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Experiments were performed to determine the ability of human listeners to discriminate between 
a sound with a large number of spectral components in a band, of given characteristic frequency 
and bandwidth, and a sound with a smaller number of components in that band. A pseudorandom 
placement of the components within the band ensured that nOtwo sounds were identical. The data 
suggested that discrimination is primarily based upon the perception of temporal fluctuations in 
the intensity of the sound and secondarily upon resolved structure in the spectrum, perceived as 
tone color. Experiments using clusters of complex harmonic sounds showed that listeners are able 
to use the information in upper harmonic bands to discriminate spectral density. 

PACS numbers: 43.66.Ba, 43.66.Fe, 43.66.Mk [RDS] 

INTRODUCTION 

The work presented in this paper is an attempt to discov- 
er how human listeners discriminate between sounds with 

different spectral densities when the spectral density for both 
sounds is high. Experimentally, we posed the following ques- 
tion: How many discrete spectral components must there be 
in a given frequency band so that the resulting sound is indis- 
tinguishable from a noise with an arbitrarily large number of 
components in that band? Schafer et al. (1950) studied a 
related question. They found the minimum density of sine 
components for which the masking of a sine tone was the 
same as the masking produced by thermal noise. These auth- 
ors concluded that in order to provide masking equivalent to 
a band of thermal noise 32 Hz wide, a spectral density of one 
sine wave component per Hz was required. 

The question of discrimination between large and small 
spectral densities was posed by one of us (Oerzso, 1980) in 
connection with the synthesis of dense spectra by a digital 
synthesizer with a large number of oscillators. Experiments 
were done using recorded stimuli with varying numbers of 
sine waves in a critical band. An experimental trial included 
three sounds, two of which were the same, with the remain- 
ing sound having a different spectral density. The tape was 
played to panels of listeners who were asked to decide which 
of the three sounds was different from the other two. The 

results showed that spectral densities which were just discri- 
minahie from thermal noise were considerably smaller than 
those found in the masking study by Schafer et al. (1950). 
The results also showed that the required spectral density 
was smaller when the sounds were heard in a reverberant 

environment compared to a drier environment. 
When the experimental tape used in Oerzso's expert- 

merits was heard repeatedly through headphones, however, 
an unexpected result occurred: The ability to distinguish 

*} Permanent address and address for correspondence. 

between thermal noise and a less dense sound turned out not 

to be a monotonically decreasing function of the number of 
components in the less dense sound. We tentatively attribut- 
ed this effect to the ability of the listener to learn to recognize 
certain intensity fluctuation patterns in the constant-Wave- 
form stimuli and to make responses based upon those parti- 
cular patterns. To eliminate this artifact, the experiments 
reported in the present paper were done in a way which made 
it impossible for the listener to learn patterns associated with 
a particular spectral density. 

I. EXPERIMENT 1: SINE WAVEFORMS 

A. Task 

Subjects were presented with two sounds in succession; 
one of them, the standard, had 60 sine components, the other 
had a variable number N of sine components, 3 <N< 25. 
The subject's task was to choose the sound which had the 
larger number of components. 

B. Stimuli 

The sounds were produced by the 4C synthesizer at the 
Institut de Recherehe et Coordination Acoustique/Mus- 
ique. By using the synthesizer, we were able to make each 
sound different from every other sound. The set of frequen- 
cies and initial phase angles for the components of each 
successive sound were determined by a different set of ran- 
dom numbers. This approach prevented subjects from learn- 
ing a pattern of fluctuations which they could associate with 
a given number of components. 

In order to minimize the effect on the bandwidth of ran- 

domly choosing the component frequencies, we put the com- 
ponents into bins, for both the standard and the test sound. 
For a given number N of components, we divided the band 
into Nbins of equal width in hertz; we put one component at 
a random frequency within each bin, using a rectangular 
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probability distribution. All N components (N = 60 or N 
variable) had the same amplitude, proportional to the in- 
verse square root of N, so that all sounds had equal intensity, 
75 dBA, independent of N. 

The synthesizer patch allowed 60 oscillators, which im- 
posed an upper limit of 60 components for the most dense 
sound. The sample rate was 16 000 Hz, and the resolution 
with which frequencies could be defined was 16 000/ 
224 = 0.001 Hz. The digital waveform was converted to an 
audio signal by a 16-bit DAC and an 8-KHz low-pass filter. 

C. Procedure 

The procedure was essentially a method of constant 
stimuli. The number of components in the variable sound 
took on 12 different values: 3,5,7 ..... 25. In each experimental 
block, there were ten repetitions of each value of N, present- 
ed in random order, for a total of 120 trials, lasting about 7 
min. 

Sounds were presented diotically by Beyer DT 48 head- 
phones to subjects seated in a sound-treated room. Each trial 
consisted of five intervals: 600-ms warning interval, first 
sound interval of duration T( T---- 500, 1000, or 2000 ms), 

gap of 500 ms, second sound interval of duration T, and a 
response interval which was subject controlled. Sounds were 
turned on and off with a raised cosine envelope of 10-ms 
duration. 

Subjects learned to identify the sound with the larger 
number of components during training runs in which feed- 
back was given after each response by means of colored 
lights. When subjects believed that they had learned how to 
do the task, the feedback was turned off and testing contin- 
ued until after it appeared that subjects had reached a stable 
level of performance. 

D. Parameters 

The primary parameters in the study were the band bot- 
tom frequency fb and the bandwidth W. The bottom fre- 
quency took on valuesfb = 500, 1000, and 2000 Hz. Some 
additional blocks were done at values of 250 and 3000 Hz. 
The bandwidth values were IV = 50, 100, 200, 400, and 800 
Hz. Experimental blocks with different parameters were 
done in a haphazard order. Training blocks with feedback 
were done when a listener was first introduced to new values 

4O 
9 11 13 15 17 19 21 23 25 27 

NUMBER OF COMPONENTS 

7 g 11 13 1,5 17 lg 21 2• 25 27 

N NUMBER OF COMPONENTS 

S2 

: J : i : J : J : J : J : J : J I I I J • J : J • 
9 11 1,:3 15 17 lg 21 2.3 25 27 

NUMBER OF COMPONENTS 

FIG. 1. Typical psychemetric functions showing the percentage of correct identification of the signal with a larger number of components as a function of N, 
the smaller number ofcomDonents, for three subjects, for four values of the band bottom frequency and the bandwidth: +f• ---- 250 Hz, W = 50 Hz; circles, 
fb = 500 Hz, W = 100 Hz; squares, f• ---- 1000 Hz, W = 200 Hz; and triangles,lb = 2000 Hz, W = 400 Hz. These conditions correspond to Q = 5.5. The 
duration was T--- 500 ms. 
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of the parameters. To obtain final data, we averaged the re- 
suits ofthe last three blocks (30 trials per value of N for each 
subject} done without feedback, for each of the sets of pa- 
rameters in the study. 

