Some psychoacoustical experiments with all-pass networks
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It is shown how all-pass filter sytems can be used in. labortory experiments in the physics
and psychophysics of sound and music. Particular applications include studies of the

following: (i) lateralization of sounds in headphone listening; (ii) the spectral modifications
produced by phasers, compared with admixing a time-delayed signal; (iii) the pitch that can
be obtained by dichotic processing of two spectrally flat noise signals, Huggins effect; and

(iv) the perception of the dephasing of harmonics in complex tone. Some of the effects
obtained from experiments on lateralization and on the Huggins effect appear to be new

results.

I. INTRODUCTION

University courses in introductory acoustics or in the
physics of ‘music usually include a generous amount of
psychoacoustics, that branch of acoustics that focuses on
the human listener as the measure of sounds.! Many psy-
choacoustical effects are quite incredible until the student
has had the opportunity to observe them for himself in the
laboratory. Often these effects can be demonstrated with
modest equipment.2 This article describes several inter-
esting and useful experiments that can be done with all-pass
filters. Because of the universal availability of the integrated
circuit operational amplifier, active all-pass filters are easy
to build and to use. ‘

In Sec. I the one-pole all-pass filter and its transfer
function are introduced. Section 11 discusses lateralization
and localization of sounds with emphasis on phase effects.
A variety of experiments on lateralization of signals in
headphone listening are suggested; these experiments dis-
cover the human sound locating apparatus operating in
rather curious ways. Section II discusses phasers, the sound
modifiers used by rock musicians to simulate the studio
effect of flanging. Interest centers on the degree to which
a phaser approximates the true time delay introduced by
flanging. A dichotic pitch effect with noise and all-passed
noise, the Huggins effect, is discussed in Sec. IV. In Sec. V
the all-pass filter is used to demonstrate the insensitivity of
the human ear to phase effects.

An all-pass filter is one that has unity gain at all
frequencies but produces a phase shift that varies with
frequency.3-5 The mathematical properties of such a filter
are discussed in the Appendix. The simplest form of active
all-pass filter is shown in Fig. 1. The filter transfer function
H is easily derived from the theory of the ideal operational
amplifier,

H(s) =vofv; = (st — g)/(sT+ 1), (1.1)
where g = R¢/R; and 7 = RC = (2xfo)~! and s is the La-
place variable. For an all-pass filter, g = 1, so that

H(s) = (s7 — 1)/(s7+ 1). (1.2)

Exchanging R and C in Fig. 1 only reverses the sign of the
right-hand side of Eq. (1.2). The impulse response function
of the all-pass filter is the inverse Laplace transform,

h(t) = 6(t) — (2/7) exp(—t/7). (1.3)
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Because the magnitude of H (s = iw) is unity for all w
(=2xf) the amplitude response of the filter is flat. The phase
shift varies fromratw =0to0atw = « as

¢ =2cot7 ! (wr); 0< ¢ <. (1.4)

If the input is sin{w?), then the output is sin(w? + ¢).

Il. LATERALIZATION

Our ability to locate the sources of sound and the re-
flectors of sound is a complicated combination of different
processes. These include our ability to separate direct sig-
nals from early echos in a room and to ignore the latter
(precedence effect) or to include them in a definition of the
acoustic environment.%’ The sound spectrum is modified
by reflection by objects in a room and, above 4000 Hz, by
the outer ear permittimg localization in a vertical plane.

The most extensive studies of localization have been
concerned with specifically binaural aspects of the process..
There is persuasive evidence for a duplex theory, by which
low frequency tones (f < 1500 Hz) are localized by in-
teraural time differences (phase differences) and high
frequency tones (= 2500 Hz) are localized by interaural
intensity differences.® Our ability to localize tones with
frequencies in the intervening region is relatively
poor.%-10

When sounds are heared with headphones, rather than
in a free field, the sound image seems to be within the head.
The image may be lateralized to one side of the head or the
other.}! There is good evidence that the same mechanisms
responsible for localization of free-field sources are re-
sponsible for the lateralization of sounds from headphones.
For example, in the low-frequency region one can convert
the azimuth angle 8 of a free-field source to interaural phase
angle difference, ¢, :

