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The pitches of the harmonics (numbers 1, 2, 3,4, 5,7, 9, and 11) of a complex tone were measured
in a matching experiment. The harmonics to be matched were mistuned (8% or less) either
positively, or negatively, or not at all. For all mistuned harmonics and all listeners the matching
pitches were found to be exaggerations of the mistunings, i.e., the data exhibited pitch shifts with the
same sign as the mistunings. This result is shown to be contrary to place models of pitch perception,
such as the spectral pitch algorithm of Terhardt, in which pitch shifts are caused by the interaction
of excitation patterns for the individual harmonics. An alternative model, in which pitch is
determined by neural timing, also fails to account for the data. However, a hybrid model, combining
effects of excitation pattern interaction with neural timing, does agree with* most of the

data. © 1996 Acoustical Society of America.
PACS numbers: 43.66.Hg, 43.66.Ba

INTRODUCTION

A complex periodic tone, such as an idealized steady
vowel or musical instrument tone, is normally heard as a
single entity. The harmonics of the tone are not heard indi-
vidually; rather they are integrated by the auditory system to
determine the pitch, the loudness, and the tone color of the
entity. Under special circumstances, however, the individual
harmonics can be heard (Helmholtz, 1885). Updates of these
circumstances were given a century later (McAdams, 1984;
Hartmann, 1988). The question then arises, how does the
percept of a harmonic segregated from its complex tone con-
text compare with the percept of that harmonic when it is
presented alone, as a single sine tone?

In 1971 Terhardt reported experimental results showing
that the pitch of a harmonic in a complex tone is different
from the pitch of an equal-level sine tone having the fre-
quency of that harmonic. His data showed that the pitch of
the fundamental component is shifted downward compared
to the pitch of the corresponding sine. The pitches of all
other harmonics were shifted upward. (Data also appear in
Terhardt, 1972, 1979.)

The discovery of these shift effects influenced subse-
quent research in pitch perception, and did so for several
reasons. First, it is possible that the auditory system derives
the virtual (low) pitch of a complex tone from the (shifted)
pitches of the harmonics (Terhardt, 1974). If this is true then
shift effects are potentially involved in every aspect of com-
plex tone pitch. Second, pitch shifts of all kinds provide
powerful experimental methods to learn more about the pro-
cess of pitch perception itself (e.g., Houtsma, 1981).

In 1979 Terhardt presented a semiempirical algorithm
whereby the pitch shifts can be calculated. (See also Terhardt
et al., 1982b.) The algorithm owes at least as much to actual
measurements of pitch shifts as it does to first principles.
Such principles as are involved have the strong flavor of a
place theory, beginning with a neural excitation pattern as a
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function of a tonotopic coordinate (Terhardt, 1972). The ex-
citation might be understood as driven neural firing rate or
synchronous firing rate. The tonotopic coordinate might be
the critical-band scale or a place along the basilar membrane.

In this theory, the pitch of each harmonic in a complex
tone is determined by a corresponding hump in the excitation
pattern. The shape of each hump is modified by excitation
due to neighboring harmonics because of mutual masking.
Such modifications are the origins of the pitch shifts. For the
fundamental, the masking can only be due to higher harmon-
ics. The excitation for the fundamental is masked from above
and therefore the pitch of the fundamental must be lower in
the complex tone than in isolation. Thus the theory predicts a
negative pitch shift for the fundamental, in agreement with
experiment. For a higher harmonic the excitation is affected
by harmonics both above and below. The interaction is easi-
est to understand for spectrally resolved harmonics (approxi-
mately two through six) where the prediction is that there
should be a positive pitch shift, again in agreement with
Terhardt’s experiment.

In 1983 Peters ef al. made a search for pitch shifts in the
harmonics of a complex tone, using experiments similar to
those reported by Terhardt in 1971. Although they tried sev-
eral different methods, both adjustment and forced choice,
they were unable to measure statistically significant pitch
shifts. This result cast some doubt on the generality of both
the experiments and the algorithm described by Terhardt and
his colleagues.

In 1989 Hartmann et al. obtained data pertinent to the
pitches of the harmonics in a complex tone. The experiment,
called the ‘“‘mistuned-harmonic matching” experiment
(MHM), studied complex tones in which one harmonic had
been mistuned from its correct value. The goal of the experi-
ment was to determine the amount of mistuning required for
a listener to hear out the mistuned harmonic as a segregated
tone. The method required listeners to tune a sine tone to
match the pitch of the mistuned harmonic.

A by-product of the MHM experiment was a set of data
on the pitches of the components of a complex tone. The
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main difference between that experiment and the experi-
ments by Terhardt or by Peters er al. was that the harmonics
were not exact but were mistuned. The data showed signifi-
cant pitch shifts, as might have been expected from
Terhardt’s experiments. However, the sign of the pitch shift
was curiously correlated with the sign of the mistuning of the
mistuned harmonics. For example, if the fourth harmonic of
a 200-Hz fundamental was mistuned by +4% so that its
frequency became 832 Hz, then a typical match was 849 Hz,
a pitch shift of +2%. If the fourth harmonic was mistuned by
—4% so that its frequency became 768 Hz, then a typical
match was 760 Hz, a pitch shift of —1%. (By definition,
pitch shifts are always computed with respect to the actual
frequency of the mistuned harmonic.)

The pitch shifts observed in the MHM experiment could
be fairly compared with shifts predicted by Terhardt’s algo-
rithm. Because of its place-theory origins, the algorithm is
not restricted to periodic complex tones; it can be used to
compute pitches for inharmonic components as naturally as
for harmonic components. For example, Terhardt er al.
(1982a) used the algorithm to predict the pitch of church-bell
tones. The algorithm predicts that for positive mistuning the
pitch shift should be positive. As it turns out, both the sign
and the magnitude of the predicted shift are in reasonable
agreement with the pitch shifts observed in the MHM experi-
ment for positive mistuning.