E. Subjects 

Three subjects, S 1, S2, and S3, participated in the ex- 
periments. Subjects S1 and S3 were authors and experienced 
listeners; all subjects had normal hearing according to their 
own reports. 

F. Results 

Typical data are presented in the psychometric func- 
tions in Fig. 1. The abscissa is N, the number of components 
in the variable sound, which was always compared with a 60- 
component sound. The ordinate is the percentage of trials 
where the subject judged correctly which sound had the larg- 
er number of components. 

As expected, performance generally decreases as N in- 
creases. It was not evident a priori, however, that perfor- 
mance would decrease monotonically with N. It seemed pos- 
sible that several different cues would become available at 

different values of N and that performance might show a 
minimum or a second peak at higher values of N. For most of 
the values of the experimental parameters, the upper limit of 
N = 25 was well above the value of N for which performance 
had fallen to the chance level of 50% correct, giving us the 
opportunity to look for such nonmonotonic behavior. Sec- 
ond peaks did appear quite often in our data; Fig. 1 is typical 
in that respect. However, when additional blocks of trials 
were done, up to a total of ten blocks, the additional struc- 
ture disappeared. Further, there was little agreement among 
the subjects as to the value of N for second peaks or unusual- 
ly large dips. 

We concluded that there was no systematic evidence 
that performance is not a monotonically decreasing function 
of N. The structure in the psychometric functions for indi- 
vidual listeners which suggested the contrary was attributed 
to our limited sampling. We therefore fitted the psychomet- 
ric functions by eye with a smooth monotonically decreasing 
curve, and then found the 75% correct point, N(75), to de- 
scribe a threshold. Threshold values for the various experi- 
mental parameters are given in the tables testing the hypoth- 
eses discussed below. 

The tables show that values of N(75) for listener S3 
were usually smaller than those for the other two listeners. 
This fact will not affect our tests ofthe hypotheses, which are 
done within subjects and across conditions. 

G. DISCUSSION 

1. General 

Apparently, the technique of equating the intensity of 
sounds with different N was successful in eliminating any 
usable loudness cuc. Subjects reported informally that they 
were unable to discern any loudness differences for any set of 
parameters tested. 

Apparently, also, subjects learned the correspondence 
between the acoustical cues and the correct response from 

the feedback on training runs. The nature of the task was 
such that 0% correct would have indicated equally as good 
discrimination as 100% correct. However, the psychometric 
functions rarely fell much below 50% correct.• 

For all conditions tested, except for bandwidths of 400 
and 800 Hz, performance fell to the chance level with in- 
creasing N well before the maximum value, N = 25. This 
implies that, on the average, 25 components and 60 compo- 
rients sound the same. 2 From this, we infer that the sound 
with 60 components is actually asymptotically dense, i.e., 
that our results would not have been different had our com- 

parison sound included an arbitrarily large number of com- 
ponents. For a bandwidth of 400 Hz, near N = 25, the per- 
formance was either below threshold or heading rapidly 
towards threshold. It therefore seems reasonable to regard 
the 60-component case as infinitely dense perceptually for 
bandwidths less than or equal to 400 Hz. 

2. Hypotheses 

A primary goal of this study was to elucidate the nature 
of the cues used by subjects to judge spectral density. A first 
attempt at consolidating the data and understanding the na- 
ture of the cues centered upon several hypotheses. 

a. Hypothesis 1: Constant performance occurs for con- 
stant' Q. Analogous to filter theory, the Q is defined as the 
center frequency divided by the bandwidth. The hypothesis 
says that for the conditions of center frequency/bandwidth 
equal to 550 Hz/100 Hz, 1100 Hz/200 Hz, and 2200Hz/400 
Hz, all corresponding to Q = 5.5, performance should be 
constant. Figure 1 shows psychometric functions for 
• = 5.5. The corresponding threshold values N(75) are giv- 
en in Table I, which also shows thresholds for Q = 1.75, 
Q - 3, and Q = 10.5. Ifthe hypothesis is correct, then all the 
entries in a given column, for a given Q, should be the same. 
The figure and the table show that the hypothesis is unlikely 
to be successful. Performance always increases for increas- 
ing bandwidth, even if the center frequency increases pro- 
portionally. 

To test the hypothesis more formally, we needed to com- 
pute a measure of performance for each of the different con- 
ditions (offb and /4/) and to compare those values, taking 
into account the variability in the performance for each con- 
dition. For the measures of performance, we chose to aver- 
age the percent correct over the 12 values of N presented in 
each run ( 120 trials). This measure is equivalent to the area 
under the psychometric function for each run. From the 
three runs for a given condition, we found a mean and a 
standard deviation, N-- 1 = 2 weight. To compare two con- 
ditions, we calculated the difference between the two means, 
as measured in units of the corresponding standard devi- 
ation, which was the square root of the sum of variances for 
the two means being compared. We called this statistic D. 
When there were more than two conditions being compared, 
we performed a round-robin calculation of Ds among all the 
conditions. The mean of the absolute value of these Ds, as 

computed for a given subject, was called •, and this is shown 
in the lower half of Table I. Because the values of b are 
mostly greater than two, we conclude that hypothesis I fails. 

b. Hypothesis 2: Constant performance occurs for con- 
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TABLE I. Test of hypothesis 1: Constant performance occurs for constant 
Q, N(75) is the number of components in a band with bottom frequency f,, 
and width W for 75% correct performance. If the hypothesis is correct, then 
values of N(75) within a given column for a given value of 12 should aH be 
the same and the values Of D should not be greater than unity ( T = 500 ms). 

