-binding band stru¢fEme(6)] with y,=—2.84 eV ands,=0.070; the third-nearest neigh-
bor tight-binding band structure coincides with the first-principles result shown by the full lings-¢-0.36 eV, yo=—2.78 eV, v,
=-0.12 eV, y,=—-0.068 eV,s,=0.106,s,=0.001, ands,=0.003). Bottom, dotted line: difference between the first-principles and the
nearest-neighbor tight-binding band structure shown in the top panel. For the third-nearest neighbor tight-binding approximation the differ-
ences are not seen on the chosen energy s@ldop: convergedab initio (full lines) and third-neighbor tight-bindingdashed band
structures; see Table | for the tight-binding parametétd’KM). Bottom: difference between the two band structures above.

approximation(basis set completeness and extensionan  the Brillouin zone. The interaction with the more distant
ab initio calculation to the empirical tight-binding Hamil- neighbors can thus no longer be neglected.

tonian. For the first-principles band structure in Fi¢p)2ve Wallace in his tight-binding study already considered
used a basis set théi) contained two independent radial second-nearest-neighbor interaction, although at the cost of
functions to describe thp orbitals, and included a shell of neglecting the overlap matriX. An extension of the tight-
polarizingd orbitals (double¢ plus polarization basis s&;, binding interaction radius, however, has to include the sec-
and(ii) had a radial cutoff of 3.31 A, i.e., atoms as distant asond as well as the third-nearest neighbors, since the distance
6.62 A have a nonfinite overlap and interacti@orrespond-  |R,|=2.461 A is very close toRy|=2.842 A. To find the

ing to the ninth distant neighbprTo mimic the empirical third-nearest-neighbor tight-binding dispersion we proceed
approximation by the first-principles calculation we calcu-exactly as outlined above. The sum oWt in Hay, and
lated the band structure for a simple ba@mgle{) witha  Sya (Hag and S,g) now additionally includeRa =Ry
cutoff radius of 1.18 A, which includes only the interaction + R,; (Rg;=Ra+ R3;). TheE;’s in Eq. (3) are then given by
with the nearest neighboksee Fig. 1 The result is shown

in Fig. 3@). The differences between the singlerearest- Eo=[e2pt+ y1u(k)J[1+s.u(k)], (7)
neighbor band structure and the converged result in Faj. 2

are obvious: The separation of the valence and conduction E1=2S0%0f(K)+(Sov2+8270)9(K) + 287 72f(2K), (8)

band is reduced, most strongly at thepoint; also the asym-

metry of the bonding and antibonding band is much smaller. Ep=[e2p+ y1u(k)]*~ V6! (K) = v0729(k) — ¥3f(2K),

As expected, the dispersion in Fig@Bis perfectly repro- ©
duced by the nearest-neighbor tight-binding formula in Eq. _ 2 2 2

(6), since theab initio calculation with that basis set takes Es=[1+s3u(k)]“—sf (k) —sps29(k) —s5f(2k), (10)
precisely that form. The tight-binding parameters we obtain _ _ .
are yo=—1.86 eV ands,=0.02. The differences between 9(k)=2u(k) +u(2ky ~kz ks = 2k). 1
the ab initio calculation and Eq(6) with these parameters is f(k) and u(k) were defined in Eq(5). y, and y, are the

smaller than 10° eV, as shown in the bottom of Fig(8, interaction energies with the second and third neighbors, and
and is due to numerical inaccuracies in #ieinitio calcula-  s; ands, are the corresponding overlaps. Insertifgto E;
tion. into Eq. (2) yields the tight-binding electronic dispersion in