¢ = 2xr(f + sin 8) /A, 2.1)

where r is the head radius = 8.75 ¢m and A is the wave
length of the tone in air. Azimuth 6 is measured from the
forward direction.® Mills!2 found that the minimum de-
tectable phase difference from a free-field source agreed
with the minimum detectable phase difference between left
and right headphones signals!? for all frequencies from 250
to 1500 Hz. Lateralization produced by an interaural phase
difference can be eliminated by an opposing cue from an
interaural intensity difference.!4 '
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The effect of interaural phase differences can be dem-
onstrated by including a frequency-dependent phase shift
in one channel of a stereo signal using two identical all-pass
filters and an inverter, connected as shown in Fig. 2. The
phase shift varies fromratw = 0to —mat w = =,

(2.2)

where, as usual, —7/2 < tan~! (x) < /2. The notation ¢, ¢
means that the overall phase range is 27 (two filters) and
when wr = 1 the phase shift is zero. This defines the char-
acteristic frequency of the network, fo = (277)~!. Consider
a sinewave with frequency f,,, which is n semitones above
fo. Suppose that the semitone scale is equitempered, i.c.,

f—n/fO =f0/fn- (23)

Then equal musical intervals above and below f produce
equal and opposite phase shifts because, by the properties
of the inverse tangent,

$2.0(—n) = —2.0(n). (2.4)

Only equitempered scales have this property. The values
of phase shift are shown in Fig. 3, together with the inter-
channel time delay. Of course, a given phase shift corre-
sponds to a larger time difference for lower frequencies.

Many experiments can be done with this simple idea. The
experiments raise questions that are not yet completely
answered. One can probe the limits of discrimination for
tones lateralized by interaural phase differences. Is the limit
set by a minimum perceptible time delay or by a minimum
phase angle? According to the data of Mills'2 the answer
is apparently neither and somewhere between the two. Our
ability to lateralize images on the basis of phase differences
alone diminishes with increasing frequency.

Interaural differences can be created in headphones that
are not heard in the real acoustical world. This can be seen
in Fig. 3 for frequencies more than six semitones below fo
where 8 becomes greater than 90°. It appears that the ear
has no objection to these unnatural sounds. If a tone is be-
coming increasingly lateralized due to increasing interaural
phase differences then the trend continues smoothly into
the region of physically impossible phase differences (Ref.
15). (Of course any phase difference is physically possible
if one includes the possibility of echos. The above discussion
assumes that the precedence effect eliminates all echos from
any neural computation of location.)

A simple perceptual view of the lateralization process is
one in which the ear identifies some feature(s) of the

20 =7 —dtan™! (w7),

Fig. 2. Block diagram showing the
connection of two all-pass filter stages
and a unity gain inverter to produce the
interaural phase shifting network. The
connection to left and right headphones
is only schematic. In practice matched
power amplifiers must be used in the
two channels.
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Fig. 3. Two curves show the phase shift, ¢, (—) and the time, Ar (- -) by
which a sine wave in the left headphone lags a sine wave in the right
headphone in the circuit of Fig. 2 when the sine wave frequency is n
semitones higher than fp. The phase shift is expressed in degrees and the
time delay is in units of 7. The phase shift for positive n is antisymmetrical
with that for negative n. The inset shows the waves in left and right ears.
On the right vertical axis the time lead Az in milliseconds and the corre-
sponding azimuth angle in degrees for localization of a free field source
are given for fo = 261 Hz, equal to middle C, and for a standard human
head radius of 8.75 cm, and for room temperature. The arrow shows the
maximum left time lead at a frequency ratio of 2.26.

acoustical waveform and compares arrival times at the two
ears, At = tg — t;. The process is subject to the logical
constraint —'4f < A t < 4f. The operation of such a
mechanism on the stimulus created by the circuit of Fig. 2
(0 condition) is shown in the left-hand column of Fig. 4.
Suppose that the tones of an equitemperted scale increase
in frequency through f5. The model predicts that the sound
image should move from right to left as shown in Fig. 5(a).
This behavior is observed experimentally (Ref. 16).

If the inverter is removed from the circuit of Fig. 2 then
the phase shift at f = fp is not 0 but is = ( condition). The
operation of the interaural timing mechanism on stimuli
created in the = condition is shown in the right-hand column

of Fig. 4. The predicted behavior is shown in Fig. 5(b), and

the observed behavior is in Fig. 5(c). The model successfully
predicts some of the observed changes from the 0 condition.
(i) The observed reversal of the positions of individual tones
is predicted. (ii) When f is close to fo as shown in top and
bottom panels of Fig. 4, it is difficult to position the image
in the 0 condition but easy to find the lateralized image in
the 7 condition. However, the model fails to predict the
nature of the motion of the sound image in the x condition.
The predicted pattern includes a discontinuity in the posi-
tion at the characteristic frequency fo, but the observed
motion, shown in Fig. 5(c), is like the reverse of the motion
observed in the 0 condition, [Fig. 5(a)] as though the list-
erner had put on the headphones backwards. Therefore, it
seems that lateralization involves more than simple calcu-
lation of interaural time differences; it includes a process
of logical inference as well. The ear refuses to accept the
discontinuity.