f• (Hz) W(Hz) SI S2 S3 

Q = 1.75 

Q 3.0 

Q= 5.5 

Q = 10.5 

500 400 > 25 > 25 16 
1000 800 > 25 > 25 22 

500 200 17 15 9 
1000 400 23 21 13 

2000 800 >25 >25 20 

500 100 8 8 4 

1000 200 15 13 9 

2000 400 19 19 16 
3000 600 21 25 18 

500 50 4 4 4 
1000 100 7 7 5 

2000 200 11 11 9 

12 b 

Sl S2 S3 

1.75 1.5 3.6 5.1 
3. 2.3 2.O 4.O 

5.5 2.8 3.9 5.0 

10.$ !.4 2.3 1.9 

stant bandwidth, independent of band bottom frequency. By 
the Fourier integral theorem, a signal with many compo- 
nents of equal amplitude is completely characterized by the 
set of frequencies (fi } and the set of initial phase angles {•0i } 
for the components. The temporal fluctuations in the inten- 
sity of the signal are mused by beats and are thus completely 
characterized by the sets of differences 0ci--f j} and 
{•0i -- •oj } (i <j). Therefore, a statistical description of the 
intensity fluctuations depends only upon the number of 
components, the bandwidth, and the rule by which compo- 
nents .are put into the band; it is independent of the band 
bottom frequency fb (see the Appendix). If subjects base 
their judgments only upon the perceived temporal fine struc- 
ture of the intensity, then one would expect that perfor- 
mance for a given bandwidth should be independent offb. 

We tested this hypothesis by comparing performance 
forf• values of 500, 1000, and 2000 Hz. There were five tests, 
corresponding to different bandwidths. The threshold val- 
ues N(75) are shown in Table II. If the hypothesis is correct, 
then, for a given bandwidth, the entries in a given column 
should be the same. Comparison of these values suggests that 
the hypothesis has some merit. Conditions of constant band- 
width certainly lead to more constant performance than do 
conditions of constant Q (hypothesis 1 ). However, there is a 
tendency for performance as measured by N(75) to decrease 
as the band bottom frequency increases. Further, this de- 
crease appears to be more pronounced for wider bandwidths 
than for narrower ones. These two points concerning the 

TABLE II. Test of hypothesis 2: Constant performance occurs for constant 
bandwidth, independent of band bottom frequency f,. If the hypothesis is 
correct, then the values of/V(75) in a given column for a given value of Ig 
should all be the same and the values of D should not be greater than unity 
(T = 500 ms). 

N(75) 

[V(Hz) f, (Hz) SI S2 S3 

5O 

100 

200 

800 

250 4 -.. 4 

500 4 4 4 

1000 4 - 4 3 

500 8 8 4 
1000 7 7 5 

2000 8 8 4 

500 17 15 9 

1000 15 13 9 
2000 11 11 9 

500 >25 >25 16 
1000 23 21 13 

2000 19 19 16 

lB00 >25 >25 22 
2000 > 25 > 25 20 

W{Hz) b 

S! S2 S3 

50 0.8 0.3 0.3 
100 0.9 0.2 i. 1 

200 1.3 0.9 0.9 

400 1.6 2.9 !.3 

800 4.5 ... 2.0 

deviation from the hypothesis play an important role in our 
conclusions in Sec. IV. Typical psychemetric functions 
showing the success of hypothesis 2 at 100 Hz and its failure 
at 400 Hz are given in Figs. 2 and 3, respectively. 

lOO 

90 

3 5 7 9 11 13 15 17 19 21 23 25 27 

N NUMBER OF COMPONENTS 

FIG. 2. Same as Fig. 1, but for sohject S2 for a bandwidth of W = 100 Hz 
and three values of the band bottom frequency: circles, J', = 500 Hz, 
squares, f, = 1000 Hz, and triangles, f, = 2000 Hz. 
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FIG. 3. Same as Fig. 2 but with a bandwidth of W = 400 Hz. 

The hypothesis was tested statistically as for hypothesis 
1. The values of• in the lower part of Table II show that the 
hypothesis can be accepted for small bandwidths but not for 
large ones. At large bandwidths, the improvement in perfor- 
mance with decreasing band bottom frequency causes the 
hypothesis to fail. 

c. Hypothesis 3: Constant performance occurs for con- 
stant spectral density. This hypothesis means that the pri- 
mary variable N affects judgments only through the value of 
N divided by the bandwidth. According to this hypothesis, if 
a cluster of four components in a band of 50-Hz width is 

TABLE IlL Test of hypothesis 3: Constant performance occurs for con- 
stant spectral density N/W. If the hypothesis is correct, then values of 
N( 75)/Wwithin a given column should all be the same and the values of D 
should not be greater than unity (T= 500 ms). 

N(75) N(75)/W(KHz) 

•(Hz) W(Hz) Si 52 S3 S! S2 S3 

1000 

200O 

f• (Hz) 

50 4 4 4 80 80 80 

100 8 8 4 8O 8O 4O 

200 17 ! 5 9 85 75 45 

400 >25 >25 16 >62 >62 40 

100 7 7 5 70 70 50 
200 15 13 9 75 60 45 
400 23 21 13 58 53 32 

800 >25 >25 22 >31 >31 28 

100 8 8 4 80 80 40 
200 11 11 9 55 55 45 
400 19 19 16 48 48 40 

800 >25 >25 20 >31 >31 25 

S I S2 S3 

0.7 0.8 0.8 

0.3 1.1 0.5 

!. ! !.0 0.9 

barely distinguishable from a cluster of 60 components in a 
50-Hz band, then a cluster of eight components in a 100-Hz 
band is barely distinguishable from a cluster of 120 compo- 
nents in a 100-Hz band. Because we regard 60 components in 
a band as asymptotically dense for bandwidths of 400 Hz or 
less, the number 120 could be replaced by 60, as it was in our 
experiments. 

We tested this hypothesis against data from experiments 
with bandwidths of W= I00, 200, 400, and 800 Hz and 
band bottom frequencies offb ---- 500, 1000, and 2000 Hz. 
The thresholds are given in Table III. If the hypothesis is 
correct, then the densities, given in the last three columns, 
should be the same within a single column. It is not necessary 
for the success of hypothesis 3 that the equality hold across 
different values offb. However, to the extent that hypothesis 
2 is correct, equality u•ill hold across different values offb. 