For negative mistuning the algorithm predicts that the
pitch shift is again positive, even more positive than for an
equivalent positive mistuning. This prediction (for harmonics
2-7) follows from the place theory. The fourth harmonic will
serve as an example: The pitch of the fourth harmonic is
shifted upward because of partial masking from below,
mainly by the third harmonic. If now the fourth harmonic is
mistuned in a negative direction it moves closer to the third
harmonic. Therefore, the amount of masking is greater, and
this leads to a greater positive pitch shift. However, the pre-
diction for negative frequency shifts is completely contrary
to the results observed in the MHM experiment. The experi-
ment found that for negative mistunings the preponderance
of the matches showed negative pitch shift.

The discrepancy between the predicted and observed
pitch shifts is striking. It is more serious than a simple nu-
merical matter. Rather, the discrepancy in sign for negative
mistunings challenges any model of pitch perception based
upon place processes incorporating mutual masking because
shifts due to masking do not change sign when the mistuning
changes sign.

To check the results obtained as a by-product in the
MHM experiment, we decided to perform experiments that
were designed specifically to measure pitch shifts. These ex-
periments are reported below. Like the original MHM ex-
periment these experiments used a pitch matching procedure.
However, the present experiments included symmetries in
method and analysis that minimize biases. Specifically we
wanted to make a careful test of the MHM observation that
pitch shifts are positive for positive mistunings and negative
for negative mistunings.
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I. EXPERIMENT 1

Experiment | was a pitch matching experiment in which
listeners adjusted the frequency of a sine tone to match the
pitch of a mistuned harmonic in a complex tone.

A. Procedure

The listener was seated in a sound-treated enclosure,
holding a response box that controlled the events of an ex-
perimental trial. When the listener pressed a yellow button
there was a pause of 300 ms, and then a complex tone, with
one of its harmonics mistuned. When he pressed an orange
button there was a pause of 300 ms, and then a sine tone,
with a frequency that could be adjusted by means of a ten-
turn potentiometer on the box. The pause prevented interac-
tion between the complex tone and the matching sine tone
(Rakowski and Hirsh, 1980); the potentiometer allowed the
listener to make the pitch match. The listener could call up
the complex tone or the matching tone, in any sequence, as
often has he liked. When the listener was satisfied with his
match he pressed a green button to finish the trial. The stimu-
lus and matching frequencies were then recorded, and then
the next trial, with a different amount of mistuning, began.
After 11 trials a run was complete, and the listener could
come out of the enclosure to rest.

During the course of an experimental run the number of
the particular harmonic that was mistuned was fixed for all
trials. In different runs, harmonics 2, 3, 4, 5, 7, and 9 were
mistuned. There were eleven different mistunings, —8%,
—4%, —2%, —1%, —0.5%, 0%, 0.5%, 1%, 2%, 4%, and
8%, each used once in a run for a total of eleven matches. On
the first trial of a run the mistuning was always 8%. A har-
monic mistuned by that amount was easy to hear so that the
listener was immediately cued to the correct frequency re-
gion for the run. On subsequent trials the amount of mistun-
ing was selected randomly from the other ten percentages.

B. Stimuli

The fundamental frequencies of the complex tones were
in the vicinity of 200 Hz. For a given trial, a complex tone
with a mistuned harmonic was loaded into a digital buffer
16 382 samples long. The buffer was recycled endlessly, and
samples were converted by a 16-bit DAC at a nominal
sample rate of 16 382 samples/second. To prevent the lis-
tener from using his memory for pitch to do the task, the
sample rate was actually different on every trial. It was ran-
domized over a range of +10% to —10%, with a rectangular
distribution. Therefore, the fundamental frequency ranged
from 180 to 220 Hz.

The analog signal was low-pass filtered at 7 kHz, —115
dB/oct. The complex tone, as presented to the listener, was
shaped by a computer-controlled amplifier to give it an en-
velope with a 10-ms raised-cosine onset and offset and a
full-on duration of 400 ms. The electrical signal had 16 com-
ponents, all of the same amplitude. It was presented dioti-
cally via Yamaha YH1000 headphones at a level of 40 dB
SPL, nominally 28 dB per component. In this experiment no
runs were done with a mistuned fundamental because the
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low level made it difficult to hear the fundamental compo-
nent.

The matching sine tone was generated by a voltage-
controlled function generator, Wavetek VCG116, controlled
by the potentiometer on the response box. Its frequency was
read to an accuracy of 0.01 Hz by a triggered clock on the
computer bus. The level of the matching tone was the same
for all experimental conditions, fixed at a value 18 dB less
than the level of the complex tone, i.e., 6 dB less than the
level of each component of the complex tone. As a result, the
matching tone was approximately equally as loud as an in-
dividual component. It was expected that equal loudness
would make the pitch matching task easier.

C. Listeners

The listeners, E, J, K, and S, were four male undergradu-
ates, between the ages of 19 and 24. They were selected from
a larger pool of listeners based upon their accurate perfor-
mance in a pitch-matching test for sine tones in the range
150 to 1000 Hz. All the listeners had negative otological
histories and some training as performers of musical instru-
ments.

D. Protocol

In the data-collection phase we obtained at least ten
matches (ten runs) from each listener for each percentage of
mistuning for each mistuned harmonic. Runs were blocked
by mistuned harmonic number, a listener completing one
block before starting on the next. The order of blocks for
each listener was somewhat haphazard, but as a rule, easy
harmonics (mistuned 2 and 3) were done first and harder
harmonics (mistuned 1 and 9) were done later. Listeners dif-
fered greatly on the amount of time spent on a run. Listener
J could complete a run in as little as 2 min. At the other
extreme listener E sometimes needed as long as 20 min for a
run. Listener J could easily complete a block of ten runs
within a single 2-h session; listener E required several 2-h
sessions for a block.