W. M. Hartmann 30



Fig. 4. Two columns show the 2,0 and the 2, = conditions for interaural
phase difference experiments. The top row shows the phase differences
in radians as a function of sine wave frequency 0 < f < . The following
rows show the waveform in left (—) and right (- - -) ears for different
frequencies. One arbitrary feature, a negative going zero crossing is always
in the center of the horizontal axis for the left ear and is identified with
a (0) for the right ear. The judgments, based upon the order of arrival of
such a feature, are shown in the circle, L is left, R is right, C is centered,
and A is ambiguous.

Note that two all-pass sections have an overall phase
range of 2. In the 7 condition they do not produce phase
differences of 0 or 27 for finite frequencies. Therefore, the
« experiment above does not involve the ear in the paradox
of finding that phase differences of both = and 0 lead to a
centered sound image. Suppose, however, that a second
all-pass network, identical to that of Fig. 2 is cascaded with
the first. Then an overall phase shift of 4= is realized, and
it is easy to vary the interaural phase difference from 0 to
2x. In Figs. 5(e) and 5(f) are shown the expected and the
observed behavior for such a cascade of filters in the =
condition. Whereas the 0 condition, shown in Fig. 5(d),
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Fig. 5. Arrows show patterns of lateralization of a sine wave tone with
increasing frequency. The vertical axis is frequency, the horizontal axis
shows position, from left to right, in the head. In the first row the stimulus
is made with two all-pass filters (Fig. 2). (a) Shows the pattern that is
expected and observed in the 0 condition; (b) shows the pattern that is
expected; and (c) shows the pattern that is observed in the 7 condition. In
the second line are shown patterns for a circuit with four all-pass filters;
(d) shows the pattern expected and observed in the 0 condition; (€) shows
the pattern that is expected; and (f) the pattern that is observed in the =
condition.
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produces a strong lateralization, the = condition is some-
what ambiguous. At the lowest frequencies the sound image
moves to the left, as predicted, but the high-frequency be-
havior may cross the medial plane (as shown) or it may
remain in the medial plane. Apparently the phase coinci-
dences at 0 and 2 act as references and the ear is forced
to some compromise between a phase-shift paradox, 0, =
and 27 and a discontinuity in lateralization. One symptom
of the resulting ambiguity is that upward-going and
downward-going portions of the frequency sweep may lead
to different localization patterns, a result that never occurs
in the other experiments reported here.

This kind of experiment acquires added interest in view
of one of the auditory illusions of Deutsch.!” She found a
strong tendency for right-handed listeners to hear the higher
of two tones lateralized to the right. The experience of one
right-handed observer, the author, in a two-tone experiment
with +¢, and —¢, phase shifts, is that the phase effect
dominates any tendency to lateralize the higher tone to the
right. However, there may be some remnant of the auditory
illusion because the lateralization effect is not symmetri-
cally reversed when the headphones are reversed.

One can confound the lateralization effect entirely by
adding harmonics to the tone. The effect of harmonics can
be viewed in two ways that are physically the same but
psychophysically different. In the spectral domain one
argues as follows. Because the harmonics of a periodic tone
are phase locked the ear perceives the tone as a coherent
entity and ascribes a common origin and a common location
to all harmonics. However, the phase shift produced by the
all-pass filter is not proportional to the frequency of the
harmonics; therefore, the various harmonics of an all-passed
complex tone provide conflicting lateralization information.
Hence, the lateralized image is destroyed and the complex
tone is heard in the center of the head.

The other view is to regard the all-pass filtering as
propagation through a dispersive medium. A tone with a
given complex structure in time is bent out of shape by the
frequency dependent velocity. Therefore, when the brain
tries to perform a binaural analysis of the shifted and un-
shifted tones it does not find enough common features in
the waveform to measure an interaural time delay. Support
for the former (spectral) view comes from the following
curious effect. Although there is a tendency to perceive a
tone with harmonic partials as coherent, it may sometimes
happen that a contrary lateralization cue causes the tone
to split. The effect can be observed if the tone moves, as in
the equitempered run experiment, up and down through the
characteristic frequency of the all-pass filter (x condition).
The complex tone may split into a buzz tone that is sta-
tionary in the center of the head and a fundamental tone
that slides from left to right and back, as for a sine wave.