From the values of N(75), it appears that hypothesis 3 is 
only partially successful; the last three columns are similar 
for a given subject, but there is a tendency for the threshold 
density to decrease for increasing bandwidth, especially for 
larger values offb. For a statistical test of hypothesis 3, one 
needs to compare the percent correct responses for different 
bandwidths over the same range of spectral densities. It is 
not possible to do a round-robin comparison because the 
bandwidths differ by as much as a factor oOeight. With only 
five components in a 50-Hz band the density is greater than 
with 25 components in a 400-Hz band. Therefore, our com- 
parison was limited to only neighboring bandwidths in the 
table. For example, we compared W---- 50 and 100, W = 100 
and 200, and W = 200 and 400. In each ease, we compared 
average performance for all 12 values of N for the larger 
bandwidth with the average performance for the six smallest 
values of N for the smaller bandwidth. Otherwise, the com- 

putation of • was the same as for hypothesis I and 2. The 
values of• shown in the lower part of Table III are mostly 
less than unity and none of them is much larger than unity. 
The success of the hypothesis in the statistical test is partly 
due to the fact that the test could only be done for adjacent 
values of the bandwidth and partly due to the fact that it is a 
rather good hypothesis. 

d. Hypothesis 4: Constant performance occurs for con- 
stant ualues of the product of the bandtoidth and the duration. 
The temporal structure in the intensity depends upon the 
bandwidth; it becomes less rapidly varying for smaller band- 
widths because beat frequencies between pairs of compo- 
nents are smaller. On the average, halving the bandwidth 
also halves the number of peaks and valleys in the instantan- 
eous intensity, giving the listener fewer chances to judge the 
structure. Hypothesis 4 says that this effect can be overcome 
by making the sounds correspondingly longer. 

We tested this hypothesis for two values of the band- 
width-duration product, (200 Hz X 0.5 s) = (100 Hz 
X1 s) = (50Hz X 2s) = 100, and (100Hz X 0.5s) 
----- (50 Hz X 1 s) = 50. The results are shown in Table IV. 
The hypothesis appears to give a good account of the values 
of N(75) for the product of 50. For the product of 100, how- 
ever, there is a clear tendency for the performance with 
wider bandwidth and shorter duration to be better than with 

narrower bandwidth and longer duration. The statistical test 

1919 J. Acoust. Sec. Am., VoL 79, No. 6, June 1986 Hartmann et al.: Discrimination of spectral density 1919 



TABLE IV. Test of hypothesis 4: Constant performance occurs for constant 
values of the product of the bandwidth and the duration WT. If the hypoth- 
esis is correct then, for a given value of the product WT, the values of N( 7 5 ) 
within a given column should all be the same and the values of D should not 
be greater than unity. 

W(Hz) T(s} S! S2 S3 

(a)f• = 1000, IV/'= 50 
100 0.5 7 7 5 
50 i.0 6 6 3 

(b) f• = 1000, WT-- 100 
200 0.5 15 13 9 
100 1.0 12 12 5 

50 2.0 9 10 5 

SI S2 S3 

50 0.5 0.5 0.6 
100 !.8 1.5 0.8 

of this hypothesis was the same as for hypothesis I and 2; the 
results of the test, shown in Table IV, agree with the expecta- 
tion based upon the values of N(75). The hypothesis can be 
accepted for a bandwidth-duration product of 50, but not for 
a product of 100. 

3. Observatlon• 

There are two classes of perceptual cues, loosely de- 
scribed as spectral and temporal, which might be involved in 
discrimination of spectral density. A spectral cue would cor- 
respond to differences in tone color or even differences in 
pitch associated with a small density compared to a large 
density. For small numbers of components in wide bands, 
e.g., three components in a 400-Hz band versus 60 compo- 
nents, such tone color and pitch changes can easily be heard, 
and they probably contribute to making the performance 
100% correct in such conditions. Whether or not spectral 
cues play a role near threshold, however, is not immediately 
dear. The salienee of spectral cues depends upon the spectral 
resolving power of the auditory system. The impressive fail- 
ure of hypothesis 1, where constant Q approximates con- 
stant resolving power, argues against spectral cues as pri- 
mary near the threshold. 

Temporal cues in the present context are principally in- 
tensity fluctuations. The relative success of hypothesis 2, 
and, less directly, that of hypotheses 3 and 4, leads us to 
suspect that threshold density discrimination is mainly de- 
termined by such temporal cues. The following section de- 
scribes calculations, based upon a model of the perception of 

ß intensity fluctuations, which are used to predict the thresh- 
old value of N for comparison with the experimental data. 
II. RMS FLUCTUATION MODEL CALCULATIONS 

Our model of the perception of intensity fluctuations is a 
- simple one, in which the auditory system responds to the 
fluctuations in the stimulus power as weighted by an expo- 
nentially decaying moving window with time constant r. 

The sounds used in the experiment are only defined statisti- 
cally; therefore, it is appropriate to calculate a configuration- 
averaged value of the internal power fluctuation, i.e., an 
average over all possible frequency distributions consistent 
with the rule that components are placed into frequency 
bins. 

The mathematical development of the model is given in 
the Appendix. It turns out that the integrals involved can 
actually be done analytically to give a closed-form expres- 
sion for the rms power fluctuation [ el. Appendix Eq. (A7) ]. 
As noted above, this expression is independent of the band 
'bottom frequency (or band center frequency), it depends 
upon the bandwidth Wand upon the integration time r, and 
it depends upon them only through their product Wr. Figure 
4 shows the n'ns fluctuation as a function of the number of 

components in the band for various values of W•. 
Applied to our experiment, the model says that deci- 

sions are reached by comparing the fluctuation for 60 com- 
ponents with the fluctuation for N-variable components. For 
actual calculations, one must hypothesize a basis of compari- 
son, a threshold criterion within that basis, and an integra- 
tion time •. 