E. Results

The goal of the experiment was to find accurate esti-
mates of the pitch of mistuned harmonics by averaging the
matches made by a listener. Averages, however, can misrep-
resent the majority of the data if there are a few outlying
points at extreme values. Our experiment was prone to such
outlying data points because listeners occasionally matched
the wrong harmonic. Therefore, we subjected the data to a
self-consistency test. All the data from the runs for a particu-
lar listener, a particular mistuned harmonic, and a particular
percentage mistuning were averaged to find a mean pitch
shift, measured in percent. The standard deviation (s.d.)
(N—1 weight) was computed as well. If the s.d. was less than
2.5% then the mean was accepted. If the s.d. was greater than
2.5%, then the data point that differed most from the mean
was discarded and a new mean and s.d. were computed. This
process was iterated until the s.d. became less than 2.5%.
Unlike the data windowing used in the original MHM ex-
periment there was no absolute requirement on the data. The
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TABLE 1. For four listeners, E, J, K, and S, and for different mistuned
harmonics the denominator shows the total number of matches, summed
over the different amounts of mistuning, and the numerator shows the num-
ber of matches accepted by the analysis. The difference between denomina-
tor and numerator is the number of matches that were rejected to make the
standard deviation for each amount of mistuning less than 2.5%. Experiment
1, 28 dB per component.

Mistuned

harmonic E J K S
2 110/110 121/121 111/111 121/121
3 100/100 100/100 100/100 100/100
4 100/100 100/100 100/100 110/110
5 111/111 109/110 109/110 108/110
7 112/121 113/121 114/121 111/121
9 48/48 59/60 48/48 60/60

data selection was based entirely on self-consistency. Table I
shows the number of matches and the number of data points
included in the average, summed over all values of the
amount of mistuning.

For each listener and each mistuned harmonic we made
plots showing the pitch shift, in percent, as a function of the
frequency shift of the mistuned harmonic, also in percent.
This led to a total of 28 figures, not shown here. Instead Figs.
1-5 show collective plots which are averages over listeners,
obtained by pooling all the matches for a given mistuned
harmonic and a given mistuning. Comments below indicate
the individual differences. Solid lines on the figures show
predictions from the algorithm of Terhardt er al. (1982b).!

Mistuned 2nd harmonic (Fig. 1): Listeners E and S
showed small shifts, but shifts were as large as 2% for lis-
tener K. The tendency for pitch shifts to saturate for large
positive and negative mistunings was observed for all four
listeners.

Mistuned 3rd harmonic (Fig. 2): Listener S showed
small shifts, the others were like the average. Saturation for
large mistuning occurred for all listeners. For all listeners
negative mistunings produced entirely negative shifts.

Mistuned 4th harmonic (Fig. 3): As for the mistuned 3rd

Pitch shift (%)
Ll o
+—O

’_—

-2 . ]
Mistuned 2, 28 dB/c

IS4 H i i i i i
-8 -4 -2-10 1 2 4 8

Harmonic Mistuning (%)

FIG. 1. Collective graph showing average pitch shifts for four listeners for
the mistuned second harmonic, presented at a level of 28 dB per component.
The filled symbol in the middle is for zero mistuning. Error bars are two
standard deviations in overall length. The solid line shows the prediction of
the algorithm of Terhardt er al. (1982b).
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FIG. 2. As in Fig. 1, for the mistuned 3rd harmonic.

harmonic, no data were collected for a mistuning of —8%.
Shifts tended to be small for listeners E, J, and S. Except for
E, negative mistunings led to negative pitch shifts and posi-
tive mistunings led to positive pitch shifts. Saturation oc-
curred for all listeners.

Mistuned 5th harmonic (Fig. 4): Data from individual
listeners are very similar. For all of them, all positive mis-
tunings led to positive pitch shifts and all negative mistun-
ings led to negative pitch shifts. The tendency for the shift to
be smaller for =8% mistuning than for 4% was common
to all listeners.

Mistuned 7th harmonic (Fig. 5): Data for listeners K and
J resemble those for the mistuned 5th. Listeners E and S
contributed most of the variability. For J, K, and S negative
mistunings led to negative pitch shifts. Saturation effects
were strong.

Mistuned 9th (Fig. 6) and 11th harmonics: Only —8%,
—4%, 4%, and 8% mistunings were used, each three times
on each of four runs. Data for individual listeners are given
in Fig. 6 for the mistuned 9th. Data for both mistuned 9th
and 11th show positive pitch shifts for positive mistunings
and negative pitch shifts for negative mistunings. However,
for these high harmonics we are not sure that the listeners
matched the mistuned harmonic. Possibly they matched the
harmonic immediately above or below the mistuned har-
monic. On a ratio scale these higher harmonics are close
together. In the extreme case, an 11th harmonic shifted by

3
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FIG. 3. As in Fig. I, for the mistuned 4th harmonic.
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FIG. 4. As in Fig. 1, for the mistuned 5th harmonic.

8% lies only 1% below the 12th harmonic. The frequencies
of the nearest-neighboring harmonics are given by asterisks
in Fig. 6. It is likely that listeners did correctly match the
mistuned 9th harmonic, at least for *4%. Data are not
shown for the mistuned 11th.

To summarize the data of experiment 1 (28 dB per com-
ponent) negative mistunings tended to lead to negative pitch
shifts, as found in the MHM experiment and contrary to the
place theory algorithm. Quite generally the pitch shifts satu-
rated for large mistunings. This was true for all mistuned
harmonics and for all the listeners, with only one exception
in 28 plots.

Il. EXPERIMENT 2—INCREASED LEVEL
A. Method

Experiment 2 was identical to experiment 1 except that
the levels of the tones were increased by 30 dB. Each har-
monic of the complex tone had a level of 58 dB SPL.> These
conditions are similar to those used by Moore et al. (1984) in
a difference limen experiment: 12 harmonics at 60 dB per
component and envelope durations identical to ours. Experi-
ment 2 also included the mistuned fundamental. The listeners
were the same as in experiment 1. Most of the runs of ex-

T )
3
\\\_\“‘ o
% ST T T
® i 1T ¢ o
& ; H 1
» 0 7 T
sl ¢ 4]
-2
" J_“ [ Mistuned 7, 28 dB/ci]
-8 -4 -2-10 1 2 4 8

Harmonic Mistuning (%)

FIG. 5. As in Fig. 1, for the mistuned 7th harmonic.
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FIG. 6. Pitch shift for the mistuned 9th harmonic versus the amount of
mistuning, with signals presented at 28 dB per component. Listeners are E
(circles), J (triangles), K (squares), and S (diamonds). Error bars are two
standard deviations in overall length. Asterisks show the locations of the
frequencies of neighboring harmonics, the 8th (on the left) and the 10th (on
the right).

periment 2 were done before the runs of experiment 1; oth-
erwise runs from the two experiments were interleaved in a
haphazard way.