III. PHASERS AND FLANGING

When a signal is added to a delayed version of itself the
result is a comb filtering of the signal, as noted in Ref. 2.
The sum signal has a hollow etherial sound that is popular
among contemporary rock guitarists. The required time
shifting can be done with analog or digital delay lines. The
technique is known as “flanging.”

A similar effect can be produced by a phaser. A sche-
matic view of the signal path in a phase is shown in Fig. 6.!8
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Fig. 6. Block diagram shows the connection of M all-pass stages and an
adder to create a phaser. The characteristic frequencies of all the stages
are controlled by the voltage from a slow oscillator. Note: in commercial
phasers both signal paths to the adder may include phase shifting.

In practice the characteristic frequencies of the M all-pass
stages are voltage controlled by replacing the resistor R in
Fig. 1 with a field effect transistor. A rolling sound is
created by a slow sine wave control voltage and M = 6
stages.

The approximation of time delay by a phaser improves
as M increases in the following way. Suppose that the
number M of identical all-pass filters in series and their
common characteristic frequency fy = 7~} both grow so that
T = 27M is constant. Then in the limit M = « the system
of all-pass filters produces a true time delay equal to T. This
statement can be proved as follows.

The processed signal vo(?) is given by the inverse Fourier
transform

wo(t) = @0 " Hw)oi) expli wt)de, (3.1)
where the input signal v; is

bi(w) = f_ " (1) exp(—iwt)al.

The transformation H(w) may be due to time delay H or

due to the all-pass network of M stages H,,. Because the
impulse response of a system with time delay 7T is

3.2)

hr(ty=6(t = T), (3.3)
the transfer function is the Fourier transform
Hp(w) = exp(—iwT) = exp(—ip7). (3.4)

The transfer function for M identical all-pass filters is ob-
tained by summing the phase shifts caused by the individual
stages. From Eq. (2.2), with M even,

Hp(w) = exp[—i2M arctan(wt)] = exp(~idar).
(3.5)

(For odd M the same expression applies if the signal is in-
verted.) In the limit of vanishing 7 the arctangent in (3.5)
becomes equal to its argument for any finite frequency. If
the number of filters grows simultaneously such that 2M r
= T is constant then from Egs. (3.4) and (3.5),

oy =2Mr0 =T = ¢, (3.6)

i.e., phase shifts produced by M all-pass filters and time
delay are the same for all w.

For finite M the situation is shown in Fig. 7. A finite
number of identical all-pass filters approximates time delay
for small wT. If the processed signal is added to the input
signal then time delay produces a comb filter with an infi-
nite number of evenly spaced peaks and valleys in the am-

32 Am. J. Phys,, Vol. 47, No. 1, January 1979

plitude response function. The response of the system with
M all-pass filters has a total number of peaks and valleys
equal to M — 1 (not counting those at w = 0 and »). They
are not equally spaced but the separation increases with
increasing frequency because the frequency of the mth peak
or valley is proportional to tan(mwx/2M) (0 < m < M). An
argument has been presented in Ref. 19 to show that for
finite M the phaser best approximates a system with time
delay if all the all-pass stages have the same characteristic
frequency.!?

The most effective demonstrations of a phaser involve
dynamic changes in the filter characteristics while pro-
cessing music or noise. The familiar sound of a jet aircraft
taking off plus the echo from a nearby building is easily
simulated with a white noise source and a phaser. Although
the phaser simulation is a tonally colored signal it does not
produce the sense of pitch associated with noise plus delayed
noise.20

IV. HUGGINS EFFECT

The Huggins effect?! is one of the most surprising and
dramatic pitch effects in psychoacoustics. The stimulus
source for the effect is white noise. As in the case of the la-
teralization experiments one of two earphones receives the
source signal directly, the other earphone receives the signal
after processing with an all-pass filter. The all-pass filter
produces a frequency-dependent phase shift from 2 ra-
dians at 0 Hz to 0 rad at infinite frequency. If the phase shift
changes from 37 /2 to = /2 rad over a frequency difference
that is about 10% of the center frequency (frequency for a
phase shift of = radians) then a pitch corresponding to the
center frequency will be heard.