As possible bases for comparison, we considered a sim- 
ple difference and a simple ratio. Computations using fluctu- 
ation differences produced nonsensical predictions; there- 
fore, we used the ratio basis, as suggested by the log scale on 
the ordinate of Fig. 4. As criterion values for the ratio, we 
believe that 0.95 or 0.9 are reasonable choices; i.e., we as- 
sume that a 5% or 10% decrease in rms fluctuation corre- 

sponds to a just noticeable difference. [We note that Ter- 
hardt (1974) found that the perceived roughness of 
amplitude modulated tones was halved when the power fluc- 
tuation was reduced by a factor of 0.7. A reasonable choice 
for a criterion ratio must, in any ease, be rather larger than 
this value. ] 

Figure 4 shows that, for a given bandwidth, it is evident- 
ly to the system's advantage to use the longest possible inte- 

z 

1.00 

0.10 

0.01 . , . , . , ß , ß , : 1'õ 1'7 19 21 23 
NUUBER OF COUPONENTS 

FIG. 4. Values of the rms internal power fluctuation as a function of the 
number of components in the band for various values of the product of the 
bandwidth and the integration time Wr, as predicted by the rms fluctuation 
model. 
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FIG. 5. Threshold values for the number of components in the band for 
75% correct •fform•ce a• a function of the bandwidth. The curves 
marked "0.95" and "0.9" show the predictions of the rms fluctuation model 
for r ---- 3 ms and criterion ratios of 0.95 and 0.9. Other symbols show ex- 
perimental thresholds for various conditions: circles, fb = 500 Hz, T = 500 
ms; •uares, f• = 1000 Hz, T= 500 ms; triangles, fb ---- 2000 Hz, T= 500 
ms; X,• = 1000 Hz, T= 1000 ms; ,,.f• = 1000 Hz, T= 2000 ms. A 
straight line connects the data points for a single listener and condition. 
True values of N(75) are not known for data points plotted above the line 
N(75) --- 25. 

gration time, because the ratio between the rms fluctuation 
for 60 components and the rms fluctuation for a smaller 
number of components always increases for increasing Wr. 
But typical maximum integration times, 100 to 300 ms, can- 
not be used in the model to provide a satisfactory fit to the 
data. Further, as shown in Fig. 4, a long integration time 
corresponds to small fluctuations, but listeners were always 
aware of large fluctuations in instantaneous loudness. 
Therefore, a minimum integration time, as opposed to a 
maximum integration time, secms appropriate in this con- 
text. We used a value of 3 ms (Viemeister, 1979) for •'. 

The results of the model calculation are shown in Fig. 5. 
The two labeled lines show the predicted values of the 
threshold N(75) as a function ofthe bandwidth for both 0.95 
and 0.9 criterion ratios. The various points on the plot repre- 
sent the experimental values of N(75) for all subjects for all 
the experimental band bottom frequencies and sound dura- 
tions. Most of the data fall between the theoretical curves 

corresponding to the two criterion ratios, a result which sup- 
ports the model. However, the lines which connect experi- 
mental points for a given subject and condition show that 
performance increases with in•reasing bandwidth faster 
than the model predicts. The lower the band bottom fre- 
quency, the greater is the discrepancy between the rate of 
increase observed experimentally and the rate predicted by 
the model. 

IlL EXPERIMENT 2:. COMPLEX WAVEFORMS 

One of the goals of the present study was to gain some 
insight into the perception of instrumental choruses. We 
asked: How many instruments must there be in a unison 
chorus so that the resulting sound is indistinguishable from a 

very large number of instruments, given that the intensity is 
constant? Experiment 1 showed that, if the instruments are 
sine oscillators, then the threshold value is, for example, 
four, for oscillators playing C5 and almost a whole tone out 
of tune (.fb = 500 Hz, W---- 50 Hz). Such a small number is 
not consistent with one's ordinary musical experience with 
the complex tones of musical instruments. 

To extend our study to sounds which are somewhat real- 
istic musically, we performed density discrimination experi- 
ments using clusters of complex harmonic tones. 

A. Stimuli and procedure 

The single tone, which was the basis of the cluster, had 
the spectrum of a violin, taken from the IRCAM sound li- 
brary (Gerzso et aL, 1978). For different fundamental fre- 
quencies, different violin spectra were used: for a fundamen- 
tal of 500 Hz C5, for 1000 Hz C6, for 2000 Hz C7, all 
including harmonies up to 6000 Hz. The relative harmonic 
levels, measured at the output of the power amplifier, are 
given in Table V. The harmonic components were added in 
sine phase to make the waveform. To construct the cluster of 
tones, we followed the same procedure as for the sine wave- 
form in experiment 1. Fundamental frequencies were ran- 
dom within a bin of width W/3L Waveform amplitudes were 
scaled by the inverse square root of N to provide constant 
intensity for the clusters. The procedure and the subjects 
were the same as for experiment 1; all sounds were 500 ms in 
duration. 

B. Results 

Threshold data from the experiments with clusters of 
tones having a violin spectrum are shown in Table VI, for 
various fundamental band bottom frequencies and band- 
widths. Comparison with the corresponding graphs for the 
sine waveform show that performance is considerably better 
for the violin waveform than for the sine waveform with the 

same frequency. Thus the data for violin spectrum clusters 
are somewhat more in lin• with expectation based upon mu- 
sical experience. 

TABLE V. Relative intensities of the harmonics of the violin waveform 

used for complex components. 

Harmonic C$ (.lb = 500 Hz) C6 (.fb = 1000 Hz) C7 • = 2000 Hz) 

! 0dB 

2 --5 

3 --7 

4 -- 10 
5 -- 17 

6 -- 27 
7 --29 
8 -- 36 

9 -- 45 

10 -- 40 

11 --46 

12 -- 45 

0 dB -- l dB 
--18 0 
-- 17 -- 12 
--31 

-- 37 

-- 38 
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TABLE VI. Threshold values for tones with a violin spectrum compared 
with thresholds for the individual harmonics. The data for the sine wave- 

form were taken from experiment I ( T = 500 ms). 