B. Results

The total number of matches and the number of matches
that passed the 2.5% criterion for the s.d. are shown in Table
II. This is directly comparable to Table I. A comparison of
these tables shows that more matches for high mistuned har-
monic numbers had to be rejected in the experiment done at
the higher level. The pitch shifts themselves are here com-
pared with those found in experiment 1.

Mistuned fundamental (Fig. 7): Data for individual lis-
teners fell within the error bars of the collective graph. The
largest s.d. on the collective graph is 1.4%, considerably
smaller than the 2.5% criterion. Negative pitch shifts pre-
dominated; on individual listener plots they outnumbered
positive pitch shifts by a 3 to 1 ratio. Negative pitch shifts
are predicted by Terhardt’s algorithm.

Mistuned 2nd and 3rd harmonics: The data are essen-
tially the same as the low-level data shown in Figs. 1 and 2.
Comparing individual graphs for 58 and 28 dB per compo-
nent shows that the corresponding error bars overlap with
one exception out of 84 data points. To conserve space, plots
are not shown for harmonics 2 and above. Interested readers
may request a set of figures for experiment 2 from the first
author.

TABLE II. Same as Table I but for experiment 2, 58 dB per component.

Mistuned

harmonic E J K S
1 110/110 110/110 132/132 121/121
2 109/110 121/121 132/132 121/121
3 100/100 100/100 100/100 100/100
4 100/100 97/100 94/100 109/110
5 100/100 104/110 98/100 99/100
7 73/110 93/100 89/100 79/100
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FIG. 7. Collective graph showing average pitch shifts for four listeners for
the mistuned fundamental in a signal presented at a level of 58 dB per
component. The filled symbol in the middle is for zero mistuning. Error bars
are two standard deviations in overall length. The solid line shows the pre-
diction of the algorithm of Terhardt er al. (1982b).

Mistuned 4th harmonic: Pitch shifts are about 50%
larger at the higher level compared to experiment 1; they are
as large as 4% for listener K. Large negative mistunings
always led to negative pitch shifts for all listeners. A ten-
dency for shifts to saturate was common to all listeners.

Mistuned 5th harmonic: As for mistuned harmonics
1-4, no matches were rejected from the collective graph that
were not rejected from individual graphs. However, the larg-
est s.d. was 2.4%, close to the 2.5% limit; it occurred for 0%
mistuning. A tendency for the shift to have smaller magni-
tude for 8% mistuning than for 4% (defined as “‘supersatu-
ration”) was common to all listeners. In the central cluster
positive shifts were more common than negative, and shifts
for listener K were positive for all mistunings. For the other
listeners large negative mistunings led to negative pitch
shifts. Compared to experiment 1, pitch shifts were larger at
the higher level, particularly for positive mistunings. For in-
dividual listeners they were often a factor of 2 larger. Error
bars were also larger at the higher level and the shift data
were less orderly.

Mistuned 7th harmonic: Error bars were dramatically
larger at the higher level and the shift data were less orderly.
This result came as no surprise to the listeners. Informally,
they reported greater confidence in their matches at the lower
level. Tables I and II show the same effect; only 7% of the
matches were rejected by the s.d. criterion at the lower level,
compared to 19% at the higher level. Two listeners were
unable to make reasonable matches for zero mistuning. Indi-
vidual data plots show that positive shifts considerably out-
numbered negative shifts, though the average pitch shift was
negative for negative mistunings.

Mistuned 9th and 11th harmonics: Only —8%, —4%,
4%, and 8% mistunings were used. The data showed positive
pitch shifts for positive mistunings and negative pitch shifts
for negative mistunings, in overall agreement with data for
other mistuned harmonics. However, the scatter in the data
make us less sure that the listeners matched the mistuned
harmonic.

To summarize experiment 2 (58 dB per component)
level effects were found to be negligible for low-numbered
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TABLE III. Quadrant count. For each mistuned harmonic and for two lev-
els, the entries indicate significant pitch shifts, summed over listeners. With
mistuning on the horizontal axis and pitch shift on the vertical, the entry in
the first quadrant gives the number of significant positive pitch shifts given
a positive mistuning, expressed as a percentage of the total number of
matches to tones with positive mistunings. The entry in the second quadrant
gives the percentage of pitch shifts that are significantly positive given a
negative mistuning. The third quadrant gives the percentage of pitch shifts
that are significantly negative given a negative mistuning, and the fourth
quadrant gives the percentage of pitch shifts that are significantly negative
given a positive mistuning. Numbers in a column do not sum to 100%
because not all matches resulted in significant shifts.

Mistuned
harmonic 58 dB/component 28 dB/component
1 0 35
55 20
2 15 40 0 45
35 0 45 10
3 0 45 0 55
4 0 58 0
4 0 45 0 47
25 0 44 5
5 0 50 0 85
38 0 60 0
7 25 94 10 75
0 0 42 5
9 0 100
100 0

harmonics 2 and 3. For higher harmonics pitch shifts in-
creased in magnitude with increasing level. Variability also
increased with increasing level especially for mistuned har-
monics 5 and above. In many cases pitch shifts were some-
what more positive at the higher level. Pitch shift saturation
for large mistuning was present at both levels but was less
marked for the higher level.

lll. DISCUSSION
A. Quadrant count

The quadrant count is a way to display the data that
effectively checks the most elementary hypothesis under test,
namely, that a positive mistuning produces a positive pitch
shift and a negative mistuning produces a negative pitch
shift. The quadrant count is based upon graphs for individual
listeners, with mistuning on the horizontal axis and pitch
shift on the vertical. We define a pitch shift to be “signifi-
cant” if the mean shift is positive or negative and the error
bar (N—1 weight) does not cross the horizontal axis. (This
criterion is moderately stringent. If the matches are normally
distributed then 84% of them must lie on one side or the
other of the horizontal axis in order to be counted as signifi-
cant.) The quadrant count is simply the number of significant
pitch shifts in each quadrant. For this purpose data obtained
with zero percent mistuning are ignored. If the hypothesis is
absolutely true then counts for the second and fourth quad-
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rants, where mistunings and pitch shifts have opposite signs,
will be exactly zero. The counts, summed over listeners and
expressed as a percentage of the total, are shown in Table III,
one column for each level.