We now increased the extension of the basis wave functhe third-nearest-neighbor approximation. We thus included
tion tor,=1.86 A, while still using a simple basis set and the same number of neighbors for the first-principles and
obtained the band structure in FigbB(full lines, top panel  tight-binding Hamiltonians. With the tight-binding param-
At the I point the agreement between this calculation anceters as given in the caption of Fig. 3 the agreement between
the converged result is already quite satisfact@ry6); theM  the electronic energies is again very good, better than
point energy of the conduction band is, however, overestid0 2 eV. This difference is now partially due to numerical
mated by 55%. The best fit of the tight-binding expressioninaccuracies of thab initio calculation, and to difficulties of
[Eq. (6)] to the first-principles band structure is shown by thethe fitting procedure when the number of parameters is large.
dotted lines in Fig. @). The dotted line in the bottom panel  The third-nearest-neighbor tight-binding approximation is
represents the difference between #feinitio and empirical  not yet sufficient to correctly describe the convergdudini-
results, which is on the order of 100 meV for most points oftio calculations, since they needed a larger basis set and a
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FIG. 4. Band structure of 0,10 armchair nanotubga) Ab FIG. 5. Band structure of €.9,0 zigzag nanotubga) Ab initio
initio calculation. (b) Nearest-neighbor tight-binding calculation calculation.(b) Nearest-neighbor tight-binding calculation wigh
with yo=—2.7 eV.(c) Third-nearest-neighbor tight-binding calcu- =—-2.7 eV. (c) Third-nearest-neighbor tight-binding calculation

lation with parameters obtained from a fit to the optical energywith parameters obtained from a fit to the optical energy range; see
range; see Table I. The dashed lines deraiteinitio calculated Table I. The dashed lines denatb initio calculated energies of the
energies of the singularities in the density of states. singularities in the density of states.

higher cutoff radius. Nevertheless, we can quite accuratelywhere n is the highest common divisor af; andn,, R
reproduce the first-principles results by considering only=3 if (n;—n,)/3n is an integer andR=1 otherwise,q
third-nearest neighbors. FigurgcB again shows the con- =2(nZ+n;n,+n3)/nR, andm is an integer running from
vergedab initio 77 band structuretop panel, full linegto-  —q/2 to g/2—1. The one-dimensional nanotube Brillouin
gether with the third-neighbor tight-binding approximation zone is given by the wave vectors running frag(m) to
(dashed lings The y;'s ands;’s used for the tight-binding  k.(m)+k, (—qg/2<=m=gq/2—1), with

dispersion are listed in Table MI'"KM); at this point they

should be considered fitting parameters rather than as having n, n,

strict physical meanings. The difference betweenahéni- k= — —ki+ —k;. (13
tio and the empirical band structure is better than 250 meV d 9

along the high-symmetry lines, also see Figc)3bottom  Ag a first example we consider (40,10 armchair tube. In
panel. For the optical rangéransition energiesc4 eV) we  thjs tube curvature, effects are negligible since the diameter
found an even better agreemedt meV), with a slightly  4=1 .44 nm and the chiral angfe =30° are largé® Figure
different set of parameters as given in Table . _ 4(a) shows theab initio band structure of thé10,10 nano-

The third-neighbor approximation does not only yield ayjpe, The nearest-neighbor tight-binding dispersion in Fig.
better fitting result along a given high-symmetry line than theg(p) correctly predicts the first optical transition energy,
nearest-neighbor approximation. Instead a set of tightyhereas the higher transition energies are strongly overesti-
binding parameters found, e.g., from the optical energymated. The states at the center and the boundary of the Bril-
range, gives reliable energies at low-symmets well. To  |oyin zone are incorrectly described by this simple approxi-
demonstrate this we show how the zone-folding band strucmation. In contrast, the agreement betweenahénitio and
ture of carbon nanotubes improves by including more distanhe third-nearest-neighbor tight binding is excellent. The
neighbors in the tight-binding Hamiltonian. shape of the electronic dispersion as well as the absolute

To obtain the band structure of a nanotube within zon€nergies are very well described by the improved tight-

of the tube. Thd" point of an 1;,n,) nanotube is in terms iy the optical absorption probability is at an energy of

of the graphene reciprocal lattice vectors giveri'by 2.73 eV (453 nm both from theab initio and third-order
tight-binding band structures, whereas the nearest-neighbor
ke(m)=m 2n;+ nzk n 2ny+ nll\ (12 approximation perdicted a transition energy in the far UV
gnR 1" qgqnR 2)’ (3.4 eV).