N(75) 
f• (Hz) W(Hz) Sl S2 S3 

violin 250 50 12 7 

sine I 250 50 4 4 
sine 2 500 100 8 4 
sine 3 750 150 ...... 

sine 4 1000 200 15 9 

sine 8 2000 400 19 16 

violin 500 50 11 ! 5 6 
sine 1 500 50 4 4 4 

sine 2 1000 100 7 7 5 
sine 3 ............... 

sine 4 2000 200 I 1 11 9 

violin 500 100 19 21 9 
sine 1 500 100 8 8 4 

sine 2 1000 200 15 13 9 
sine 3 ............... 

sine 4 2000 400 19 19 16 

violin 1000 100 10 17 8 

sine 1 1000 100 7 7 5 

sine 2 2000 200 11 l I 9 

violin 1000 200 25 > 25 11 
sine 1 1000 200 15 13 9 

sine 2 2000 400 19 19 16 

sine 3 3000 600 19 21 18 

violin 2000 I00 18 12 4 

sine I 2000 100 8 8 4 

C. Discussion 

One can imagine ways in which the auditory system can 
use the information in the harmonic bands to improve per- 
formante. The simplest model is one in which listeners are 
able to listen selectively to the different harmonic bands and 
can make their decisions based upon the one band which 
provides the most information. Because the sine waveform 
experiments reported in Sec. I were done at octave values of 
fb, it was possible to do a limited test of this model by com- 
paring the thresholds for the violin spectrum sound with the 
threshold for the individual sine components. The compari- 
son is done in Table VI. 

The table shows that for subjects S1 and S2, and for 
fundamental frequencies of 500 Hz and above, the perfor= 
mance with the violin spectrum is approximately as good as 
the best performance measured for any harmonic of the vio- 
lin spectrum sound, in agreement with the model. For exam- 
ple, for the 500-Hz fundamental, the threshold value of N for 
the violin spectrum is quite close to that for the 4th harmonic 
alone. The data for subject S3, however, do not show the 
expected improvement. 

The experiments with a fundamental frequency of 250 
Hz were done in response to comments on an earlier version 
of this paper; listener S2 was no longer available. The values 

of N(75) shown in Table VI show that performance for the 
violin tone is now less good than the best performance mea- 
sured in any harmonic band. The model cannot explain that 
result unless it is supplemented with the qualification that a 
harmonic band cannot be used if it is within a critical band- 

width of another harmonic band. Using critical bandwidth 
given by Seharf (1970), we checked this qualified model 
against the other data in Table VI and found that the quali- 
fied model fails for the two experiments done with a funda- 
mental frequency of 1000 Hz. 

IV. CONCLUSION 

The above sections havc presented data, hypotheses, 
and a model concerning the discrimination of spectral den- 
sity in dense clusters of tones, where the tones have either a 
sine waveform (Sees. I and II) or a complex waveform (See. 
III). This section presents our conclusions for these two 
cases. 

Our experiments found that for clusters of sine tones the 
largest spectral density which was ever distinguishable from 
a very large density was 80 components per kHz. This value 
of the discrimination threshold is considerably less than the 
value of 1000 components per kHz found in the masking 
experiments by Schafer et al. (1950). A similar conclusion 
was reached by Gerzso (1980). 

A comparison might also be made with the spectral den- 
sities used in profile analysis studies (Green and Mason, 
1985, and references therein). The largest density to be 
found in those studies is 43 components logarithmically 
spaced between 200 and 5000 Hz. The largest spectral den- 
sity occurs at the bottom of the band where it is 63 eompo- 
nents/kHz. At the signal frequency of 1000 Hz, it is a factor 
of 5 smaller and at the top of the band it is yet another factor 
of 5 smaller. A comparison with Table III shows that these 
densities are considerably smaller than those which are in- 
distinguishable from noise. The profile analysis experiments 
and our density discrimination experiment are operating in 
rather different regimes of spectral density. 

The ability to discriminate spectral density appears to be 
mediated primarily by the discrimination of loudness fluctu- 
ations in the sound. The primacy of this cue was suggested by 
the partial success of hypothesis 2, which says that perfor- 
mance in density discrimination depends upon the band- 
width and is independent of the band center frequency, and 
by the rather good overall agreement between the data and 
the rms fluctuation model of Sec. II. 

However, for large bandwidths, hypothesis 2 and the 
rms fluctuation model tend to fail. As the bandwidth is in- 

creased, the observed performance improves faster than the 
model predicts. This is particularly true for smaller band 
bottom frequencies. As shown in Fig. 5, the disagreement 
between the data and the model increases as the band bottom 

frequency decreases from 2000 to 1000 to 500 Hz. 
One possible explanation for the discrepancy is that 

tone-color differences, clearly audible for small values of N, 
continue to be usable cues as N increases to N(75). Because 
tone-color discrimination depends upon spectral resolution 
within the band of components, one expects it to be of in- 
creasing importance as the bandwidth increases and, accord- 
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inc to this explanation, to result in performance which is 
increasingly better than is predicted by the rms fluctuation 
model alone. Further, because critical bandwidths (and fre- 
quencyjnds) decrease with decreasing frequency, tone-color 
cues should be more important for small band bottom fre- 
quencies than for large. The explanation is thus in qualitative 
agreement with the nature of the discrepancy between the 
experimental values of N(75) and the prediction of the rms 
fluctuation model. It is also in agreement with the nature of 
the failure of hypothesis 4 when the bandwidth-duration 
product is 100. 

An alternative explanation for the discrepancy between 
the experimental data and the rms fluctuation model raises 
the question of the number of components of the signal 
which contribute to the perceived fluctuations. The rms fluc- 
tuation model began with the physical waveform and thus 
included all spectral components. There is reason to believe, 
however, that temporal fluctuations in the auditory system. 
are generated only by those components in a single critical 
band (Zwicker, 1952). Our experiments, in fact, included 
some bandwidths which were smaller than the critical band- 

width and some which were larger, for every value offb. 
A simple approach to the case in which the band of 

components !s larger than a critical band is to assume that 
fluctuations in the auditory system are mainly due to compo- 
nents within a critical band centered somewhere within the 

band of components. Therefore, to maintain constant per- 
formance when the bandwidth is increased would require 
that the number of components in the band increases pro- 
portionately. This expectation is actually hypothesis 3, 
which says that constant performance occurs for constant 
spectral density. In tote, this approach predicts that the plot 
of N(75) as a function of bandwidth should follow the rms 
fluctuation curve, as shown in Fig. 5, from small bandwidths 
up to the critical bandwidth, and should thereafter be direct- 
ly proportional to the bandwidth. This variation on the rms 
fluctuation model actually fits the experimental values of 
N(75) shown in Fig. 5 somewhat better than does the model 
based upon the physical signal because it has a steeper slope 
for large W. However, there are several arguments against it. 
First, this alternative model predicts a slope which is too 
steep. (The densities shown in Table III are not constant but 
decrease with increasing bandwidth.) Second, there is a con- 
ceptual difficulty with the critical-band-limited fluctuation 
variation in that a critical band centered somewhere within 

the band of components is not the most advantageous criti- 
cal band for performing the task of density discrimination. 
More advantageous would be a critical band centered well 
outside the band of components so that the total number of 
effective spectral components would be small for both the 
dense standard and the less dense sound. But using such a 
critical band would seem to lead to a performance which is 
enormously better than observed experimentally. In the end, 
we believe that this alternative explanation for the deviation 
of the data from the predictions of the rms fluctuation model 
raises more problems than it solves. 