Table III shows that the hypothesis is effectively veri-
fied. Entries in the first and third quadrants greatly exceed
entries in the second and fourth. There is one exception, the
mistuned 7th at the 58-dB level, where a strong tendency
toward positive shifts put all the significant shifts in the sec-
ond quadrant for negative mistunings.

B. Variability

The variability observed in our matching data, both for a
single listener and across listeners, is considerably larger
than the variability expected for matching one sine tone to
another. As shown by Moore et al. (1984) one effect of em-
bedding a sine tone in a context of harmonic components is
an increase in the frequency difference limen. Error bars on
individual plots for our best listeners are smaller than the
difference limens of Moore et al. for small harmonic num-
bers and comparable at larger harmonic numbers.

As indicated above, for a level of 58 dB per component
there was a sudden degradation in the reproducibility of the
data as the mistuned harmonic number increased from 5 to 7.
This result is in agreement with the difference limen data
from Moore et al. It is presumably due to the difficulty of
hearing out harmonics that are closely spaced, as studied by
Plomp (1964) and Plomp and Mimpen (1968). In fact, the
transition takes place exactly where Plomp (1964) says it
should; for a 200-Hz fundamental the 5th harmonic should
be separately audible, the 7th not. This result is normally
associated with resolving power along the tonotopic coordi-
nate of the auditory system, as expressed by critical band-
widths. According to Zwicker (1961), near our 5th harmonic
(1000 Hz) the critical band width is less than 200 Hz; near
our 7th harmonic (1400 Hz) the critical band width is greater
than 200 Hz. The correspondence between the theory of au-
ditory resolution and the variability of our data at 58 dB per
component is therefore good. If one accepts that correspon-
dence, however, then the considerable improvement in the
ability of listeners to resolve the 7th harmonic at 28 dB per
component suggests that something about the critical band,
its width or its shape, changes for a 30 dB reduction in level.

C. The strategic advantage of mistuned harmonics

The special nature of our experiment is that listeners
matched harmonics that were mistuned. Plots of pitch shift
versus mistuning were found to be reproducible, rather
stable, and orderly. The data are of high enough quality that
one is motivated to try to find a model to explain them.

It is possible, of course, to extract from our data only
those pitch shifts observed for zero mistuning. The result
should be comparable to previous results obtained by
Terhardt (1971) or by Peters er al. (1983). Plots of these
pitch shifts are shown in Figs. 8 and 9 as a function of
harmonic number. The figures do not show an orderly pitch
shift. Errors and individual differences are large enough that
the average is consistent with the idea that there is no pitch
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FIG. 8. Experimental pitch shift for five different harmonics that are not
mistuned. The signal level is 28 dB/component. Symbols for four listeners
are as in Fig. 6. Error bars are two standard deviations in overall length. The
solid line shows the prediction of the algorithm of Terhardt.

shift at all, with the possible exception of the mistuned 7th
harmonic at 28 dB per component. If we only had the data
for perfectly harmonic components we would agree with
Peters et al. that the spectral pitches of the harmonics of a
complex tone are are not shifted. The complete set of data,
however, makes it evident that reproducible pitch shifts do
exist and that they can be large.

IV. PREDICTIONS OF A NEURAL TIMING MODEL

The data shown above show that a masked-excitation
place model is inadequate to represent the pitch of the com-
ponents of a complex tone. Although the model, as exempli-
fied by Terhardt’s algorithm, agrees with the data for positive
mistunings, everything goes wrong when mistunings are
made negative.

A. Introduction to the timing model

As alternatives to place models for pitch, there are mod-
els based upon neural timing or counting. Among a wide
variety of possible candidates is a model that begins with the
interspike interval (ISI) histogram and supposes that pitch
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FIG. 9. As in Fig. 8, for 58 dB/component. For the seventh harmonic (only)
the vertical scale is multiplied by a factor of 3, as shown by the labels on the
right-hand axis.
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perception is derived from a function rather like that. This
approach has the advantage that the ISI histogram is flexible
(Ohgushi, 1983). Unlike other timing processes where the
spike rate is rigidly tied to the periodicity of the stimulus, the
IST histogram does not necessarily have its peaks at exact
multiples of the period. In fact, we are aware of only two
restrictions on the ISI histogram; both of them are sum rules:
First, the integral of the ISI histogram must equal the total
number of spikes in the record. Second, the first moment of
the ISI histogram must equal the total duration of the record
(Hartmann, 1993). These constraints permit considerable
variation. For example, the first peak in the histogram may
occur at intervals longer than the period, if there are com-
pensating changes elsewhere in the function. As a result,
pitch models based upon the ISI histogram can accommodate
pitch shift effects, diplacusis for example.

The ISI histogram has been successfully employed in
several pitch studies. Ohgushi (1983) argued that the pitch
shift phenomenon known as octave stretch can be explained
on the basis of delays seen in experimental ISI histograms as
the frequency is doubled. Jones et al. (1983) and Tubis et al.
(1986) used model ISI histograms incorporating refractory
effects to derive Stevens’ rule for the average pitch shifts as
signal intensity is changed. Apart from these pitch shift stud-
ies, we note that Goldstein and Srulovicz (1977) obtained
highly satisfactory agreement between frequency difference
limen data and the predictions of a model in which neural
encoding is represented by the ISI histogram.

