
Finding extreme eigenvalues of quantum spin chains

The physics explored in this project is the way in which the magnetization of a one dimensional

Ising model in its ground state is destroyed by quantum fluctuations. The model is,
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where σz
i , σx

i are Pauli matrices. The strength of the quantum fluctuations is tuned by λ, while the

ground state ferromagnetic order is produced by J > 0. The ratio λ/J is the important parameter

and we can study the problem as a function of chain length L and this ratio. We consider spin half

systems on chains of length L with periodic boundary conditions.

The Hilbert space of this many body problem is of dimension 2L, so the many body problem

is fully described by the 2L × 2L Hamiltonian matrix. The objective is to construct this matrix

and store it in sparse matrix form, and then find the ground state and first excited state of the

Hamiltonian using sparse matrix algorithms.

The states of the system can be labelled by an integer s which runs from 0 to 2L − 1. If we find

the binary form of this integer and then change each zero in this binary form to −1, then each

integer uniquely generates a spin configuration and we systematically run over the basis vectors

of the Hilbert space. Using this ordering of the basis set we are ready to set up the Hamiltonian

matrix. Since the matrix is sparse it is very inefficient to explore each matrix element < s|Ŝ|s′ >

as most of these are zero. Instead for each state |s >, we can apply the Hamiltonian Ĥ to generate

a set of states that couple to s. This enables us to fill out each row of the Hamiltonian matrix in

a systematic and efficient manner. It is useful to store the Hamiltonian matrix in the following

way: Define two linear arrays, values(NV) and locations(NV) to store the finite values of the

Hamiltonian and the columns at which these values lie. Define two more “pointer” arrays start(L)

and number(L) to indicate the position in these arrays where the values and locations of the non-

zero elements of the ith row start and end.

Now write a subroutine to take a matrix product using this matrix in sparse storage form. This

is the rate limiting step of the algorithm. The simplest procedure to find the lowest eigenvalues

of a large matrix is the iterative power method where we choose a random initial vector of length

2L and simply act on it with the Hamiltonian. Other methods based on sparse matrix methods,
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such as the Lancsos method are in general called Krylov subspace methods and form the basis

of the area of sparse matrix linear algebra. If we only want the ground state the iterative power

method projects out the state with the highest magnitude eigenvalue. We want the ground state

and if the largest eigenvalue has magnitude greater than the ground state, we simply shift the

Hamiltonian matrix by a value −ashi f t times the identity matrix and then use the iterative power

method. Once the highest magnitude eigenvalue is found we simply add ashi f t to find the true

ground state eigenvalue. The magnetization can be calculated from the ground state eigenvector

and this can be plotted as a function of the parameter λ/J.

To find the first excited state and other higher eigenvalues the procedure is essentially the

same, so if we want the first ”m” lowest eigenvalues, we start with ”m” initial vectors and make

them orthonormal. Then we apply the matrix and again reorthogonalize them. This procedure

is iterated until the eigenvalues of the m × m matrix of the ”m” vectors converges to the lowest

three eigenvalues. The energy difference between the lowest and next lowest eigenvalue is called

the mass gap and shows an interesting behavior as a function of the ratio λ/J.

General background on the area, including connections to the Ising model in higher dimen-

sions and lattice gauge theory is:

- J. Kogut, Rev. Mod. Phys. 51, 659713 (1979) “An introduction to lattice gauge theory and spin

systems”

A paper where you can find values for the mass gap is:

- C. Hamer and M.N. Barber, J. Phys. A: Math. Gen. 14 241 (1981) “Finite-lattice methods in

quantum Hamiltonian field theory. I. The Ising model”
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