The experiment is remarkable because the spectral in-
formation provided to the listener is coded in a very obscure
fashion. There is no experiment that can be performed on
the all-pass filtered signal by itself to distinguish it from
unprocessed white noise. Both the processed and the un-
processed signals must be simultaneously available, with
phase information intact, to some central processor to ex-
tract any information from the signals. The autocorrelation
functions in the two earphones are both delta functions, but

28
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Fig. 7. The figure shows the phase shifts ¢ as a function of relative fre-
quency wT for time delay (dashed curve T) and for strings of M all-pass
filters with 7 = T/(2M), where M is 2, 4, or 6. Asymptotes are at 2, 47,
or 6w, respectively.
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the cross correlation function is the impulse response of the
all-pass filter, which oscillates at frequency fo.

To produce the Huggins effect requires an all-pass filter
that is more sharply tuned than the cascade of one-pole
all-pass filters in Fig. 2. As before, let the center frequency
of the filter be denoted by f. Let /5 be the frequency that
gives w/2 greater phase shift than fq, and f_ be the fre-
quency that gives x/2 less phase shift. The “bandwidth”
is defined as the difference, f— — f.

For the filter of Fig. 2,

f-=f+=2f 4.1

A bandwidth of twice the center frequency is far too wide
to get the Huggins effect. To produce a narrower bandwidth
requires a two-pole all-pass filter, constructed as follows:

The general transfer function for a two-pole bandpass
filter with center frequency wg and given “Q” is

wos/Q
2+ (wo/Q)s + W’

The corresponding all-pass filter has zeros in the right half
of the complex s plane, symmetrically across the imaginary
axis from the poles, i.e.,

_ $2 = (wg/Q)s + w§
T 524 (wo/Q)s + wd
=1 —2B(s). (4.4)

Therefore to construct an all-pass filter requires only that
one add the input to a bandpass filter to the inverse of twice
the output of the filter. For this application the active
state-variable filter is the correct choice.22 Both the Q and
the center frequency of the state-variable filter may be
varied independently over a wide freqeuncy range with good
stability at high values of Q. The fy and Q adjustments may
be made without upsetting the balance described in Eq.
(4.4).

Because the Huggins pitch at fp occurs at the center
frequency of the corresponding bandpass filter, a listener
can switch the filter to the band pass mode to compare his
perception of the Huggins pitch with the obvious pitch of
noise in a sharply tuned pass band. By moving the controls
and comparing with the correct answer one quickly learns
to hear the effect. Precise measurements of filter parameters
may be obtained from Lissajous patterns with a sine wave
source.

The Huggins pitch can be heard for center frequencies
ranging from 300 to 1 KHz. Unlike some other dichotic
pitch effects which are heard only at low intensity levels (40
db) Huggins pitch is best heard at moderate levels, 60-75
dbin a 10-KHz band.

The experiments performed in preparing this paper led
to results not reported by Cramer and Huggins. These re-
sults are based on the experience of three listeners.

(i) A phase shift of zero at f produces a pitch sensation.
The Huggins experiment corresponds to the # condition
described in Sec. I1. If the all-passed signal is inverted than
the O-condition results, and this condition, with phase shift
varying from = /2 to —w /2, at the same rate, produces an
equally strong pitch. This result had been discovered earlier
by Guttman.??

(i) Among weak pitch effects?* the Huggins pitch is one
of the strongest. It is only slightly weaker than repetition
pitch with unfiltered noise. It is considerably stronger than
dichotic repetition pitch or the nonspectral pitch of ampli-

B(s) = (4.2)

H(s)

(4.3)
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tude modulated noise.2?

(iii) Cramer and Huggins studied the strength of the
pitch effect for a few different bandwidths. For their
smallest bandwidth, 6% of fo, the pitch effect was strongest.
They predicted that for very small bandwidths the pitch
effect must disappear because of vanishing spectral energy
in the region of phase variation. With an active state-vari-
able filter it is possible to obtain bandwidths narrower than
those used by Cramer and Huggins. The conclusion of the
present study is that for center frequencies beteen 450 and
900 Hz the pitch is strongest when the bandwidth is 7%
(£2%) of fy. As the bandwidth is decreased to 1% the pitch
does disappear.

(iv) If the noise signal is directly added to the all-pass
filtered noise in the = condition then the result has a spectral
dip at fo. This sum signal produces no sense of pitch any-
where near fy. Therefore, the binaural processing which
produces the pitch cannot be a simple addition of the sig-
nals. The pitch could arise from a signal difference opera-
tion.