TABLE I. Tight-binding parametersMI’KM: fit to the ab initio energies for allk along the high-
symmetry lines. optical: only thke yielding optical transitions with an energy4 eV were included in the
fit. AEax (AEmay Opt) is the maximal deviation of the tight-binding from thab-initio results for allk
(only the optical range

€2p (eV) 1y (eV) So 1 (€V) S1 2 (eV) Sz AEpax (8V) AEpy0pt. (eV)

MT'KM —-0.28 —-2.97 0.073 —0.073 0.018 -0.33 0.026 0.25 0.25
optical —-203 -—-279 030 -0.68 0.046 -0.30 0.039 1.37 0.004
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nearest-neighbor tight-binding band structure, and Fg) 6
the third-nearest neighbor tight-binding result. While the va-
lence bands are quite similar in the three approximations, the
conduction bands are only poorly described by the nearest-
neighbor approximation. The better agreement for the va-
lence band structure can be traced back to Fib), 2vhere

) the difference between tteb initio calculated band structure
e for graphene and the nearest-neighbor tight-binding results is
! smaller for the valence band than for the conduction bands.
3 As for the (19,0 tube, the valence bands of tKE2,3 tube

are shifted to lower energies in ttad initio calculation by
curvature effects. Nevertheless, the third-neighbor tight-

FIG. 6. Band structure of 62,3 chiral nanotube(a) Ab initio binding .band structure combined with zone folding in Fig.
calculation.(b) Nearest-neighbor tight-binding calculation wigy ~ 6(C), Which takes only some seconds, already very well de-
—=—2.7 eV. (¢) Third-nearest-neighbor tight-binding calculation SCribes the first-principles results.
with parameters obtained from a fit to the optical energy range; see In conclusion, we investigated the tight-binding approxi-
Table I. The dashed lines denatb initio calculated energies of the mation for thew and 7* bands of graphene. The nearest-
singularities in the density of states. neighbor tight-binding dispersion predicts the electronic en-
ergies correctly only for a very limited range of wave
vectors. If up to third-nearest neighbors are included, the
tight-binding approximation quite accurately describes first-
principles results over the entire Brillouin zone. The agree-
ment is not restricted to high-symmetry lines, as we demon-
8trated by combining the tight-binding approximation with a
zone-folding approach to calculate the electronic band struc-
ture of two achiral and a chiral nanotube.

Energy (eV)
- =]
(=]

Wave vector k,

In Figs. 5a)—5(c) calculations similar to those for the
(10,10 tube are shown for th€19,0 zigzag tube with a
diameterd=1.50 nm. Again, the agreement between dhe
initio and third-neighbor tight-binding results is much better
than for the nearest-neighbor approximation. As we showe
in Ref. 8, the remaining discrepancies between Fig®.dnd
5(c) are due to ther-7r hybridization of the curved nanotube
wall. Curvature effects are, in general, most pronounced in  We acknowledge the Ministerio de @igia y Technolog
zigzag nanotubes. Finally, we consider the chifa,3 (Spain and the DAAD(Germany for travelling support. P.
nanotube =1.30 nmP®=10.9°). This is an example of a O. was supported by Fundacid®Ramm Areces, EU Project
metallic tube withR=3, i.e., the valence and conduction No. SATURN IST-1999-10593, and Spain-DGI Project No.
bands cross at2/3a in the nanotube Brillouin zone. Fig- BFM2000-1312-002-01. J. M. was supported by the Deut-
ure Ga) shows theab initio calculations, Fig. @) the next-  sche Forschungsgemeinschaft under Grant No. Th 662/8-1.
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