The model explored in this section extends the applica-
tion of the ISI histogram to the case of complex tones. The
way that the model works is not hard to describe: To calcu-
late the pitch of a component of a complex tone we consider
an auditory filter with its characteristic frequency f. in the
neighborhood of the component of interest. The filter passes
mainly, but not exclusively, the component itself. Compo-
nents of higher and lower frequencies will be passed, more
or less depcnding upon the slopes of the filter passband.
From a model of neural encoding we calculate the ISI histo-
gram for the spike train in that auditory filter. The intervals
corresponding to the peaks of the ISI histogram give esti-
mates of the pitch for the component. To predict the results
of a pitch matching experiment we next do an equivalent
calculation for the pitch of the matching sine tone. The dif-
ference between the component pitch and the sine tone pitch
gives an estimate of the pitch shift.

It is also not hard to see why we expect this model to
work in a way that can account for our data. When the fre-
quency of a component of a complex tone is mistuned posi-
tively the locus of maximum excitation moves on the tono-
topic axis. Therefore the characteristic frequency of the
appropriate filter is similarly shifted. This filter passes a
larger fraction of those components having frequencies
higher than the component of interest. The peaks of the re-
sulting ISI histogram are therefore shifted to smaller inter-
vals, corresponding to higher pitches, and this leads to a
pitch shift in a positive direction. An analogous argument
should predict negative pitch shifts for negative mistunings
in agreement with experiment.
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FIG. 10. Interspike interval histograms computed from the model of the
Appendix for a mistuned 5th harmonic. The solid line shows —4% mistun-
ing, the dashed line shows +4% mistuning. Histograms are shown as line
plots to make them easier to follow by eye. The bin width was 0.1 ms.

B. Timing model calculations

The calculation of the ISI histogram for complex tones
is intricate and is described in the Appendix. An important
assumption in the calculation is that the ensemble of neurons
that contribute ISI histograms to the pitch perception process
can be represented by a single representative neuron with a
characteristic frequency equal to the frequency of the mis-
tuned harmonic. This assumption seems reasonable because
it is expected that the process of mistuned harmonics segre-
gation focuses attention on the mistuned harmonic.

Two model ISI histograms are shown in Fig. 10. Both
are for mistuned Sth harmonics, one with +4% mistuning,
the other with —4% mistuning. The calculated histograms
assume that all harmonics have equal amplitudes and that
these are large enough that neural firing rate is saturated. The
average firing rate is taken to be R=100 spikes/s, but our
calculations are quite insensitive to the value of R.

The reciprocal of the ISI for the first peak provides an
estimate of the pitch of the mistuned harmonic. Twice the
reciprocal of the ISI for the second peak provides a second
estimate, etc. The final estimate of the pitch is a weighted
average of the estimates derived from individual peaks,
where the weighting functions are given by the square roots
of the heights of the peaks. Figure 11 shows the results of
this calculation in successive stages for the mistuned Sth
harmonic. The lines on the figure show calculated values of
the pitch shift based upon a total of 1, 2, 4, 7, or 10 peaks. As
more peaks are included in the average the predicted shifts
converge.

Figure 11 also shows the measured pitch shifts for the
four listeners in the low-level experiment. It is evident that
the pitch shifts calculated by the model for seven peaks or
more have about the right overall span. It is also evident that
the calculated shifts are too negative and have the wrong
shape. This discrepancy for the mistuned 5th harmonic is
part of a trend. A comparison between measured and calcu-
lated shifts for mistuned 7th and 9th harmonics reveals a
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FIG. 11. Experimental pitch shift data from Fig. 4 for the mistuned S5th
harmonic compared with calculations from the timing model wherein the
filter center frequency tracks the mistuned harmonic. Model predictions are
shown as lines, the lowest for pitch based upon the first peak in the ISI
histogram, others based upon information accumulated over 2,4,...,10 peaks,
showing convergence.

discrepancy that is even larger. Comparison for 4th and
lower harmonics shows a decreasing discrepancy, such that
agreement between measured and calculated shifts is good
for the mistuned 3rd.

C. Combined place and timing model

Our hybrid place and timing model ‘is essentially a tim-
ing model in that it determines pitch from the reciprocals of
the times of peaks in an ISI histogram, just as in the timing
model above. Place principles enter the model in the follow-
ing way: There are many different neurons that synchronize
with the mistuned harmonic. Some of them have character-
istic frequencies somewhat above the mistuned harmonic fre-
quency, and their ISI histograms are affected by higher har-
monics. Neurons tuned on the low-frequency side of the
mistuned harmonic are affected oppositely. A proper pitch
calculation should take account of all of these neurons,
weighting their inputs to the central pitch processor by their
firing rates or their synchrony indices. The weights are de-
termined by the spectrum of the tone and by partial masking,
especially partial masking from below. Thus the interaction
of excitation patterns along the tonotopic coordinate can shift
pitches because it changes the weights attached to different
IST histograms.

Our actual calculations, however, did not combine the
outputs of many different neurons. Because of computational
constraints we continued to use the output of a single repre-
sentative neuron. What was changed was that the character-
istic frequency of the representative neuron was no longer
taken to be equal to the mistuned harmonic frequency. In-
stead it was higher because of the upward spread of masking.

Combining timing and place principles in this way was a
sensible approach in view of our experimental data because
the partial masking of one harmonic by another is largest for
high harmonics, where the timing model by itself does not
agree with experiment. The partial masking becomes small
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FIG. 12. Experimental pitch shift data for the mistuned 5th harmonic com-
pared with a timing model wherein the characteristic frequency of the audi-
tory filter is shifted by partial masking of the excitation of the mistuned
harmonic.

for low harmonics where no correction is needed. The sign
of the masking contribution to the shift is also right. Because
of the upward spread of excitation, there is a positive dis-
placement of the characteristic frequency. This leads to an
increased contribution of higher harmonics to the ISI histo-
gram which increases the predicted pitch, as needed. The
dependence on signal level is also in the right direction. In-
creased upward spread of masking with increasing level re-
sults in larger positive pitch shifts, in agreement with the
data for the higher harmonics 4, 5, and 7.

