
Variational QMC

Variational QMC for the Hydrogen molecule

Quantum problems provide an added complexity for Monte Carlo methods and many ap-

proaches have been developed. Here we use the variational method where we use a wavefunction

form that is inspired by the physics and minimize the energy with respect to the parameters in the

wavefunction. This approach requires good physical insight to find a good variational form for

the wavefunction. This is possible for the Hydrogen molecule (and many other molecules) where

we know the basic structure of the electronic orbitals.

The mathematical form seems simple: we write a variational wavefunction Ψ and we find the

energy

E =
< Ψ|H|Ψ >

< Ψ|Ψ >
, where E ≥ EG (1)

where EG is the ground state energy of the molecule. Of course we get equality if we find the exact

ground state. All other wavefunctions give higher energy - this is the variational principle.

The Hamiltonian of the Hydrogen molecule, in the Born-Openhiemer approximation where

we assume that the nuclear motion is negligible, includes the kinetic and potential energies of the

two electrons as well as their interaction. The positions of the two atomic nuclei are assumed to

be symmetrically located and on the x-axis at positions −s/2, s/2. The nuclei are thus a distance s

apart. The positions of the two electrons are~r1 and~r2. The Hamiltonian is then

H = − h̄2

2m
(∇2

1 +∇2
2)− [

ke2

|~r1 + s
2 î|

+
ke2

|~r1 − s
2 î|

+
ke2

|~r2 + s
2 î|

+
ke2

|~r2 − s
2 î|

] +
ke2

|~r1 −~r2|
(2)

where the first part is the kinetic energy of the two electrons, the second part (square brackets)

is the four attraction terms between the two electrons and the two nulcei and the last term is the

Coulomb repulsion between the two electrons. It is useful to introduce atomic units where lengths

are in units of the Bohr radius,

a0 =
h̄2

meke2 = 0.529Å (3)
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The unit of energy is twice the ionization energy of the Hydrogen atom,

E =
(ke2)2

a0
= 27.2eV (4)

With these units the Hamiltonian is

H = −1
2
(∇2

1 +∇2
2)− [

1
r1L

+
1

r1R
+

1
r2L

+
1

r2R
] +

1
|r12|

(5)

where

~r1L =~r1 +
s
2

î; ~r1R =~r1 −
s
2

î, (6)

~r2L =~r2 +
s
2

î; ~r2R =~r2 −
s
2

î, (7)

and

~r12 = ~r1 −~r2 (8)

It is useful to break the Hamiltonian up into two non-interacting Hamiltonians plus the interaction

term,

H = H1 + H2 + Hee (9)

where,

H1 = −1
2
∇2

1 −
1

r1L
− 1

r1R
; H2 = −1

2
∇2

2 −
1

r2L
− 1

r2R
; Hee =

1
r12

(10)

The variational wavefunction is chosen to be,

Ψ(~r1,~r2) = φ(~r1)φ(~r2)ψ(~r1,~r2) (11)
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where

φ(~r1) = e−r1L/a + e−r1R/a = φ1L + φ1R (12)

and

φ(~r2) = e−r2L/a + e−r2R/a = φ2L + φ2R. (13)

The key new thing here is the assumption of a form for the interaction term ψ. A form that is very

useful is (see Jos Thijssen’s book, Equation 12.9 of the first edition), the Jastrow function,

ψ(~r1,~r2) = exp[
|~r1 −~r2|

α(1 + β|~r1 −~r2|)
] (14)

The first step is to find convenient expressions for the energy E given above using the variational

wavefunction and Hamiltonian above. This is quite laborious but interesting exersize. The result-

ing expressions are six dimensional integrals in the electron co-ordinates~r1 and ~r2. The MC part

of the project is to used a diffusion method to approximate these integrals.

The method should be carried out to find the energy E as a function of the interatomic sepa-

ration s to find the ground state size of the hydrogen molecule. The electron density minus the

electron density of the non-interacting H atoms at the same separation should also be plotted to

illustrate the effect of the e-e Coulomb repulsion on the electronic configuration and compare with

[1] below.

It is convenient to introduce the weight,

ω(~r1,~r2, s) =
Ψ2(~r1,~r2, s)
< Ψ|Ψ >

(15)

and the local energy,

ε(~r1,~r2, s) =
HΨ(~r1,~r2, s)
Ψ(~r1,~r2, s)

(16)
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so that,

E =
∫

d3r1

∫
d3r2ω(~r1,~r2, s)ε(~r1,~r2, s) (17)

There are at this point four parameters in the variational problem: s, a, α, β. We can remove one

of two of them by using the so-called Coulomb cusp conditions. These are required to ensure that

there is no singularity in the energy when either electron approaches either proton, or when the

two electrons are at the same position. The four cases of an electron approaching a proton lead to

the same condition a(1 + e−s/a) = 1, while the case of two electrons approaching each other lead

to the condition α = 2 (See Appendix A).

We use a Monte Carlo method that does not require the normalization < Ψ|Ψ >, however we

need an expression for ε(~r1,~r2, s). This is a bit tedious and leads to (see the Appendix B)

ε = − 1
a2 +

1
aφ1

(
φ1L

r1L
+

φ1R

r1R
) +

1
aφ2

(
φ2L

r2L
+

φ2R

r2R
)− [

1
r1L

+
1

r1R
+

1
r2L

+
1

r2R
] +

1
|r12|

+(
φ1Lr̂1L + φ1Rr̂1R

φ1
− φ2Lr̂2L + φ2Rr̂2R

φ2
) · r̂12

2a(1 + βr12)2 −
(4β + 1)r12 + 4
4(1 + βr12)4r12

(18)

The algorithm

The algorithm consists of starting with random positions of the electrons~r1,~r2 with their asso-

ciated value for Ψ2(~r1,~r2, s). Then,

1. Randomly move the two positions to locations~r′1,~r′2.

2. If Ψ′2
Ψ2 > Random Number accept the move

3. Return to 1. Warm up for around 10000 steps and average the energy ε for millions of steps.

Note that there are two parameters remaining in the variational calculation, β and s. You need to

calculate for a range of values of these parameters and find the minimum - that is the estimate of

the energy of the Hydrogen molecule. If you subtract the energy of the two separated Hydrogen

atoms from it (energy -1 in our normalized units), you get the binding energy of the Hydrogen

molecule. Compare that and the bond length at the lowest energy state with the literature values.