V. PERCEPTION OF PHASE

According to Ohm’s acoustical law, the auditory system
is sensitive to the power spectrum of sound but is insensitive
to the phase relationships among the Fourier components.
Theoretically the ear cannot detect changes in the shapes
of waveforms so long as the spectrum is constant. Changes
in timbre produced by changing phase relationships among
the harmonics of a periodic tone violate Ohm’s law; they can
be investigated with all-pass filters. The one-pole all-pass
of Eq. (1.1) produces a gentle phase distortion of the wave-
shape which is not easily heard. The two-pole all-pass of Eq.
(4.3) produces more dramatic changes, especially at high
Q. The most audible phase changes are those which change
the peak levels of the envelope of the waveform.2¢

The big question in these phase studies, for which there
is no complete answer, concerns the role played by nonlinear
distortion. Unfortunately most studies of phase perception
do not attempt to control or measure the distortion. A re-
view of literature is given in Ref. 27. Even if no distortion
is present in the source of sounds, the essential nonlinearities
of the ear may account for the perception of phase.2829

When distortion is present, changing the phase rela-
tionships among the harmonics of a tone changes the in-
tensities of the harmonics, and this, of course, is plainly
audible. For example, consider an input signal v consisting
of a fundamental and a second harmonic, each of unit am-
plitude. Suppose that the processed signal w includes some
square law distortion, viz.,

w=0v+ g2

5.1

The intensity of the fundamental tone then becomes,

wi =1+ 72— 2ysin ¢, 5.2)
where ¢ is the relative phase angle between fundamental
and second harmonic. The fundamental intensity varies by
1 dB (the approximate limit of discrimination) when the
harmonic distortion 7/2 is 3%.

The combined effects of distortion and phase angle
variation can be demonstrated with an all-pass filter and
a simple nonlinear device such as a diode. One can vary the
relative phase angles with the all-pass system of Fig. 2 to
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increase the waveform envelope peak for some common
waveforms. These include the square wave, the sawtooth,
the ramp (Wavetek), and the pulse, except for very narrow
pulses. For the triangle wave, however, any changes in phase
angles must cause the peak amplitude to decrease. If phase
shifting is followed by distortion then phase variation in
these waves can produce dramatic timbre changes.
Relative phase angles do not seem to be especially im-
portant in transient signals. This can be demonstrated by
using an all-pass filter and a function generator that pro-
duces tone bursts. After spending several hours listening to
tone bursts of complex waves with a variety of all-pass
characteristic frequencies, the listener is likely to conclude
that any phase dependence that can be detected in the tone
bursts can be heard at least as well in a steady tone.
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APPENDIX: ANALYTIC PROPERTIES OF
FILTERS

This appendix notes certain mathematical properties of
filters from a physicist’s perspective. Additional details may
be gained from texts on operational mathematics and net-
work analysis.2~*

For a general linear filter the output vy is related to the
input v; by the convolution integral,

bol) = f_ "R =)o) dr,

where h is the impulse response, equal to the inverse Fourier
transform of the transfer function, i.c.,

h(t) = zi f_ " expliur) H(w) do.

Ly

(A1)

(A2)

For a causal filter the present output cannot depend upon
the input in the future; therefore, h(¢) = 0 for t <O0.

This zero value of 4(z) for negative values of ¢ is obtained
from an integral on a contour made from the real axis, Eq.
(A2), and the semicircle at infinity around the lower half
plane. On this semicircle the real part of iw? is negative for
t <0, so that the integral vanishes on this semicircle for
well-behaved H(w). If H(w) is analytic in the lower half
plane, so that the contour encircles no poles, then h(?) is
zero for t <0, as required. The Laplace transform F(s) is
then analytic in the right half plane and the causal filter is
also stable. The above circumstances are necessary and
sufficient to ensure that the real and imaginary parts of H
are Hilbert transforms of each other.

The usual analysis of the complex transfer function H,
however, is in terms of amplitude 4 and phase ¢, the pa-
rameters of a Bode plot:

V=A+i¢=LnH, (A3)
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where the Ln function is the principal value natural loga-
rithm. Parameters 4 and ¢ are Hilbert transforms of one
another if V(w) is well behaved and analytic in the lower
half plane. But for an all-pass filter H(w) has at least one
zero in the lower half plane so that V(w) has at least one
branch point there. Therefore, 4 and ¢ are not Hilbert
transforms of one another for an all-pass filter. Instead, A
= 0 and ¢ (w) is proportional to the discontinuity across the
branch cut.
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