For a specific implementation, the displacement in char-
acteristic frequency was taken to be proportional to the re-
ciprocal of the percentage by which the frequency of the
mistuned harmonic exceeded the frequency of the harmonic
immediately below. This choice led to larger displacements.
for larger harmonic numbers where harmonics are more
closely spaced on a ratio scale. For the mistuned 5th har-
monic, the displacement in characteristic frequency varied
monotonically from 10%, to 4% as the mistuning varied
from —8% to +8%. Figure 12 shows the resulting predic-
tions for the pitch shift. As the number of peaks of the ISI
histogram increases, the calculation agrees better with the
experiment. The tendency for predicted pitches to be too low
has been cured. However, the agreement with experiment is
not perfect; the tendency for the shifts to saturate with in-
creasing mistuning is not modeled accurately in the calcula-
tion. This matter is treated further in the concluding section.

V. CONCLUSION

The experiments described above measured the pitches
of the harmonics of a complex tone having 16 equal-
amplitude harmonics. Harmonic levels were either 28 or 58
dB SPL. Harmonics numbered 1, 2, 3,4, 5,7,9, and 11 were
measured. When the harmonics were not mistuned from their
correct integer values, their pitches were found to be equal to
their frequencies, consistent with the zero shift results of
Peters et al. (1983).
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When harmonics were mistuned positively, positive
pitch shifts appeared such that the pitch of a mistuned har-
monic was higher than its frequency. This result is consistent
with the excitation pattern algorithm of Terhardt. But when
the harmonics were mistuned negatively, the pitch shifts be-
came negative. By contrast, the excitation pattern algorithm
predicts that the pitch shift should become even more posi-
tive. This disagreement does not seem to be reparable by any
reasonable modification of the excitation pattern model.

An alternative model based upon neural timing, repre-
sented by the ISI histogram, is also in disagreement with the
data, but in a way that is more easily corrected. A hybrid
model combining timing and excitation pattern models is
suggested in which pitch is determined by the ISI histogram,
but the ensemble of neurons that contribute ISI histograms to
the pitch perception process consists of the most strongly
excited neurons. The relative excitation strengths, in turn, are
determined by masking interaction among excitation pat-
terns.

The hybrid model can predict pitch shifts that agree ap-
proximately with measured data for mistuned harmonics 2
and greater. Some details, however, are missing. The satura-
tion of the pitch shift for large mistunings is a highly repro-
ducible result that should be explained by a model, but the
model calculations shown in Fig. 12 show little saturation. In
fact, we have done numerous calculations in which satura-
tion and supersaturation does occur, for both positive and
negative extreme mistunings. These calculations tend to be
those in which the peripheral filters are wider than those
recommended by Colburn (1973). The problem with filters
that are wide enough to predict saturation is that they intro-
duce a phase dependence into the predicted pitch shifts, a
result for which we have no experimental support.

The most serious flaw of the hybrid model is that it fails
to predict the correct pitch shift for a mistuned fundamental
(harmonic number 1). The model prediction, unique for the
fundamental, is that the pitch shift should be very small and
opposite in sign to the mistuning. By contrast, the experi-
mental pitch shift is the same as for any other harmonic,
namely substantial and of the same sign as the mistuning.
The problem is endemic to the model. Essentially, it occurs
because every peak in the ISI histogram of a neuron synchro-
nized to the fundamental coincides with some peak in the ISI
histogram for any other harmonic. Based upon many calcu-
lations we think it likely that, with the right choice of param-
eters, the model could account for the data for all other mis-
tuned harmonics, but not for the mistuned fundamental.
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APPENDIX: MODEL ISI HISTOGRAM

Most of the work on model ISI histograms has been
specific to sine-tone stimuli. The so-called “MIT model”
based on auditory nerve data (Goldstein, 1973; Colburn,
1973) is the most visible example. To construct a model ISI
histogram for a complex tone, as needed in our calculations,
is rather more complicated. Details of auditory filtering be-
come important, and nonlinear effects, including suppres-
sion, must be accommodated in some way by the model. The
present development of an ISI histogram for a complex tone
represents a minimal modification of the model for sine
tones. Essentially it is the model proposed by Srulovicz and
Goldstein (1983).

The development begins with the model response of an
auditory-nerve fiber to a sine tone with frequency f;. The
signal is given by

s(1)=A,; cos(2mfit+ ;). (A1)

The response of an auditory-nerve fiber to the tone is de-
scribed by a nonhomogeneous Poisson process with rate
function A. The model therefore neglects the refractory na-
ture of neurons. The rate function for the Poisson process is
given by the output of an exponential rectifier, which appears
to be a reasonable approximation for signals with line spectra
(Evans, 1968; Siebert, 1968). Therefore, the rate function is

R

N(1)= Eexp[Z,« cos(2mfit+ ¢;)], (A2)
where R is the average firing rate, and Z, is the synchrony
parameter. Constant B normalizes the exponential function.
Here, as below, we pay little respect to normalization be-
cause normalization is not relevant to our calculation.

To estimate the value of Z;, we expand the exponential
function in a Fourier series,

%

explZ; cos()c)]zlo(Z,-)vLZAEl 1,(Z;)cos(kx). (A3)

The coefficients [, are the modified Bessel functions of
order k. A measure of synchrony 1is the ratio
S(Z)=1,(Z)/1y(Z). This ratio has been called the “‘syn-
chrony index” or ‘“vector strength” (see references in
Johnson, 1980). It is simply one half of the maximum in a
cross-correlation integral between a period histogram of the
measured firing rate and a sine function with the period of
the signal. Function S(Z) is a monotonically increasing func-
tion of Z, with asymptotic value 1. The largest measured
synchrony indices are at low frequencies; for high-level sig-
nals they are about 0.92, which suggests that the low-
frequency limit of the argument of S should be about Z=6.5.

We now generalize the above to the case of a complex
tone. For a complex tone with N partials the signal is

N
s()=2, A; cos(2mfit+ ;). (A4)
i=1

Then the rate function becomes

x(z)—g Z Z, cos(2mfit+ ;) (A5)
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This is the form used by Srulovicz and Goldstein (1983),
who have also suggested the following approach to describe
the synchrony. Parameters Z; are given in terms of the am-
plitudes of the components, A;, the transfer function of a
hypothetical linear auditory filter H; and an expression for
the maximum synchrony G, .