In your report you need to provide the details of the Coulomb Cusp and energy (ε) calculations.
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A. Coulomb cusp conditions

(i) Electron approaching a proton

There are four cases to consider, but each of them leads to the same condition so we will only

consider one case. Electron 1 approaching the left proton. In that case we consider the limits

r1L → 0, r1R → s. The Coulomb interaction blows up due to the term 1/r1L however we can cure

the problem by choose the variational parameters so that in this limit,

Hφ1 = [−1
2
∇2

1 −
1

r1L
]φ1 = 0; or − 1

2φ1
∇2

1φ1 =
1

r1L
(19)

We have,

1
2φ1
∇2

1φ1 =
1
φ1

(
φ1L

r1L
+

φ1R

r1R
)− 1

a2 (20)

We keep only the singular term and write,

1
φ1

(
φ1L

r1L
) =

e−r1L/a

e−r1L/a + e−r1R/a
1

r1L
(21)

Taking the limit r1L → 0 and comparing to equation (19) we find the condition a(1 + e−s/a) = 1 is

required to remove the singularity.

(ii) Two electrons approaching each other

We take the limit r12 → 0 where the term 1/r12 is singular. This singularity case be cured by

choosing the variational parameters so that in this limit,

H f = [−1
2
∇2

1 −
1
2
∇2

2 +
1

r12
] f = 0; or

1
f
∇2

1 f =
1

r12
(22)

Note that the singular part of the kinetic energy operator for electrons one and two is the same, so
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we can consider just twice one of them. This leads to,

1
f
∇2

1 f =
2α + r12(2αβ + 1)
α2(1 + βr12)4r12

(23)

In the limit r12 → 0, this reduces to 2
αr12

. Comparing to Eq. () we thus choose α = 2 to ensure that

the singularity is removed.

B. Derivation of ε(~r1,~r2, s)

We have to evaluate HΨ/Ψ using Eqs. (10) and (11). We have,

1
φ1φ2 f

(H1 + H2 + Hee)(φ1φ2 f ) =
1

φ1 f
H1φ1 f +

1
φ2 f

H2φ2 f +
1

r12
(24)

First consider,

1
φ1 f

H1[φ1 f ] = (− 1
2φ1 f

∇2
1[φ1 f ])− 1

r1L
− 1

r1R
(25)

The complicated part is the first term on the right hand side. We expand this as,

1
2φ1 f

∇2
1φ1 f =

1
2φ1 f

(φ1∇2
1 f + 2∇1φ1 · ∇1 f + f∇2

1φ1) (26)

Carrying out the derivatives we find as follows.

∇1φ1 =
−1
a

[e−r1L/a∇1r1L + e−r1R/a∇1r1R] =
−1
a

[e−r1L/ar̂1L + e−r1R/ar̂1R]. (27)

To evaluate ∇2
1φ1 you can use Cartesian co-ordinates and evaluate one term. The others can be

deduced from the structure of the result. Using the chain rule this leads to,

∇2
1φ1 = [

1
a2 −

2
ar1L

]e−r1L/a + [
1
a2 −

2
ar1R

]e−r1R/a (28)

Similarly we find (using r2
12 = ((x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2)),

∇1 f =
f
α

~r12

r12(1 + βr12)
[1− βr12

1 + βr12
] =

f
α

~r12

r12(1 + βr12)2 =
f r̂12

α(1 + βr12)2 (29)

6



This ∇2
1 f may be treating one of the derivatives and then deducing the rest. Perhaps a more

elegant method is to use the identity ∇1 · (a~F) = ∇1a · ~F + a∇1 · ~F, with a = ( f /(α(1 + βr12)2)

and ~F = r̂12, so that (using ∇1 · r̂12 = 2/r12 and ∇1r12 = r̂12) yields,

∇2
1 f = ∇1 · ∇1 f =

f
α(1 + βr12)2∇1 · r̂12 + r̂12 · ∇1(

f
α(1 + βr12)2 )

=
2 f

αr12(1 + βr12)2 −
2β f

α(1 + βr12)3 +
f

α2(1 + βr12)4 =
2α + r12(1 + 2αβ)
α2r12(1 + βr12)4 (30)

Using the Eq. (), (), () and () yields,

∇2
1(φ1 f )
φ1 f

=
2α + r12(1 + 2αβ)
α2r12(1 + βr12)4 +

2r̂12

aα(1 + βr12)2 · (
φ1L

φ1
r̂1L +

φ1R

φ1
r̂1R) +

1
a2 −

2
aφ1

(
φ1L

r1L
+

φ1R

r1R
) (31)

It is then evident that

∇2
2(φ2 f )
φ2 f

=
2α + r12(1 + 2αβ)
α2r12(1 + βr12)4 −

2r̂12

aα(1 + βr12)2 · (
φ2L

φ2
r̂2L +

φ2R

φ2
r̂2R) +

1
a2 −

2
aφ2

(
φ2L

r2L
+

φ2R

r2R
) (32)

Adding these terms and multiplying by −1/2, and adding the Coulomb interaction terms, yields

Eq. (18) of the text.
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