The rms fluctuation model involves only the magnitude 
of the fluctuation. It does not include the possibility that the 
perception of particular patterns in the fluctuations may 

play a role in the discrimination task. A major feature ofour 
experimental procedure was the randomization of the fre- 
quencies in each sound to try to avoid such cues. We cannot 
prove, however, that the randomization procedure was en- 
tirely successful in doing so. Indeed, informal comments by 
subjects as they groped for a criterion to use in performing 
the task indicated that imagined characteristic patterns, par- 
tieularly for the 60-component sounds, may have contribut- 
ed to the decisions. It is not known, however, whether deci- 
sions based upon such a pattern criterion were right more 
often than they were wrong. When subjects subsequently 
performed the three-interval task,• with two different 60- 
component sounds in each trial, they concluded that differ- 
ent 60-component sounds produced quite different patterns. 

The rms fluctuation model also does not allow for the 

possibility that the perception of fluctuation rate may contri- 
bute to discrimination. An estimate of the distribution of 

frequencies from which the fluctuation is composed is given 
by the configuration-averaged power spectrum of the power 
fluctuations, in Eq. (A8) of the Appendix. The spectrum is 
basically a low-passed version of the distribution of frequen- 
cy differences in the signal, so that the most probable rate 
depends upon the number of components in the band. How- 
ever, informal comments by listeners did not suggest that 
fluctuation rate was an important cue in performing the task. 
Introspective listening suggested that the fluctuation rate is 
indeed correlated with the fluctuation magnitude, but that it 
is less salient. We suspect that the spectral distribution of 
fluctuation frequencies is too broad to make the rate a useful 
cue near threshold. 

In summary, there are a number of different perceptual 
cues which could serve as a basis for discrimination of spec- 
tral density. The hierarchy of cues which seems most plausi- 
ble to us is one in which the magnitude of loudness fluctu- 
ations is of primary importance and the perception of •one 
color is second in importance. The tone-color cue becomes 
increasingly important for large bandwidths and low band 
center frequencies. 

For complex sounds, we have persuasive evidence that 
listeners can use information in the harmonic bands to dis- 

criminate spectral density. For tones with a violin spectrum, 
listeners can use harmonic bands at least as high as the 
fourth, though we were not able to account for this fact in 
terms of a single simple model. Performance is better with 
complex sounds than with sine tones because bands with 
increasing harmonic number are increasingly wide. How- 
ever, we believe that the threshold densities obtained for the 
violin spectrum cluster are still smaller than would be ob- 
tained for musical instruments in a unison chorus. The rea- 

son is probably that the tones of musical instruments are 
individually complicated with characteristic attacks, vi- 
brato, jitter, and time-dependent structure in the spectrum. 
The studies of MeAdams (1984) suggest that such individ- 
ual features can cause individual instruments to be heard 

individually. It is possible that asymptotic spectral density 
occurs when the number of instruments is large enough for 
these individual variations to be obscured. 

Further experiments may place a limit on the number of 
harmonic bands which can be used to discriminate density 
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and may determine whether information may be accumulat- 
ed across different harmonic bands. To decide the basis for 

density discrimination for the complicated tones of musical 
instruments will require further work using sounds with all 
the properties of such complicated tones including asyn- 
chronous attacks, vibrato, and jitter, and individual intensi- 
ty and spectral variations. 
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APPENDIX: RMS FLUCTUATION MODEL 

This Appendix describes the development of the rms 
fluctuation model, applied above in Sec. II. The model as- 
sumes that the auditory system responds to fluctuations in 
the instantaneous power of the stimulus, as passed through 
an averaging window, moving in time. The effective, or per- 
ceived, power fluctuations are calculated for the general 
stimulus as a function of time. To allow a comparison 
between the model and the experimental data, the root- 
mean-square fluctuation is computed, where the mean rep- 
resents a configuration average, an average over all possible 
stimuli for a given number of components in the band. The 
computed rms value of the fluctuation is time independent 
and can be calculated analytically. The details of the devel- 
opment are as follows. 

To calculate the envelope of the stimulus with Ncompo- 
nents in a band, one describes the signal in phasor form: 

x(t)= 2, e e ', (A1) 
•-•' i-- I 

where oai and q•i are the angular frequency and the phase of 
the ith component. ' 

The power P is the square of the absolute value in Eq. 
(A1), given by 

2 N i--I 

P(t) = 1 --[-•j_•ijZicoS[ (o) i -- (aj)t +q•i--•0• ]. 
(A2) 

Because the signal is normalized by the number of com- 
ponents, the mean power, given by the first term, is unity. 
The double sum in Eq. (A2) represents the fluctuation 
about the mean power. The fluctuation depends upon the 
frequencies and phase angles of the components only 
through differences. Therefore, the statistical nature of the 
fluctuations depends only upon the number of components 
and the bandwidth; it is independent of the band center fre- 
quency. 

Equation (A2) gives the exact value of the power at any 
time. The fluctuations in time are mused by beats among the 
components, and some of these may be very rapid. We allow 

for the possib•ity that the auditory system may not precisely 
follow rapid beats by folding the instantaneous power with 
an exponential window (sometimes called a "memory func- 
tion") of time constant r, to obtain energy E: 

E(t) = e(C-a/* P(t'}dt '. (A3) 

The lower limit in the integral involves the assumption that 
is much less than the stimulus duration T. 