7 A,GH;
i~ 1+(EN A H2)1/2

(A6)

We now consider a specific application, namely, the
pitch of a harmonic of a complex tone. It is assumed that
listeners can monitor selected places along the tonotopic
axis, i.e., selected auditory filters. Because the task is to
match the pitch of a harmonic it is to the listener’s advantage
to monitor that place where there is the most information
about the harmonic in question. Therefore the model con-
fines its attention to the neural signal in an auditory filter
with a characteristic frequency f,. that is near the frequency
of the harmonic, specifically the mistuned harmonic in our
case.

The filter function is from Colburn (1973)

H=(flf)* fisf., (ATa)

Hi=(fi/f)7*  fi>fe, (A7b)
where the slope is

a=4, f.<800 Hz, (A8a)

a=f,200, f.>800 Hz. (A8b)

Function G, for the maximum possible synchrony is
given by Johnson’s (1974) expression:

G;=6.5{[ 1+ (fi/630)*][ 1 + (f:/3000)>]} 2. (A9)

This completes the description of the model rate function for
neural firing, assumed to be Poisson. The transformation of
the model derived for sine tone response into a model for
complex tone response has been simple indeed. Some con-
cession to the expected behavior of real neurons appears in
Eq. (A6) for Z;, where suppression of the response at f. by
neighboring components of the tone is included by means of
the sum in the denominator. Here, neighboring components
contribute to suppression according to their strength in the
auditory filter at f,.. Absent from our description is any ac-
count of phase shift on the basilar membrane. It is implicitly
assumed that the phase angles in the neural response are
those of the signal. This assumption is dubious at low fre-
quencies (Allen, 1983).

The basis for our model of pitch perception is the ISI
histogram, E, with bin width A7. This is given by

E(T):ATf dt N(ON(t+7)P(t+7]1), (A10)
where T is the duration of the tone, and where P(r+ |t) is
the probability that if a neuron fires at time ¢ it does not fire
in the interval between ¢ and ¢+ 7. For a Poisson process, P
is given by

P(t+ T|t)=exp(—jtﬁdt’ )\(t')) . (A11)
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To make the integral in £ mathematically tractable we
approximate P by a time-independent average,

P(t+7|t)=exp(—R7). (A12)

To neglect the correlation between P and the rate func-
tions in the integra| for £ seems a priori to be a crude ap-
proximation. A special feature of our application, however,
makes the approximation better than in the general case. Be-
low we shall be concerned with the peaks of function E(7).
These occur at values of 7 that span a period (or an approxi-
mate period) of the rate function. In that case the value of
P(t+ 7|t) is, in fact, independent of ¢, or nearly so.

A standard trigonometry identity then leads to a simpli-
fied expression for the ISI histogram:

g2 o ¥
E(71)= E) At e“'”fo drl:[l exp{[2Z;cos(7f;7)]

Xcos(2mfit+afit+ @)} (A13)

The integrand can be rewritten in series form using the ex-
pansion of Eq. (A3):
N

[1

i=1

o

10[2Z; cos(mf;m)]+2 2, L[2Z; cos(mf;7)]
k=1

Xcos[k(2mfit+mfit+ ;)] | . (A14)

The integrand can be regarded as a product of binomials
with first term /, and second term given by the series in k.
Expanding the product of binomials leads to an expansion
for the ISI histogram:

The zeroth-order term is
i N
RV &
Ey=T E) e TATH 1y[2Z; cos(f;7)]. (A16)
=1

The first-order term E | involves (N —1) factors of I, and
a single factor which is a sum of cosine terms. This term
vanishes so long as the duration is longer than several peri-
ods because the average of a trigonometric function is zero.

The second-order term E, involves (N—2) factors of /
and a product of two infinite sums on k. By the orthogonality
of the cosine functions only a limited number of these terms
contribute to £, but those that do contribute introduce a
phase dependence into the ISI histogram. Thus the lowest
order nonvanishing correction to E results in an ISI histo-
gram that depends upon the phases of the components.

Neglecting the second-order and higher-order terms is a
better approximation in some cases than in others. In the
limit of infinitely sharp filters the approximation is, of
course, exact. One suspects, based upon the form of the
second-order correction, that the approximation is worst if all
phase angles are zero. Then all terms in the £ sum contribute
the maximum amount and all are positive. If all phase angles
are 90 deg, as in our experiments, there is cancellation
among the terms and E, should be a better approximation to
E. Further, some advantage is gained in our calculation be-
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cause the harmonic of interest is actually mistuned. The larg-
est contributions to the ISI histogram come from terms in-
volving the mistuned harmonic because of the peripheral
filtering. But the integrals involving the mistuned harmonic
frequency tend to vanish because of the orthogonality of the
trigonometric functions. Therefore, £ is a better approxima-
tion to E for the case of mistuned harmonics than for a
strictly periodic tone.

We have checked the conjectures in the paragraph above
by comparing analytical values of E, with numerical calcu-
lations of E as given in Eq. (A13) using a large computer.
The numerical comparison showed that with filters as narrow
as those of Eqs. (A7) and (A8) and with values of mistuning
per our experiments the analytical values E, are rather good
approximations to E. That means that the combination of
filter width and mistuning makes E quite insensitive to the
phases of the components. This is a satisfying result; the £,
approximation is computationally fast and the form is simple
enough that one can readily understand the effects observed
in the calculations. Our numerical work also showed that
when filters are broader, for example, when they are twice as
broad, then E| is a rather poor approximation to E.

"The calculations were done using Eq. (10) from Terhardt er al. (1982b).
The level of the sine matching tone was taken to be 6 dB less than the level
of each component of the complex tone, as in the experiments of this paper.
*The experiments for mistuned 3rd and 5th harmonics were repeated with
signals that had been equalized to produce harmonics of equal amplitude as
measured at the headphones with a flat-plate coupler, exactly 58 dB per
component. For all listeners the matches for this experiment fell within the
error bars for the unequalized stimuli. We conclude that the pitch matches
of this study are stable against small changes in the levels of the harmonics.
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