The effective power, • = E(t)/r, is then given by 

•(t)=l+--z./=. • , (A4) 
Ni = v- • 1 + (rAtoil) 

where 

Y0 = (to, -- roj)t .q- q• i --q>; 

and 

•-0 0 =o) i 

The double sum in Eq. (A4) is the fluctuation F. Its time- 
average value is zero for any nondegenerate •onfiguration of 
frequencies and phases, as is its configuration average for 
any value of time. We, therefore, study the configuration 
average of the square of the fluctuation -{F 2): 

Terms in F • involving products of cosine functions and sine 
functions ofy o andyr/, (i•t q and j•f) average to zero and 
do not appear in Eq. (AS). The squared cosine and sine 
functions which remain can be replaced by their configura- 
tion-average values of 1/2. Then the mean-square fluctu- 
ation is given by the time-independent equation, 

W/N u w 

F113. A 1. Probability density for the frequency difference between two com- 
ponents when the frequency band, of width • is filled by placing one com- 
ponent in each of iVbins. 
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probability density for frequency differences, multiplied by 
N(N- 1 )/2. For the binned frequencies used in our experi- 
ment, the density of differences is a triangle, as shown in Fig. 
(AI). The density is zero when the frequency difference is 
equal to zero or when it is equal to the bandwidth W (angu- 
lax frequency difference equal to 2rr I4Q. The most probable 
value of the difference is the bin width, W/N. The integral 
can be done analytically to give a final expression for (F2), 

(F 2) = •r[tan-•(Wr)- tan-•(----•) 

(A7) 

The function in Eq. (A7) has the following properties: 
( 1 ) It is always less than or equal to 1; the fluctuation in 

power can never be greater than the average power. 
(2) It depends upon the bandwidth W and upon the 

integration time r only through their product Wr. 
(3) Its limit for Wr = 0 is 1 -- 1/N. The interpretations 

of the individual limits, W = 0 and r = 0, are, however, 
quite different. For W= 0, the limit is simply wrong; the 
configuration-averaging assumptions above are invalid for 
the highly degenerate case of zero bandwidth. For r = 0, the 
limit is correct; for a given N, this limit gives the largest 
possible mean-square fluctuation. 

(4) It is zero for N = 1; there is no fluctuation for only 
one component. 

{5) Its limit for an infinite number of components is 
obtained by summing the first and the last terms on the right- 
hand side ofEq. (A7). 

(6) The fluctuation increases for increasing number of 
components Nand for decreasing bandwidth W. However, it 
is not a simple function of the spectral density N/W. 

The rms value of the fluctuation, computed by taking 
the square root of Eq. (A7), is shown in Fig. 4 for several 
values of Wr. 

An impression of the statistical nature of the rate of the 
fluctuation can be gained by taking the Fourier transform of 
the time-dependent internal power in Eq. (4), omitting the 
constant term. Because the phase differences among compo- 
nents are random, a configuration average of the Fourier 
transform is zero. The configuration average of the power 

spectrum of the power fluctuation is finite, however, and it is 
simply related to the density of differences p (to). 

([ap2(to)l)a N- I p(a0 (A8) 
N 1 + (rto) 2' 

Density p(to) is the triangle given in Fig. A1, with 
to = 2rrAf 

•We have also used a three-interval paradigm which does not require the 
listener to have any preconceived notion about how a densely packed band 
should sound. The first interval contained a version of the 60-component 
sound. The next two intervals contained a different version of the 60-com- 

ponent sound and the sound with a variable number of components, ran- 
domized in order of presentation over trials. The sobject's task then be- 
came one of deciding which of the latter two sounds was like the first. Per- 
formance on the three-interval task was not better than performance on the 
two-interval task; it actually appeared to be somewhat worse. Worse per- 
formance might be understood in the following way: In the two-intervai 
task, the listener could use accumulated experience to form a general image 
of the (:/•-component sound. The image could be used as a general template 
for comparison with any of the infinite variety of 60-component sounds 
presented during the task. In the three-interval experiment the listener was 
required to compare one version of the 60-component sound with another. 
Since these were often dissimilar, the listener made errors. In any event, the 
two-interval paradigm is the more eflioient, and all data reported in this 
paper were obtained by using it. 

2Tbe three listeners each did three experimental blocks with]', = 1000 Hz, 
1•'•2 200 Hz, and T= • ms for large values of the variable number of 
components, N= 25,30,35,...,60. Performance never reached threshold 
for any value of N, suggesting that there is no additional cue, for large 
number of components, which subjects can use to do the task. 

Gerzso, A. (19110). "Density of spectral components: Preliminary experi- 
ments, "IRCAM Rep. 31 (unpublished). 

G-erzso, A., Moorer, $. A., and Wessei, D. L. (1978). "Spectral data base of 
orchestral instrument sounds," IRCAM Rep. (unpublished). 

Green, D. M., and Mason, C. R. (19•S). "Auditory profile analysis: Fre- 
quency, phase, and Webefts law," J. Acoust. Soc. Am. 77, i 155-1161. 

MeAdams, S. (1984}. "Spectral fusion, spectral parsing, and the formation 
of auditory images," Ph.D. thesis, Stanford University, Stanford Depart- 
ment of Music Report STAN-M22 (unpublished). 

,%hafer, T. H., Gales, R. S., Shewmaker, C. A., and Thompson, P.O. 
(1950). "The frequency selectivity of the ear as determined by masking 
experiments," J. Acoust. Soe. Am. 22, 490-496. 

Scharf, B. { 1970). "The critical band," in Foundations of Modern Auditory 
Theory, edited by .I.V. Tobias (Academic, New York), pp. 159-202. 

Terhardt, E. (1974). "On the perception of periodic sound fluctuations 
(roughness)," Acustica 30, 202-213. 

Viemeister N. (1979). "Temporal modulation transfer functions based 
upon modulation thresholds," J. Aeonst. Soc. Am. 66, 1364-1380. 

Zwicker, E. (1952). "Die Crrenzen der Horbarkeit der amplitudenmodula- 
tion und der frequenzmodulation eines tone," Aeustiea 2, AB 125-133. ' 

925 J. Acoust. Sec. Am., Vol. 79, No. 6, June 1986 Hartmann eta/.: Discrimination ol spectral density 1925 


